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Abstract. Recently, a number of researchers have investigated a class of graph partitioning
algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller
graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
of the 6th SIAM Conference on Parallel Processing for Scientific Computing, 1993, 445–452; Hen-
drickson and Leland, A Multilevel Algorithm for Partitioning Graphs, Tech. report SAND 93-1301,
Sandia National Laboratories, Albuquerque, NM, 1993]. From the early work it was clear that
multilevel techniques held great promise; however, it was not known if they can be made to con-
sistently produce high quality partitions for graphs arising in a wide range of application domains.
We investigate the effectiveness of many different choices for all three phases: coarsening, partition
of the coarsest graph, and refinement. In particular, we present a new coarsening heuristic (called
heavy-edge heuristic) for which the size of the partition of the coarse graph is within a small factor
of the size of the final partition obtained after multilevel refinement. We also present a much faster
variation of the Kernighan–Lin (KL) algorithm for refining during uncoarsening. We test our scheme
on a large number of graphs arising in various domains including finite element methods, linear pro-
gramming, VLSI, and transportation. Our experiments show that our scheme produces partitions
that are consistently better than those produced by spectral partitioning schemes in substantially
smaller time. Also, when our scheme is used to compute fill-reducing orderings for sparse matrices,
it produces orderings that have substantially smaller fill than the widely used multiple minimum
degree algorithm.
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1. Introduction. Graph partitioning is an important problem that has exten-
sive applications in many areas, including scientific computing, VLSI design, and task
scheduling. The problem is to partition the vertices of a graph in p roughly equal
parts, such that the number of edges connecting vertices in different parts is mini-
mized. For example, the solution of a sparse system of linear equations Ax = b via
iterative methods on a parallel computer gives rise to a graph partitioning problem.
A key step in each iteration of these methods is the multiplication of a sparse matrix
and a (dense) vector. A good partition of the graph corresponding to matrix A can
significantly reduce the amount of communication in parallel sparse matrix-vector
multiplication [32]. If parallel direct methods are used to solve a sparse system of
equations, then a graph partitioning algorithm can be used to compute a fill-reducing
ordering that leads to a high degree of concurrency in the factorization phase [32, 12].
The multiple minimum degree ordering used almost exclusively in serial direct meth-
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ods is not suitable for parallel direct methods, as it provides very little concurrency
in the parallel factorization phase.

The graph partitioning problem is NP-complete. However, many algorithms have
been developed that find a reasonably good partition. Spectral partitioning meth-
ods are known to produce good partitions for a wide class of problems, and they are
used quite extensively [45, 47, 24]. However, these methods are very expensive since
they require the computation of the eigenvector corresponding to the second smallest
eigenvalue (Fiedler vector). Execution time of the spectral methods can be reduced
if computation of the Fiedler vector is done by using a multilevel algorithm [2]. This
multilevel spectral bisection (MSB) algorithm usually manages to speed up the spec-
tral partitioning methods by an order of magnitude without any loss in the quality of
the edge-cut. However, even MSB can take a large amount of time. In particular, in
parallel direct solvers, the time for computing ordering using MSB can be several or-
ders of magnitude higher than the time taken by the parallel factorization algorithm,
and thus ordering time can dominate the overall time to solve the problem [18].

Another class of graph partitioning techniques uses the geometric information of
the graph to find a good partition. Geometric partitioning algorithms [23, 48, 37,
36, 38] tend to be fast but often yield partitions that are worse than those obtained
by spectral methods. Among the most prominent of these schemes is the algorithm
described in [37, 36]. This algorithm produces partitions that are provably within the
bounds that exist for some special classes of graphs (that includes graphs arising
in finite element applications). However, due to the randomized nature of these
algorithms, multiple trials are often required (5 to 50) to obtain solutions that are
comparable in quality with spectral methods. Multiple trials do increase the time
[15], but the overall runtime is still substantially lower than the time required by
the spectral methods. Geometric graph partitioning algorithms are applicable only
if coordinates are available for the vertices of the graph. In many problem areas
(e.g., linear programming, VLSI), there is no geometry associated with the graph.
Recently, an algorithm has been proposed to compute coordinates for graph vertices
[6] by using spectral methods. But these methods are much more expensive and
dominate the overall time taken by the graph partitioning algorithm.

Another class of graph partitioning algorithms reduces the size of the graph (i.e.,
coarsen the graph) by collapsing vertices and edges, partitions the smaller graph, and
then uncoarsens it to construct a partition for the original graph. These are called
multilevel graph partitioning schemes [4, 7, 19, 20, 26, 10, 43]. Some researchers
investigated multilevel schemes primarily to decrease the partitioning time, at the cost
of somewhat worse partition quality [43]. Recently, a number of multilevel algorithms
have been proposed [4, 26, 7, 20, 10] that further refine the partition during the
uncoarsening phase. These schemes tend to give good partitions at a reasonable
cost. Bui and Jones [4] use random maximal matching to successively coarsen the
graph down to a few hundred vertices; they partition the smallest graph and then
uncoarsen the graph level by level, applying the KL algorithm to refine the partition.
Hendrickson and Leland [26] enhance this approach by using edge and vertex weights
to capture the collapsing of the vertex and edges. In particular, this latter work
showed that multilevel schemes can provide better partitions than spectral methods
at lower cost for a variety of finite element problems.

In this paper we build on the work of Hendrickson and Leland. We experiment
with various parameters of multilevel algorithms and their effect on the quality of
partition and ordering. We investigate the effectiveness of many different choices
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for all three phases: coarsening, partition of the coarsest graph, and refinement. In
particular, we present a new coarsening heuristic (called heavy-edge heuristic) for
which the size of the partition of the coarse graph is within a small factor of the
size of the final partition obtained after multilevel refinement. We also present a new
variation of the KL algorithm for refining the partition during the uncoarsening phase
that is much faster than the KL refinement used in [26].

We test our scheme on a large number of graphs arising in various domains includ-
ing finite element methods, linear programming, VLSI, and transportation. Our ex-
periments show that our scheme consistently produces partitions that are better than
those produced by spectral partitioning schemes in substantially smaller times (10 to
35 times faster than multilevel spectral bisection).1 Compared with the multilevel
scheme of [26], our scheme is about two to seven times faster, and it is consistently
better in terms of cut size. Much of the improvement in runtime comes from our
faster refinement heuristic, and the improvement in quality is due to the heavy-edge
heuristic used during coarsening.

We also used our graph partitioning scheme to compute fill-reducing orderings for
sparse matrices. Surprisingly, our scheme substantially outperforms the multiple min-
imum degree algorithm [35], which is the most commonly used method for computing
fill-reducing orderings of a sparse matrix.

Even though multilevel algorithms are quite fast compared with spectral methods,
they can still be the bottleneck if the sparse system of equations is being solved in
parallel [32, 18]. The coarsening phase of these methods is relatively easy to parallelize
[30], but the KL heuristic used in the refinement phase is very difficult to parallelize
[16]. Since both the coarsening phase and the refinement phase with the KL heuristic
take roughly the same amount of time, the overall runtime of the multilevel scheme
of [26] cannot be reduced significantly. Our new faster methods for refinement reduce
this bottleneck substantially. In fact our parallel implementation [30] of this multilevel
partitioning is able to get a speedup of as much as 56 on a 128-processor Cray T3D
for moderate size problems.

The remainder of the paper is organized as follows. Section 2 defines the graph
partitioning problem and describes the basic ideas of multilevel graph partitioning.
Sections 3, 4, and 5 describe different algorithms for the coarsening, initial partition-
ing, and the uncoarsening phase, respectively. Section 6 presents an experimental
evaluation of the various parameters of multilevel graph partitioning algorithms and
compares their performance with that of multilevel spectral bisection algorithm. Sec-
tion 7 compares the quality of the orderings produced by multilevel nested dissection
to those produced by multiple minimum degree and spectral nested dissection. Sec-
tion 9 provides a summary of the various results. A short version of this paper appears
in [29].

2. Graph partitioning. The k-way graph partitioning problem is defined as fol-
lows: given a graph G = (V,E) with |V | = n, partition V into k subsets, V1, V2, . . . , Vk
such that Vi∩Vj = ∅ for i 6= j, |Vi| = n/k, and

⋃
i Vi = V , and the number of edges of

E whose incident vertices belong to different subsets is minimized. The k-way graph
partitioning problem can be naturally extended to graphs that have weights associ-
ated with the vertices and the edges of the graph. In this case, the goal is to partition
the vertices into k disjoint subsets such that the sum of the vertex-weights in each

1We used the MSB algorithm in the Chaco [25] graph partitioning package to obtain the timings
for MSB.
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subset is the same, and the sum of the edge-weights whose incident vertices belong to
different subsets is minimized. A k-way partition of V is commonly represented by a
partition vector P of length n, such that for every vertex v ∈ V , P [v] is an integer
between 1 and k, indicating the partition at which vertex v belongs. Given a partition
P , the number of edges whose incident vertices belong to different subsets is called
the edge-cut of the partition.

The efficient implementation of many parallel algorithms usually requires the so-
lution to a graph partitioning problem, where vertices represent computational tasks,
and edges represent data exchanges. Depending on the amount of the computation
performed by each task, the vertices are assigned a proportional weight. Similarly,
the edges are assigned weights that reflect the amount of data that need to be ex-
changed. A k-way partitioning of this computation graph can be used to assign tasks
to k processors. Since the partitioning assigns to each processor tasks whose total
weight is the same, the work is balanced among k processors. Furthermore, since the
algorithm minimizes the edge-cut (subject to the balanced load requirements), the
communication overhead is also minimized.

One such example is the sparse matrix-vector multiplication y = Ax. Matrix
An×n and vector x are usually partitioned along rows, with each of the p processors
receiving n/p rows of A and the corresponding n/p elements of x [32]. For matrix A an
n-vertex graph GA can be constructed such that each row of the matrix corresponds
to a vertex, and if row i has a nonzero entry in column j (i 6= j), then there is
an edge between vertex i and vertex j. As discussed in [32], any edges connecting
vertices from two different partitions lead to communication for retrieving the value
of vector x that is not local but is needed to perform the dot-product. Thus, in order
to minimize the communication overhead, we need to obtain a p-way partition of GA
and then to distribute the rows of A according to this partition.

Another important application of recursive bisection is to find a fill-reducing or-
dering for sparse matrix factorization [12, 32, 22]. These algorithms are generally
referred to as nested dissection ordering algorithms. Nested dissection recursively
splits a graph into almost equal halves by selecting a vertex separator until the de-
sired number of partitions is obtained. One way of obtaining a vertex separator is
to first obtain a bisection of the graph and then compute a vertex separator from
the edge separator. The vertices of the graph are numbered such that at each level
of recursion the separator vertices are numbered after the vertices in the partitions.
The effectiveness and the complexity of a nested dissection scheme depend on the
separator computing algorithm. In general, small separators result in low fill-in.

The k-way partition problem is frequently solved by recursive bisection. That is,
we first obtain a 2-way partition of V , and then we further subdivide each part using
2-way partitions. After log k phases, graph G is partitioned into k parts. Thus, the
problem of performing a k-way partition can be solved by performing a sequence of
2-way partitions or bisections. Even though this scheme does not necessarily lead to
optimal partition, it is used extensively due to its simplicity [12, 22].

2.1. Multilevel graph bisection. The graph G can be bisected using a mul-
tilevel algorithm. The basic structure of a multilevel algorithm is very simple. The
graph G is first coarsened down to a few hundred vertices, a bisection of this much
smaller graph is computed, and then this partition is projected back toward the orig-
inal graph (finer graph). At each step of the graph uncoarsening, the partition is
further refined. Since the finer graph has more degrees of freedom, such refinements
usually decrease the edge-cut. This process is graphically illustrated in Figure 1.
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Fig. 1. The various phases of the multilevel graph bisection. During the coarsening phase, the
size of the graph is successively decreased; during the initial partitioning phase, a bisection of the
smaller graph is computed; and during the uncoarsening phase, the bisection is successively refined as
it is projected to the larger graphs. During the uncoarsening phase the light lines indicate projected
partitions, and dark lines indicate partitions that were produced after refinement.

Formally, a multilevel graph bisection algorithm works as follows: consider a
weighted graph G0 = (V0, E0), with weights both on vertices and edges. A multilevel
graph bisection algorithm consists of the following three phases.

Coarsening phase. The graph G0 is transformed into a sequence of smaller
graphs G1, G2, . . . , Gm such that |V0| > |V1| > |V2| > · · · > |Vm|.

Partitioning phase. A 2-way partition Pm of the graph Gm = (Vm, Em) is
computed that partitions Vm into two parts, each containing half the vertices
of G0.

Uncoarsening phase. The partition Pm of Gm is projected back to G0 by going
through intermediate partitions Pm−1, Pm−2, . . . , P1, P0.

3. Coarsening phase. During the coarsening phase, a sequence of smaller
graphs, each with fewer vertices, is constructed. Graph coarsening can be achieved in
various ways. Some possibilities are shown in Figure 2.

In most coarsening schemes, a set of vertices of Gi is combined to form a single
vertex of the next level coarser graph Gi+1. Let V vi be the set of vertices of Gi
combined to form vertex v of Gi+1. We will refer to vertex v as a multinode. In order
for a bisection of a coarser graph to be good with respect to the original graph, the
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Fig. 2. Different ways to coarsen a graph.

weight of vertex v is set equal to the sum of the weights of the vertices in V vi . Also,
in order to preserve the connectivity information in the coarser graph, the edges of
v are the union of the edges of the vertices in V vi . In the case where more than one
vertex of V vi contains edges to the same vertex u, the weight of the edge of v is equal
to the sum of the weights of these edges. This is useful when we evaluate the quality
of a partition at a coarser graph. The edge-cut of the partition in a coarser graph
will be equal to the edge-cut of the same partition in the finer graph. Updating the
weights of the coarser graph is illustrated in Figure 2.

Two main approaches have been proposed for obtaining coarser graphs. The first
approach is based on finding a random matching and collapsing the matched vertices
into a multinode [4, 26], while the second approach is based on creating multinodes
that are made of groups of vertices that are highly connected [7, 19, 20, 10]. The
later approach is suited for graphs arising in VLSI applications, since these graphs
have highly connected components. However, for graphs arising in finite element
applications, most vertices have similar connectivity patterns (i.e., the degree of each
vertex is fairly close to the average degree of the graph). In the rest of this section
we describe the basic ideas behind coarsening using matchings.

Given a graph Gi = (Vi, Ei), a coarser graph can be obtained by collapsing
adjacent vertices. Thus, the edge between two vertices is collapsed and a multinode
consisting of these two vertices is created. This edge collapsing idea can be formally
defined in terms of matchings. A matching of a graph is a set of edges no two of
which are incident on the same vertex. Thus, the next level coarser graph Gi+1 is
constructed from Gi by finding a matching of Gi and collapsing the vertices being
matched into multinodes. The unmatched vertices are simply copied over to Gi+1.
Since the goal of collapsing vertices using matchings is to decrease the size of the graph
Gi, the matching should contain a large number of edges. For this reason, maximal
matchings are used to obtain the successively coarse graphs. A matching is maximal
if any edge in the graph that is not in the matching has at least one of its endpoints
matched. Note that depending on how matchings are computed, the number of edges
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belonging to the maximal matching may be different. The maximal matching that
has the maximum number of edges is called maximum matching. However, because
the complexity of computing a maximum matching [41] is in general higher than that
of computing a maximal matching, the latter are preferred.

Coarsening a graph using matchings preserves many properties of the original
graph. If G0 is (maximal) planar, the Gi is also (maximal) planar [34]. This property
is used to show that the multilevel algorithm produces partitions that are provably
good for planar graphs [28].

Since maximal matchings are used to coarsen the graph, the number of vertices
in Gi+1 cannot be less than half the number of vertices in Gi; thus, it will require at
least O(log(n/n′)) coarsening phases to coarsen G0 down to a graph with n′ vertices.
However, depending on the connectivity of Gi, the size of the maximal matching may
be much smaller than |Vi|/2. In this case, the ratio of the number of vertices from Gi
to Gi+1 may be much smaller than 2. If the ratio becomes lower than a threshold, then
it is better to stop the coarsening phase. However, this type of pathological condition
usually arises after many coarsening levels, in which case Gi is already fairly small;
thus, aborting the coarsening does not affect the overall performance of the algorithm.

In the remaining sections we describe four ways that we used to select maximal
matchings for coarsening.

Random matching (RM). A maximal matching can be generated efficiently using
a randomized algorithm. In our experiments we used a randomized algorithm similar
to that described in [4, 26]. The random maximal matching algorithm is the following.
The vertices are visited in random order. If a vertex u has not been matched yet, then
we randomly select one of its unmatched adjacent vertices. If such a vertex v exists, we
include the edge (u, v) in the matching and mark vertices u and v as being matched.
If there is no unmatched adjacent vertex v, then vertex u remains unmatched in the
random matching. The complexity of the above algorithm is O(|E|).

Heavy edge matching (HEM). RM is a simple and efficient method to compute a
maximal matching and minimizes the number of coarsening levels in a greedy fashion.
However, our overall goal is to find a partition that minimizes the edge-cut. Consider
a graph Gi = (Vi, Ei), a matching Mi that is used to coarsen Gi, and its coarser graph
Gi+1 = (Vi+1, Ei+1) induced by Mi. If A is a set of edges, define W (A) to be the sum
of the weights of the edges in A. It can be shown that

W (Ei+1) = W (Ei)−W (Mi).(1)

Thus, the total edge-weight of the coarser graph is reduced by the weight of the
matching. Hence, by selecting a maximal matching Mi whose edges have a large
weight, we can decrease the edge-weight of the coarser graph by a greater amount. As
the analysis in [28] shows, since the coarser graph has smaller edge-weight, it also has a
smaller edge-cut. Finding a maximal matching that contains edges with large weight
is the idea behind the HEM. An HEM is computed using a randomized algorithm
similar to that for computing an RM described earlier. The vertices are again visited
in random order. However, instead of randomly matching a vertex u with one of its
adjacent unmatched vertices, we match u with the vertex v such that the weight of
the edge (u, v) is maximum over all valid incident edges (heavier edge). Note that this
algorithm does not guarantee that the matching obtained has maximum weight (over
all possible matchings), but our experiments have shown that it works very well. The
complexity of computing an HEM is O(|E|), which is asymptotically similar to that
for computing the RM.
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Light edge matching (LEM). Instead of minimizing the total edge-weight of the
coarser graph, one might try to maximize it. From (1), this is achieved by finding a
matching Mi that has the smallest weight, leading to a small reduction in the edge
weight of Gi+1. This is the idea behind the LEM. It may seem that the LEM does not
perform any useful transformation during coarsening. However, the average degree of
Gi+1 produced by LEM is significantly higher than that of Gi. This is important for
certain partitioning heuristics such as KL [4], because they produce good partitions
in a small amount of time for graphs with high average degree.

To compute a matching with minimal weight we only need to slightly modify
the algorithm for computing the maximal-weight matching in Section 3. Instead of
selecting an edge (u, v) in the matching such that the weight of (u, v) is the largest, we
select an edge (u, v) such that its weight is the smallest. The complexity of computing
the minimum-weight matching is also O(|E|).

Heavy clique matching (HCM). A clique of an unweighted graph G = (V,E) is
a fully connected subgraph of G. Consider a set of vertices U of V (U ⊂ V ). The
subgraph of G induced by U is defined as GU = (U,EU ), such that EU consists of all
edges (v1, v2) ∈ E such that both v1 and v2 belong in U . Looking at the cardinality
of U and EU we can determined how close U is to a clique. In particular, the ratio
2|EU |/(|U |(|U | − 1)) goes to one if U is a clique, and it is small if U is far from being
a clique. We refer to this ratio as edge density.

The heavy clique matching scheme computes a matching by collapsing vertices
that have high edge density. Thus, this scheme computes a matching whose edge
density is maximal. The motivation behind this scheme is that subgraphs of G0 that
are cliques or almost cliques will most likely not be cut by the bisection. So, by cre-
ating multinodes that contain these subgraphs, we make it easier for the partitioning
algorithm to find a good bisection. Note that this scheme tries to approximate the
graph coarsening schemes that are based on finding highly connected components
[7, 19, 20, 10].

As in the previous schemes for computing the matching, we compute the HCM
using a randomized algorithm. For the computation of edge density, so far we have
only dealt with the case in which the vertices and edges of the original graph G0 =
(V0, E0) have unit weight. Consider a coarse graph Gi = (Vi, Ei). For every vertex
u ∈ Vi, define vw(u) to be the weight of the vertex. Recall that this is equal to the
sum of the weight of the vertices in the original graph that have been collapsed into
u. Define ce(u) to be the sum of the weight of the collapsed edges of u. These edges
are those collapsed to form the multinode u. Finally, for every edge e ∈ Ei define
ew(e) be the weight of the edge. Again, this is the sum of the weight of the edges
that through the coarsening have been collapsed into e. Given these definitions, the
edge density between vertices u and v is given by

2(ce(u) + ce(v) + ew(u, v))

(vw(u) + vw(v))(vw(u) + vw(v)− 1)
.(2)

The randomized algorithm works as follows. The vertices are visited in a random
order. An unmatched vertex u is matched with its unmatched adjacent vertex v such
that the edge density of the multinode created by combining u and v is the largest
among all possible multinodes involving u and other unmatched adjacent vertices of
u. Note that HCM is very similar to the HEM scheme. The only difference is that
HEM matches vertices that are only connected with a heavy edge irrespective of the
contracted edge-weight of the vertices, whereas HCM matches a pair of vertices if
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they are both connected using a heavy edge and if each of these two vertices have
high contracted edge-weight.

4. Partitioning phase. The second phase of a multilevel algorithm computes
a high-quality bisection (i.e., small edge-cut) Pm of the coarse graph Gm = (Vm, Em)
such that each part contains roughly half of the vertex weight of the original graph.
Since during coarsening the weights of the vertices and edges of the coarser graph were
set to reflect the weights of the vertices and edges of the finer graph, Gm contains
sufficient information to intelligently enforce the balanced partition and the small
edge-cut requirements.

A partition of Gm can be obtained using various algorithms such as (a) spectral
bisection [45, 47, 2, 24], (b) geometric bisection [37, 36] (if coordinates are available),2

and (c) combinatorial methods [31, 3, 11, 12, 17, 5, 33, 21]. Since the size of the
coarser graph Gm is small (i.e., |Vm| < 100), this step takes a small amount of time.

We implemented four different algorithms for partitioning the coarse graph. The
first algorithm uses the spectral bisection. The other three algorithms are combi-
natorial in nature and try to produce bisections with small edge-cut using various
heuristics. These algorithms are described in the next sections. We choose not to use
geometric bisection algorithms, since the coordinate information was not available for
most of the test graphs.

4.1. Spectral bisection (SB). In the SB algorithm, the spectral information
is used to partition the graph [45, 2, 26]. This algorithm computes the eigenvector y
corresponding to the second largest eigenvalue of the Laplacian matrix Q = D − A,
where

ai,j =

{
ew(vi, vj) if (vi, vj) ∈ Em,
0 otherwise.

This eigenvector is called the Fiedler vector. The matrix D is diagonal such that
di,i =

∑
ew(vi, vj) for (vi, vj) ∈ Em. Given y, the vertex set Vm is partitioned into

two parts as follows. Let r be the ith element of the y vector. Let P [j] = 1 for all
vertices such that yj ≤ r, and let P [j] = 2 for all the other vertices. Since we are
interested in bisections of equal size, the value of r is chosen as the weighted median
of the values of yi.

The eigenvector y is computed using the Lanczos algorithm [42]. This algorithm
is iterative and the number of iterations required depends on the desired accuracy. In
our experiments, we set the accuracy to 10−2 and the maximum number of iterations
to 100.

4.2. KL algorithm. The KL algorithm [31] is iterative in nature. It starts
with an initial bipartition of the graph. In each iteration it searches for a subset of
vertices, from each part of the graph such that swapping them leads to a partition
with smaller edge-cut. If such subsets exist, then the swap is performed and this
becomes the partition for the next iteration. The algorithm continues by repeating
the entire process. If it cannot find two such subsets, then the algorithm terminates,
since the partition is at a local minimum and no further improvement can be made
by the KL algorithm. Each iteration of the KL algorithm described in [31] takes
O(|E| log |E|) time. Several improvements to the original KL algorithm have been

2Coordinates for the vertices of the successive coarser graphs can be constructed by taking the
midpoint of the coordinates of the combined vertices.
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developed. One such algorithm is by Fiduccia and Mattheyses [9] that reduces the
complexity to O(|E|) by using appropriate data structures.

The KL algorithm finds locally optimal partitions when it starts with a good initial
partition and when the average degree of the graph is large [4]. If no good initial
partition is known, the KL algorithm is repeated with different randomly selected
initial partitions, and the one that yields the smallest edge-cut is selected. Requiring
multiple runs can be expensive, especially if the graph is large. However, since we are
only partitioning the much smaller coarse graph, performing multiple runs requires
very little time. Our experience has shown that the KL algorithm requires only five
to ten different runs to find a good partition.

Our implementation of the KL algorithm is based on the algorithm described
by Fiduccia and Mattheyses (FM) [9],3 with certain modifications that significantly
reduce the run time. Suppose P is the initial partition of the vertices of G = (V,E).
The gain gv of a vertex v is defined as the reduction on the edge-cut if vertex v moves
from one partition to the other. This gain is given by

gv =
∑

(v,u)∈E∧P [v] 6=P [u]

w(v, u)−
∑

(v,u)∈E∧P [v]=P [u]

w(v, u),(3)

where w(v, u) is weight of edge (v, u). If gv is positive, then by moving v to the other
partition the edge-cut decreases by gv; whereas if gv is negative, the edge-cut increases
by the same amount. If a vertex v is moved from one partition to the other, then the
gains of the vertices adjacent to v may change. Thus, after moving a vertex, we need
to update the gains of its adjacent vertices.

Given this definition of gain, the KL algorithm then proceeds by repeatedly se-
lecting from the larger part a vertex v with the largest gain and moves it to the other
part. After moving v, v is marked so it will not be considered again in the same
iteration, and the gains of the vertices adjacent to v are updated to reflect the change
in the partition. The original KL algorithm [9] continues moving vertices between the
partitions until all the vertices have been moved. However, in our implementation, the
KL algorithm terminates when the edge-cut does not decrease after x vertex moves.
Since the last x vertex moves did not decrease the edge-cut (they may have actually
increased it), they are undone. We found that setting x = 50 works quite well for
our test cases. Note that terminating the KL iteration in this fashion significantly
reduces the runtime of the KL iteration.

The efficient implementation of the above algorithm depends on the method that
is used to compute the gains of the graph and the type of data structure used to store
these gains. The implementation of the KL algorithm is described in Appendix A.3.

4.3. Graph growing partitioning algorithm (GGP). Another simple way
of bisecting the graph is to start from a vertex and grow a region around it in a
breath-first fashion, until half of the vertices have been included (or half of the total
vertex weight) [12, 17, 39]. The quality of the GGP is sensitive to the choice of a
vertex from which to start growing the graph, and different starting vertices yield
different edge-cuts. To partially solve this problem, we randomly select 10 vertices
and we grow 10 different regions. The trial with the smaller edge-cut is selected as
the partition. This partition is then further refined by using it as the input to the KL

3The FM algorithm [9] is slightly different than that originally developed by Kernighan and Lin
[31]. The difference is that in each step, the FM algorithm moves a single vertex from one part to
the other whereas the KL algorithm selects a pair of vertices, one from each part, and moves them.
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algorithm. Again, because Gm is very small, this step takes a small percentage of the
total time.

4.4. Greedy graph growing partitioning algorithm (GGGP). The GGP
described in the previous section grows a partition in a strict breadth-first fashion.
However, as in the KL algorithm, for each vertex v we can define the gain in the
edge-cut obtained by inserting v into the growing region. Thus, we can order the
vertices of the graph’s frontier in nondecreasing order according to their gain. Thus,
the vertex with the largest decrease (or smallest increase) in the edge-cut is inserted
first. When a vertex is inserted into the growing partition, then the gains of its
adjacent vertices already in the frontier are updated, and those not in the frontier
are inserted. Note that the data structures required to implement this scheme are
essentially those required by the KL algorithm. The only difference is that instead of
precomputing all the gains for all the vertices, we do so as these vertices are touched
by the frontier.

This greedy algorithm is also sensitive to the choice of the initial vertex, but less
so than GGP. In our implementation we randomly select four vertices as the starting
point of the algorithm, and we select the partition with the smaller edge-cut. In
our experiments, we found that the GGGP takes somewhat less time than the GGP
for partitioning the coarse graph (because it requires fewer runs), and the initial cut
found by the scheme is better than that found by the GGP.

5. Uncoarsening phase. During the uncoarsening phase, the partition Pm of
the coarser graph Gm is projected back to the original graph by going through the
graphs Gm−1, Gm−2, . . . , G1. Since each vertex of Gi+1 contains a distinct subset of
vertices of Gi, obtaining Pi from Pi+1 is done by simply assigning the set of vertices
V vi collapsed to v ∈ Gi+1 to the partition Pi+1[v] (i.e., Pi[u] = Pi+1[v] ∀u ∈ V vi ).

Even though Pi+1 is a local minimum partition of Gi+1, the projected partition
Pi may not be at a local minimum with respect to Gi. Since Gi is finer, it has
more degrees of freedom that can be used to improve Pi and to decrease the edge-
cut. Hence, it may still be possible to improve the projected partition of Gi−1 by
local refinement heuristics. For this reason, after projecting a partition, a partition
refinement algorithm is used. The basic purpose of a partition refinement algorithm
is to select two subsets of vertices, one from each part such that when swapped the
resulting partition has a smaller edge-cut. Specifically, if A and B are the two parts of
the bisection, a refinement algorithm selects A′ ⊂ A and B′ ⊂ B such that A\A′∪B′,
and B\B′ ∪A′ is a bisection with a smaller edge-cut.

A class of algorithms that tends to produce very good results is that based on
the KL partition algorithm described in Section 4.2. Recall that the KL algorithm
starts with an initial partition and in each iteration it finds subsets A′ and B′ with
the above properties.

In the next sections we describe two different refinement algorithms that are based
on similar ideas but differ in the time they require to do the refinement. Details about
the efficient implementation of these schemes can be found in Appendix A.3.

5.1. KL refinement. The idea of KL refinement is to use the projected partition
of Gi+1 onto Gi as the initial partition for the KL algorithm described in Section 4.2.
The reason is that this projected partition is already a good partition; thus, KL will
converge within a few iterations to a better partition. For our test cases, KL usually
converges within three to five iterations.

Since we are starting with a good partition, only a small number of vertex swaps
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will decrease the edge-cut, and any further swaps will increase the size of the cut
(vertices with negative gains). Recall from Section 4.2 that in our implementation
a single iteration of the KL algorithm stops as soon as 50 swaps are performed that
do not decrease the edge-cut. This feature reduces the runtime when KL is applied
as a refinement algorithm, since only a small number of vertices lead to edge-cut
reductions. Our experimental results show that for our test cases this is usually
achieved after only a small percentage of the vertices have been swapped (less than
5%), which results in significant savings in the total execution time of this refinement
algorithm.

Since we terminate each pass of the KL algorithm when no further improvement
can be made in the edge-cut, the complexity of the KL refinement scheme described in
the previous section is dominated by the time required to insert the vertices into the
appropriate data structures. Thus, even though we significantly reduced the number
of vertices that are swapped, the overall complexity does not change in asymptotic
terms. Furthermore, our experience shows that the largest decrease in the edge-cut is
obtained during the first pass. In the KL(1) refinement algorithm, we take advantage
of that by running only a single iteration of the KL algorithm. This usually reduces
the total time taken by refinement by a factor of two to four (Section 6.3).

5.2. Boundary KL refinement. In both the KL and KL(1) refinement algo-
rithms, we have to insert the gains of all the vertices in the data structures. However,
since we terminate both algorithms as soon as we can no longer further reduce the
edge-cut, most of this computation is wasted. Furthermore, due to the nature of the
refinement algorithms, most of the nodes swapped by either the KL or KL(1) algo-
rithms are along the boundary of the cut, which is defined to be the vertices that have
edges that are cut by the partition.

In the boundary KL refinement algorithm, we initially insert into the data struc-
tures the gains for only the boundary vertices. As in the KL refinement algorithm,
after we swap a vertex v, we update the gains of the adjacent vertices of v not yet
being swapped. If any of these adjacent vertices become a boundary vertex due to
the swap of v, we insert it into the data structures if they have positive gain. Notice
that the boundary refinement algorithm is quite similar to the KL algorithm, with
the added advantage that only vertices are inserted into the data structures as needed
and no work is wasted.

As with KL, we have a choice of performing a single pass (boundary KL(1) re-
finement (BKL(1))) or multiple passes (boundary KL refinement (BKL)) until the
refinement algorithm converges. As opposed to the nonboundary refinement algo-
rithms, the cost of performing multiple passes of the boundary algorithms is small,
since only the boundary vertices are examined.

To further reduce the execution time of the boundary refinement while maintain-
ing the refinement capabilities of BKL and the speed of BKL(1) one can combine
these schemes into a hybrid scheme that we refer to as BKL(*,1). The idea behind
the BKL(*,1) policy is to use BKL as long as the graph is small and to switch to
BKL(1) when the graph is large. The motivation for this scheme is that single vertex
swaps in the coarser graphs lead to larger decreases in the edge-cut than in the finer
graphs. So by using BKL at these coarser graphs better refinement is achieved, and
because these graphs are very small (compared with the size of the original graph),
the BKL algorithm does not require a lot of time. For all the experiments presented
in this paper, if the number of vertices in the boundary of the coarse graph is less
than 2% of the number of vertices in the original graph, refinement is performed using
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BKL; otherwise BKL(1) is used. This choice of triggering condition relates the size of
the partition boundary, which is proportional to the cost of performing the refinement
of a graph, with the original size of the graph to determine when it is inexpensive to
perform BKL relative to the size of the graph.

6. Experimental results—Graph partitioning. We evaluated the perfor-
mance of the multilevel graph partitioning algorithm on a wide range of graphs arising
in different application domains. The characteristics of these matrices are described
in Table 1. All the experiments were performed on an SGI Challenge with 1.2GBytes
of memory and a 200MHz MIPS R4400 processor. All times reported are in seconds.
Since the nature of the multilevel algorithm discussed is randomized, we performed
all experiments with a fixed seed. Furthermore, the coarsening process ends when the
coarse graph has fewer than 100 vertices.

As discussed in sections 3, 4, and 5, there are many alternatives for each of
the three different phases of a multilevel algorithm. It is not possible to provide an
exhaustive comparison of all these possible combinations without making this paper
unduly large. Instead, we provide comparisons of different alternatives for each phase
after making a reasonable choice for the other two phases.

Table 1
Various matrices used in evaluating the multilevel graph partitioning and sparse matrix ordering

algorithm.

Graph name No. of vertices No. of edges Description
144 144649 1074393 3D Finite element mesh
4ELT 15606 45878 2D Finite element mesh
598A 110971 741934 3D Finite element mesh
ADD32 4960 9462 32-bit adder
AUTO 448695 3314611 3D Finite element mesh
BCSSTK30 28294 1007284 3D Stiffness matrix
BCSSTK31 35588 572914 3D Stiffness matrix
BCSSTK32 44609 985046 3D Stiffness matrix
BBMAT 38744 993481 2D Stiffness matrix
BRACK2 62631 366559 3D Finite element mesh
CANT 54195 1960797 3D Stiffness matrix
COPTER2 55476 352238 3D Finite element mesh
CYLINDER93 45594 1786726 3D Stiffness matrix
FINAN512 74752 261120 Linear programming
FLAP 51537 479620 3D Stiffness matrix
INPRO1 46949 1117809 3D Stiffness matrix
KEN-11 14694 33880 Linear programming
LHR10 10672 209093 Chemical engineering
LHR71 70304 1449248 Chemical engineering
M14B 214765 3358036 3D Finite element mesh
MAP1 267241 334931 Highway network
MAP2 78489 98995 Highway network
MEMPLUS 17758 54196 Memory circuit
PDS-20 33798 143161 Linear programming
PWT 36519 144793 3D Finite element mesh
ROTOR 99617 662431 3D Finite element mesh
S38584.1 22143 35608 Sequential circuit
SHELL93 181200 2313765 3D Stiffness matrix
SHYY161 76480 152002 CFD/Navier–Stokes
TORSO 201142 1479989 3D Finite element mesh
TROLL 213453 5885829 3D Stiffness matrix
VENKAT25 62424 827684 2D Coefficient matrix
WAVE 156317 1059331 3D Finite element mesh
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6.1. Matching schemes. We implemented the four matching schemes described
in Section 3 and the results for a 32-way partition for some matrices are shown in
Table 2. These schemes are (a) RM, (b) HEM, (c) LEM, and (d) HCM. For all the
experiments, we used the GGGP algorithm for the initial partition phase and the
BKL(*,1) as the refinement policy during the uncoarsening phase. For each match-
ing scheme, Table 2 shows the edge-cut, the time required by the coarsening phase
(CTime), and the time required by the uncoarsening phase (UTime). UTime is the
sum of the time spent in partitioning the coarse graph (ITime), the time spent in
refinement (RTime), and the time spent in projecting the partition of a coarse graph
to the next level finer graph (PTime).

In terms of the size of the edge-cut, there is no clear-cut winner among the various
matching schemes. The values of 32EC for all schemes are within 5% of each other for
most matrices. Of these schemes, RM produces the best partition for two matrices,
HEM for six matrices, LEM for three, and HCM for one.

The time spent in coarsening does not vary significantly across different schemes.
But RM and HEM require the least amount of time for coarsening, while LEM and
HCM require the most (up to 30% more time than RM). This is not surprising since
RM looks for the first unmatched neighbor of a vertex (the adjacency lists are ran-
domly permuted). On the other hand, HCM needs to find the edge with the maximum
edge density, and LEM produces coarser graphs that have vertices with higher degree
than the other three schemes; hence, LEM requires more time to both find a matching
and also to create the next level coarser graph. The coarsening time required by HEM
is only slightly higher (up to 4% more) than the time required by RM.

Comparing the time spent during uncoarsening, we see that both HEM and HCM
require the least amount of time, while LEM requires the most. In some cases, LEM
requires as much as seven times more time than either HEM or HCM. This can be
explained by the results shown in Table 3. This table shows the edge-cut of a 32-
way partition when no refinement is performed (i.e., the final edge-cut is exactly the
same as that found in the initial partition of the coarsest graph). The edge-cut of
LEM on the coarser graphs is significantly higher than that for either HEM or HCM.
Because of this, all three components of UTime increase for LEM relative to those of
the other schemes. The ITime is higher because the coarser graph has more edges,
RTime increases because a large number of vertices need to be swapped to reduce the
edge-cut, and PTime increases because more vertices are along the boundary, which
requires more computation as described in Appendix A.3. The time spent during
uncoarsening for RM is also higher than the time required by the HEM scheme by up
to 50% for some matrices for somewhat similar reasons.

From the discussion in the previous paragraphs we see that UTime is much smaller
than CTime for HEM and HCM, while UTime is comparable with CTime for RM
and LEM. Furthermore, for HEM and HCM, as the problem size increases UTime
becomes an even smaller fraction of CTime. As discussed in the introduction, this is
of particular importance when the parallel formulation of the multilevel algorithm is
considered [30].

As the experiments show, HEM is an excellent matching scheme that results in
good initial partitions and requires the smallest overall runtime. We selected the
HEM as our matching scheme of choice because of its consistently good behavior.

6.2. Initial partition algorithms. As described in Section 4, a number of
algorithms can be used to partition the coarse graph. We have implemented the
following algorithms: (a) SB, (b) GGP, and (c) GGGP.
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Table 3
The size of the edge-cut for a 32-way partition when no refinement was performed for the

various matching schemes.

RM HEM LEM HCM
BCSSTK31 144879 84024 412361 115471
BCSSTK32 184236 148637 680637 153945
BRACK2 75832 53115 187688 69370

CANT 817500 487543 1633878 521417
COPTER2 69184 59135 208318 59631

CYLINDER93 522619 286901 1473731 354154
4ELT 3874 3036 4410 4025

INPRO1 205525 187482 821233 141398
ROTOR 147971 110988 424359 98530
SHELL93 373028 237212 1443868 258689
TROLL 1095607 806810 4941507 883002
WAVE 239090 212742 745495 192729

The result of the partitioning algorithms for some matrices is shown in Ta-
ble 4. These partitions were produced by using the HEM during coarsening and
the BKL(*,1) refinement policy during uncoarsening. Four quantities are reported
for each partitioning algorithm. These are (a) the edge-cut of the initial partition
of the coarsest graph (IEC), (b) the edge-cut of the 2-way partition (2EC), (c) the
edge-cut of a 32-way partition (32EC), and (d) the combined time (IRTime) spent in
partitioning (ITime) and refinement (RTime) for the 32-way partition (i.e., IRTime
= ITime + RTime).

A number of interesting observations can be made from Table 4. The edge-cut
of the initial partition (IEC) for the GGGP scheme is consistently smaller than the
other two schemes (4ELT is the only exception as SB does slightly better). SB takes
more time than GGP or GGGP to partition the coarse graph. But ITimes for all
these schemes are fairly small (less than 20% of IRTime) in our experiments. Hence,
much of the difference in the runtime of the three different initial partition schemes
is due to refinement time associated with each. Furthermore, SB produces partitions
that are significantly worse than those produced by GGP and GGGP (as it is shown
in the IEC column of Table 4). This happens because either the iterative algorithm
used to compute the eigenvector does not converge within the allowable number of
iterations,4 or the initial partition found by the spectral algorithm is far from a local
minimum.

When the edge-cut of the 2-way and 32-way partitions is considered, the SB
scheme still does worse than GGP and GGGP, although the relative difference in
values of 2EC (and also 32EC) is smaller than it is for IEC. For the 2-way partition
SB performs better for only one matrix and for the 32-way partition for no matrices.
Comparing GGGP with GGP we see that GGGP performs better than GGP for nine
matrices in the 2-way partition and for nine matrices in the 32-way partition. On
the average for 32EC, SB does 4.3% worse than GGGP and requires 47% more time,
and GGP does 2.4% worse than GGGP and requires 7.5% more time. Looking at
the combined time required by partitioning and refinement we see that GGGP, in all
but one case, requires the least amount of time. This is because the initial partition
for GGGP is better than that for GGP; this good initial partition leads to less time
spent in refinement during the uncoarsening phase. In particular, for each matrix the

4In our experiments we set the maximum number of iterations to 100.
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performance for GGGP is better or very close to the best scheme both in terms of
edge-cut and runtime.

We also implemented the KL partitioning algorithm (Section 4.2). Its perfor-
mance was consistently worse than that of GGGP in terms of IEC, and it also required
more overall runtime. Hence, we omitted these results here.

In summary, the results in Table 4 show that GGGP consistently finds smaller
edge-cuts than the other schemes and even requires a slightly smaller runtime. Fur-
thermore, there is no advantage in choosing spectral bisection for partitioning the
coarse graph.

6.3. Refinement policies. As described in Section 5, there are different ways
that a partition can be refined during the uncoarsening phase. We evaluated the
performance of five refinement policies in terms of partition quality as well as execution
time. The refinement policies that we evaluate are (a) KL(1), (b) KL, (c) BKL(1),
(d) BKL, and (e) the combination of BKL and BKL(1) (BKL(*,1)).

The result of these refinement policies for computing a 32-way partition of graphs
corresponding to some of the matrices in Table 1 is shown in Table 5. These partitions
were produced by using the HEM during coarsening and the GGGP algorithm for
initially partitioning the coarser graph.

A number of interesting conclusions can be drawn from Table 5. First, for each of
the matrices and refinement policies, the size of the edge-cut does not vary significantly
for different refinement policies; all are within 15% of the best refinement policy for
that particular matrix. On the other hand, the time required by some refinement
policies does vary significantly. Some policies require up to 20 times more time than
others. KL requires the most time, while BKL(1) requires the least.

Comparing KL(1) with KL, we see that KL performs better than KL(1) for 8
out of the 12 matrices. For these 8 matrices, the improvement is less than 5% on the
average; however, the time required by KL is significantly higher than that of KL(1).
Usually, KL requires two to three times more time than KL(1).

Comparing the KL(1) and KL refinement schemes against their boundary vari-
ants, we see that the times required by the boundary policies are significantly less
than those required by their nonboundary counterparts. The time of BKL(1) ranges
from 29% to 75% of the time of KL(1), while the time of BKL ranges from 19% to 80%
of the time of KL. This seems quite reasonable, given that BKL(1) and BKL are more
efficient implementations of KL(1) and KL, respectively, that take advantage of the
fact that the projected partition requires little refinement. But surprisingly BKL(1)
and BKL lead to better edge-cut (than KL(1) and KL, respectively) in many cases.
On the average, BKL(1) performs similarly with KL(1), while BKL does better than
KL by 2%. BKL(1) does better than KL(1) in 6 out of the 12 matrices, and BKL does
better than KL in 10 out the 12 matrices. Thus, overall the quality of the boundary
refinement policies is at least as good as that of their nonboundary counterparts.

The difference in quality between KL and BKL is because each algorithm inserts
vertices into the KL data structures in a different order. At any given time, we may
have more than one vertex with the same largest gain. Thus, a different insertion order
may lead to a different ordering of the vertices with the largest gain. Consequently,
the KL and BKL algorithms may move different subsets of vertices from one part to
the other.

Comparing BKL(1) with BKL we see that the edge-cut is better for BKL for
nearly all matrices, and the improvement is relatively small (less than 4% on the
average). However, the time required by BKL is always higher than that of BKL(1)
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Fig. 3. Quality of our multilevel algorithm compared with the multilevel spectral bisection
algorithm. For each matrix, the ratio of the cut size of our multilevel algorithm to that of the MSB
algorithm is plotted for 64-, 128-, and 256-way partitions. Bars under the baseline indicate that our
multilevel algorithm performs better.

(in some cases up to four times higher). Thus, marginal improvement in the partition
quality comes at a significant increase in the refinement time. Comparing BKL(*,1)
with BKL we see that its edge-cut is on the average within 2% of that of BKL, while
its runtime is significantly smaller than that of BKL and only somewhat higher than
that of BKL(1).

In summary, both the BKL and the BKL(*,1) refinement policies require sub-
stantially less time than KL and produce smaller edge-cuts when coupled with the
heavy-edge matching scheme. We believe that the BKL(*,1) refinement policy strikes
a good balance between small edge-cut and fast execution.

6.4. Comparison with other partitioning schemes. The MSB [2] has been
shown to be an effective method for partitioning unstructured problems in a variety of
applications. The MSB algorithm coarsens the graph down to a few hundred vertices
using random matching. It partitions the coarse graph using spectral bisection and
obtains the Fiedler vector of the coarser graph. During uncoarsening, it obtains an
approximate Fiedler vector of the next level fine graph by interpolating the Fiedler
vector of the coarser graph, and it computes a more accurate Fiedler vector using
SYMMLQ [40]. By using this multilevel approach, the MSB algorithm is able to
compute the Fiedler vector of the graph in much less time than that taken by the
original spectral bisection algorithm. Note that MSB is a significantly different scheme
than the multilevel scheme that uses spectral bisection to partition the graph at the
coarsest level. We used the MSB algorithm in the Chaco [25] graph partitioning
package to produce partitions for some of the matrices in Table 1 and compared
the results with the partitions produced by our multilevel algorithm that uses HEM
during coarsening phase, GGGP during partitioning phase, and BKL(*,1) during the
uncoarsening phase.

Figure 3 shows the relative performance of our multilevel algorithm compared with
MSB. For each matrix we plot the ratio of the edge-cut of our multilevel algorithm to
the edge-cut of the MSB algorithm. Ratios that are less than one indicate that our
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Fig. 4. Quality of our multilevel algorithm compared with the multilevel spectral bisection
algorithm with KL refinement. For each matrix, the ratio of the cut size of our multilevel algorithm
to that of the MSB-KL algorithm is plotted for 64-, 128-, and 256-way partitions. Bars under the
baseline indicate that our multilevel algorithm performs better.

multilevel algorithm produces better partitions than MSB. From this figure we can see
that for all the problems our algorithm produces partitions that have smaller edge-
cuts than those produced by MSB. In some cases, the improvement is as high as 70%.
Furthermore, the time required by our multilevel algorithm is significantly smaller
than that required by MSB. Figure 6 shows the time required by different algorithms
relative to that required by our multilevel algorithm. From Figure 6, we see that
compared with MSB, our algorithm is usually 10 times faster for small problems, and
15 to 35 times faster for larger problems.

One way of improving the quality of MSB algorithm is to use the KL algorithm to
refine the partitions (MSB-KL). Figure 4 shows the relative performance of our mul-
tilevel algorithm compared with the MSB-KL algorithm. Comparing Figures 3 and 4
we see that the KL algorithm does improve the quality of the MSB algorithm. Nev-
ertheless, our multilevel algorithm still produces better partitions than MSB-KL for
many problems. However, KL refinement further increases the runtime of the overall
scheme as shown in Figure 6, making the difference in the runtime of MSB-KL and
our multilevel algorithm even greater.

The graph partitioning package Chaco implements its own multilevel graph par-
titioning algorithm that is modeled after the algorithm by Hendrickson and Leland
[26, 25]. This algorithm, which we refer to as Chaco-ML, uses RM during coarsen-
ing, SB for partitioning the coarse graph, and KL refinement every other coarsening
level during the uncoarsening phase. Figure 5 shows the relative performance of our
multilevel algorithms compared with Chaco-ML. From this figure we can see that our
multilevel algorithm usually produces partitions with smaller edge-cuts than that of
Chaco-ML. For some problems, the improvement of our algorithm is between 10% to
45%. For the cases where Chaco-ML does better, it is only marginally better (less
than 2%). Our algorithm is usually two to seven times faster than Chaco-ML. Most
of the savings come from the choice of refinement policy (we use BKL(*,1)) which is
usually four to six times faster than the KL refinement implemented by Chaco-ML.
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Fig. 6. The time required to find a 256-way partition for Chaco-ML, MSB, and MSB-KL
relative to the time required by our multilevel algorithm.

Note that we are able to use BKL(*,1) without much quality penalty only because
we use the HEM coarsening scheme. In addition, the GGGP used in our method
for partitioning the coarser graph requires much less time than the spectral bisection
which is used in Chaco-ML. This makes a difference in those cases in which the graph
coarsening phase aborts before the number of vertices becomes very small. Also, for
some problems, the Lanczos algorithm does not converge, which explains the poor
performance of Chaco-ML for graphs such as MAP1.

Table 6 shows the edge-cuts for 64-way, 128-way, and 256-way partitions for dif-
ferent algorithms. Table 7 shows the runtime of different algorithms for finding a
256-way partition.
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Table 7
The time required to find a 256-way partition by the MSB, MSB followed by KL (MSB-KL),

the multilevel algorithm implemented in Chaco (Chaco-ML), and our multilevel algorithm. All times
are in seconds.

Matrix MSB MSB-KL Chaco-ML Our multilevel
144 607.27 650.76 95.59 48.14
4ELT 24.95 26.56 7.01 3.13
598A 420.12 450.93 67.27 35.05
ADD32 18.72 21.88 4.23 1.63
AUTO 2214.24 2361.03 322.31 179.15
BCSSTK30 426.45 430.43 51.41 22.08
BCSSTK31 309.06 268.09 39.68 15.21
BCSSTK32 474.64 540.60 53.10 22.50
BBMAT 474.23 504.68 55.51 25.51
BRACK2 218.36 222.92 31.61 16.52
CANT 978.48 1167.87 108.38 47.70
COPTER2 185.39 194.71 31.92 16.11
CYLINDER93 671.33 697.85 91.41 39.10
FINAN512 311.01 340.01 31.00 17.98
FLAP 279.67 331.37 35.96 16.50
INPRO1 341.88 352.11 56.05 24.60
KEN-11 121.94 137.73 13.69 4.09
LHR10 142.58 168.26 18.95 8.08
LHR71 2286.36 2236.19 297.02 58.12
M14B 970.58 1033.82 140.34 74.04
MAP1 850.16 880.16 71.17 44.80
MAP2 195.09 196.34 22.41 11.76
MEMPLUS 117.89 133.05 36.87 4.32
PDS-20 249.93 256.90 20.85 11.16
PWT 70.09 76.67 16.22 7.16
ROTOR 550.35 555.12 59.46 29.46
S38584.1 178.11 199.96 14.11 4.72
SHELL93 1111.96 1004.01 153.86 71.59
SHYY161 129.99 142.56 29.82 10.13
TORSO 1053.37 1046.89 127.76 63.93
TROLL 3063.28 3360.00 302.15 132.08
VENKAT25 254.52 263.34 63.49 20.81
WAVE 658.13 673.45 90.53 44.55

7. Experimental results—Sparse matrix ordering. The multilevel graph
partitioning algorithm can be used to find a fill-reducing ordering for a symmetric
sparse matrix via recursive nested dissection. In the nested dissection ordering algo-
rithms, a vertex separator is computed from the edge separator of a 2-way partition.
Let S be the vertex separator and let A and B be the two parts of the vertex set of
G that are separated by S. In the nested dissection ordering, A is ordered first, B
is second, while the vertices in S are numbered last. Both A and B are ordered by
recursively applying nested dissection ordering. In our multilevel nested dissection
(MLND) algorithm a vertex separator is computed from an edge separator by finding
the minimum vertex cover [41, 44]. The minimum vertex cover has been found to
produce very small vertex separators.

The overall quality of a fill-reducing ordering depends on whether or not the
matrix is factored on a serial or parallel computer. On a serial computer, a good
ordering is the one that requires the smaller number of operations during factorization.
The number of operations required is usually related to the number of nonzeros in
the Cholesky factors. The fewer nonzeros usually lead to fewer operations. However,
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Table 8
The number of operations required to factor various matrices when ordered with multiple mini-

mum degree (MMD), spectral nested dissection (SND), and our multilevel nested dissection (MLND).

Matrix MMD SND MLND
144 2.4417e+11 7.6580e+10 6.4756e+10
4ELT 1.8720e+07 2.6381e+07 1.6089e+07
598A 6.4065e+10 2.5067e+10 2.2659e+10
AUTO 2.8393e+12 7.8352e+11 6.0211e+11
BCSSTK30 9.1665e+08 1.8659e+09 1.3822e+09
BCSSTK31 2.5785e+09 2.6090e+09 1.8021e+09
BCSSTK32 1.1673e+09 3.9429e+09 1.9685e+09
BRACK2 3.3423e+09 3.1463e+09 2.4973e+09
CANT 4.1719e+10 2.9719e+10 2.2032e+10
COPTER2 1.2004e+10 8.6755e+09 7.0724e+09
CYLINDER93 6.3504e+09 5.4035e+09 5.1318e+09
FINAN512 5.9340e+09 1.1329e+09 1.7301e+08
FLAP 1.4246e+09 9.8081e+08 8.0528e+08
INPRO1 1.2653e+09 2.1875e+09 1.7999e+09
M14B 2.0437e+11 9.3665e+10 7.6535e+10
PWT 1.3819e+08 1.3919e+08 1.3633e+08
ROTOR 3.1091e+10 1.8711e+10 1.1311e+10
SHELL93 1.5844e+10 1.3844e+10 8.0177e+09
TORSO 7.4538e+11 3.1842e+11 1.8538e+11
TROLL 1.6844e+11 1.2844e+11 8.6914e+10
WAVE 4.2290e+11 1.5351e+11 1.2602e+11

similar fills may have different operation counts; hence, all comparisons in this section
are only in terms of the number of operations. On a parallel computer, a fill-reducing
ordering, besides minimizing the operation count, should also increase the degree of
concurrency that can be exploited during factorization. In general, nested dissection-
based orderings exhibit more concurrency during factorization than minimum degree
orderings [13, 35].

The minimum degree [13] ordering heuristic is the most widely used fill-reducing
algorithm that is used to order sparse matrices for factorization on serial computers.
The minimum degree algorithm has been found to produce very good orderings. The
multiple minimum degree algorithm [35] is the most widely used variant of minimum
degree due to its very fast runtime.

The quality of the orderings produced by our MLND algorithm compared with
that of MMD is shown in Table 8 and Figure 7. For our multilevel algorithm, we used
the HEM scheme during coarsening, the GGGP scheme for partitioning the coarse
graph, and the BKL(*,1) refinement policy during the uncoarsening phase. Looking
at this figure we see that our algorithm produces better orderings for 18 out of the 21
test problems. For the other three problems MMD does better. Also, from Figure 7
we see that MLND does consistently better as the size of the matrices increases. In
particular, for large finite element meshes, such as AUTO, MLND requires half the
amount of memory required by MMD, and 4.7 times fewer operations. When all
21 test matrices are considered, MMD produces orderings that require a total of 4.81
teraflops, whereas the orderings produced by MLND require only 1.23 teraflops. Thus,
the ensemble of 21 matrices can be factored roughly 3.9 times faster if ordered with
MLND.

However, another, even more important advantage of MLND over MMD is that
it produces orderings that exhibit significantly more concurrency than MMD. The
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Fig. 7. Quality of our multilevel nested dissection relative to the multiple minimum degree
and the spectral nested dissection algorithm. Bars under the baseline indicate that MLND performs
better than MMD.

elimination trees produced by MMD (a) exhibit little concurrency (long and slen-
der) and (b) are unbalanced so that subtree-to-subcube mappings lead to significant
load imbalances [32, 12, 18]. On the other hand, orderings based on nested dissec-
tion produce orderings that have both more concurrency and better balance [27, 22].
Therefore, when the factorization is performed in parallel, the better utilization of
the processors can cause the ratio of the runtime of parallel factorization algorithms
ordered using MMD and that using MLND to be substantially higher than the ratio
of their respective operation counts.

The MMD algorithm is usually two to three times faster than MLND for ordering
the matrices in Table 1. However, efforts to parallelize the MMD algorithm have had
no success [14]. In fact, the MMD algorithm appears to be inherently serial in nature.
On the other hand, the MLND algorithm is amenable to parallelization. In [30] we
present a parallel formulation of our MLND algorithm that achieves a speedup of as
much as 57 on 128-processor Cray T3D (over the serial algorithm running on a single
T3D processor) for some graphs.

Spectral nested dissection (SND) [46] can be used for ordering matrices for par-
allel factorization. The SND algorithm is based on the spectral graph partitioning
algorithm described in Section 4.1. We have implemented the SND algorithm de-
scribed in [46]. As in the case of MLND, the minimum vertex cover algorithm was
used to compute a vertex separator from the edge separator. The quality of the or-
derings produced by our multilevel nested dissection algorithm compared with that of
the spectral nested dissection algorithm is also shown in Figure 7. From this figure we
can see that MLND produces orderings that are better than SND for all 21 test ma-
trices. The total number of operations required to factor the matrices ordered using
SND is 1.68 teraflops, which is 37% more than that of MLND. However, as discussed
in Section 6.4, the runtime of SND is substantially higher than that of MLND. Also,
SND cannot be parallelized any better than MLND [30, 1]; therefore, it will always
be slower than MLND.
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8. Characterization of different graph partitioning schemes. Due to the
importance of the problem, a large number of graph partitioning schemes have been
developed. These schemes differ widely in the edge-cut quality produced, runtime,
degree of parallelism, and applicability to certain kind of graphs. Often, it is not
clear as to which scheme is better under what scenarios. In this section, we categorize
these properties of some graph partitioning algorithms that are commonly used in
finite element applications. This task is quite difficult, as it is not possible to precisely
model the properties of the graph partitioning algorithms. Furthermore, we don’t have
enough data on the edge-cut quality and runtime for a common pool of benchmark
graphs. This paper presents extensive comparisons of multilevel scheme with MSB
and MSB-KL. Limited comparison with other schemes can be made by looking at
the edge-cut quality and runtime for graphs that are used in this paper as well as in
the evaluation of other schemes elsewhere. We try to make reasonable assumptions
whenever enough data are not available. For the sake of simplicity, we have chosen to
represent each property in terms of a small discrete scale. In the absence of extensive
data, we could not have done any better anyway.

In Table 9 we show three different variations of spectral partitioning [45, 47, 26, 2],
the multilevel partitioning described in this paper, the levelized nested dissection [11],
the KL partition [31], the coordinate nested dissection (CND) [23], two variations of
the inertial partition [38, 25], and two variants of geometric partitioning [37, 36, 15].

For each graph partitioning algorithm, Table 9 shows a number of characteris-
tics. The first column shows the number of trials that are often performed for each
partitioning algorithm. For example, for KL, different trials can be performed each
starting with a random partition of the graph. Each trial is a different run of the
partitioning algorithm, and the overall partition is determined as the best of these
multiple trials. As we can see from this table, some algorithms require only a single
trial either because, multiple trials will give the same partition (i.e., the algorithm is
deterministic), or the single trial gives very good results (as in the case of multilevel
graph partitioning). However, for some schemes like KL and geometric partitioning,
different trials yield significantly different edge-cuts because these schemes are highly
sensitive to the initial partition. Hence, these schemes usually require multiple trials
in order to produce good quality partitions. For multiple trials, we only show the
case of 10 and 50 trials, as often the quality saturates beyond 50 trials, or the run
time becomes too large. The second column shows whether the partitioning algorithm
requires coordinates for the vertices of the graph. Some algorithms such as CND and
Inertial can work only if coordinate information is available. Others only require the
set of vertices and edges connecting them.

The third column of Table 9 shows the relative quality of the partitions produced
by the various schemes. Each additional circle corresponds to roughly a 10% im-
provement in the edge-cut. The edge-cut quality for CND serves as the base, and it
is shown with one circle. Schemes with two circles for quality should find partitions
that are roughly 10% better than CND. This column shows that the quality of the
partitions produced by our multilevel graph partitioning algorithm and the MSB with
KL is very good. The quality of geometric partitioning with KL refinement is also
equally good, when around 50 or more trials are performed.5 The quality of the other
schemes is worse than the above three by various degrees. Note that for both KL

5This conclusion is an extrapolation of the results presented in [15] where it was shown that the
geometric partitioning with 30 trials (default geometric) produces partitions comparable with that
of MSB without KL refinement.
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Table 9
Characteristics of various graph partitioning algorithms.
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partitioning and geometric partitioning the quality improves as the number of trials
increases.

The reason for the differences in the quality of the various schemes can be un-
derstood if we consider the degree of quality as a sum of two quantities that we refer
to as local view and global view . A graph partitioning algorithm has a local view
of the graph if it is able to do localized refinement. According to this definition, all
the graph partitioning algorithms that use at various stages of their execution vari-
ations of the KL partitioning algorithm possess this local view, whereas the other
graph partitioning algorithms do not. Global view refers to the extent that the graph
partitioning algorithm takes into account the structure of the graph. For instance,
spectral bisection algorithms take into account only global information of the graph
by minimizing the edge-cut in the continuous approximation of the discrete problem.
On the other hand, schemes such as a single trial of KL utilize no graph structural
information, since it starts from a random bisection. Schemes that require multiple
trials improve the amount of global graph structure they exploit as the number of
trials increases. Note that the sum of circles for global and local view columns is
equal to the number of circles for quality for various algorithms. The global view of
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multilevel graph partitioning is among the highest of that of the other schemes. This
is because the multilevel graph partitioning captures global graph structure at two
different levels. First, it captures global structure through the process of coarsening
[28], and, second, it captures global structure during the initial graph partitioning by
performing multiple trials.

The sixth column of Table 9 shows the relative time required by different graph
partitioning schemes. CND, inertial, and geometric partitioning with one trial re-
quire a relatively small amount of time. We show the runtime of these schemes by
one square. Each additional square corresponds to roughly a factor of 10 increase in
the runtime. As we can see, spectral graph partition schemes require several orders of
magnitude more time than the faster schemes. However, the quality of the partitions
produced by the faster schemes is relatively poor. The quality of the geometric par-
titioning scheme can be improved by increasing the number of trials and/or by using
the KL algorithm, both of which significantly increase the runtime of this scheme.
On the other hand, multilevel graph partitioning requires a moderate amount of time
and produces partitions of very high quality.

The degree of parallelizability of different schemes differs significantly and is de-
picted by a number of triangles in the seventh column of Table 9. One triangle means
that the scheme is largely sequential, two triangles means that the scheme can exploit
a moderate amount of parallelism, and three triangles means that the scheme can be
parallelized quite effectively. Schemes that require multiple trials are inherently par-
allel, as different trials can be done on different processors. In contrast, a single trial
of KL is very difficult to parallelize [16] and appears inherently serial in nature. Mul-
tilevel schemes that do not rely upon KL [30] and the spectral bisection scheme are
moderately parallel in nature. As discussed in [30], the asymptotic speedup for these
schemes is bounded by O(

√
p). O(p) speedup can be obtained in these schemes only if

the graph is nearly well partitioned among processors. This can happen if the graph
arises from an adaptively refined mesh. Schemes that rely on coordinate information
do not seem to have this limitation, and in principle it appears that these schemes can
be parallelized quite effectively. However, all available parallel formulation of these
schemes [23, 8] obtained no better speedup than obtained for the multilevel scheme
in [30].

9. Conclusion and direction for future research. Our experiments with
multilevel schemes have shown that they work quite well for many different types of
coarsening, initial partition, and refinement schemes. In particular, all the coarsening
schemes we experimented with provide a good global view of the graph, and the KL
algorithm or its variants used for refinement during the uncoarsening phase provide a
good local view. Due to the combined global and local view provided by the coarsening
and refinement schemes, the choice of the algorithm used to partition the coarse
graph seems to have relatively small effect on the overall quality of the partition.
In particular, there seems to be no advantage gained by using spectral bisection for
partitioning the coarsest graph. The multilevel algorithm when used to find a fill-
reducing ordering is consistently better than SND and is substantially better than
multiple minimum degree for large graphs. The reason is that unlike the multilevel
algorithm, the multiple minimum degree algorithm does not have a global view of
the graph, which is critical for good performance on large graphs. The multilevel
algorithm that uses HEM for coarsening and BKL(1) or BKL(*,1) for refinement can
be parallelized effectively. The reason is that this combination requires very little
time for refinement, which is the most serial part of the algorithm. The coarsening
phase is relatively much easier to parallelize [30].
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Appendix A. Implementation framework. The multilevel algorithm de-
scribed in Section 2.1 consists of a number of different algorithms. Efficient imple-
mentation of these algorithms and good methods of passing information between the
various phases is essential to the overall fast execution of the algorithm. In the next
sections we briefly describe the algorithms and data structures we used for the imple-
mentation of the algorithm.

A.1. Graph data structure. The data structure used to store graph G =
(V,E) consists of two arrays. The first array called Vtxs stores information about
the vertices, while the second array called Adjncy stores the adjacency lists of the
vertices. For each vertex v ∈ V , Vtxs[v] contains the following five quantities:

vwgt the weight of v,

nedges the size of the adjacency list of v,

iedges the index into Adjncy that is the beginning of the adjacency list of v,

cewgt the weight of the edges that have been contracted to create v (if v is a
multinode),

adjwgt the sum of the weight of the edges adjacent to v.

These quantities are used during different phases of the multilevel algorithm and
greatly improve the performance of the multilevel algorithm. Also, as the next section
shows, they are computed incrementally during coarsening; hence they do not increase
the overall runtime of the algorithm.

A.2. Coarsening phase. Each coarsening phase consists of two different stages.
During the first stage (matching stage), a matching is computed using either the RM,
HEM, LEM, or HCM schemes, while during the second stage (contraction stage), a
coarser graph is created by contracting the vertices as dictated by the matching.

The output of the matching stage is two vectors Match and Map, such that for
each vertex v, Match[v] stores the vertex with which v has been matched, and Map[v]
stores the label of v in the coarser graph. If during the matching stage vertex v
remains unmatched, then Match[v] = v. Note that for every pair of matched vertices,
(v, u), Map[v] =Map[u]. Initially, the vector Match is initialized to indicate that all
vertices are unmatched. Since all the matching schemes use randomized algorithms, a
random permutation vector is created to guide the order at which vertices are visited.
As the vertices are visited in random order, they are assigned consecutive labels.

The RM matching scheme requires that a vertex is randomly matched with one of
its unmatched adjacent vertices. To avoid having to traverse the entire adjacency list
to find all the unmatched vertices and then randomly select one of them, we initially
permute the adjacency lists of all the vertices of G0 randomly. By doing that we only
have to look for the first unmatched vertex, since the randomization of G0 coupled
with the random visitation order ensures good randomization.

During the contraction step, the Match and Map vectors are used to contract the
graph. Let v1, v2 be two vertices that have been matched. The label of the contracted
vertex is u1 =Map[v1]. The vertices adjacent to u1 are given by

Adj(u1) =
(
{Map[x]|x ∈ Adj(v1)}

⋃
{Map[x]|x ∈ Adj(v2)}

)
− {u1},

and the weight of an edge (u1, u2) is given by

w(u1, u2) =
∑
x

{w(v1, x)|Map[x] = u2}+
∑
x

{w(v2, x)|Map[x] = u2}.
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To efficiently implement the above operation for all matched vertices, we use a table
to keep track of the vertices seen so far. These data structures allow us to implement
graph contraction by visiting each edge only once; thus, graph contraction takes time
proportional to the number of edges.

Also, while computing the adjacency list for each vertex u1 in the coarser graph,
we also compute the remaining three quantities associated with each vertex (i.e., vwgt ,
cewgt , and adjwgt). The vwgt of u1 is computed as the sum of the vwgts of v1 and v2.
The cewgt of u1 is computed as the sum of the cewgts of v1 and v2, plus the weight
of the edge connecting these vertices. Finally the adjwgt of u1 is a computed sum of
the adjwgts of v1 and v2, minus the weight of the edge connecting them.

A.3. Uncoarsening phase. The uncoarsening phase consists of two separate
stages. In the fist stage, the partition Pi+1 of the graph Gi+1 is projected back to
Gi (projection stage), and during the second stage, Pi is refined using one of the
refinement schemes described in Section 5 (refinement stage).

All the various partition refinement schemes described in Section 5 are based on
swapping vertices between partitions based on the reduction in the edge-cut using
variations of the KL algorithm. As described in Section 4.2, the selections made by
the KL algorithm are driven by the gain value of a vertex (3). The gain values are
often computed using two arrays ID and ED where for each vertex v,

ID[v] =
∑

(v,u)∈E∧P [v]=P [u]

w(v, u) and ED[v] =
∑

(v,u)∈E∧P [v] 6=P [u]

w(v, u).(4)

The value ID[v] is called the internal degree of v and is the sum of the edge-weights of
the adjacent vertices of v that are in the same partition as v, and the value of ED[v]
is called the external degree of v and is the sum of the edge-weights of the adjacent
vertices of v that are at a different partition. Given these arrays, the gain of a vertex
v is given by gv = ED[v] − ID[v]. Note that the edge-cut of a partition is given by
0.5
∑
v ED[v], and vertex v belongs at the boundary if and only if ED[v] > 0.

In our implementation, after partitioning the coarse graph Gm using one of the
algorithms described in Section 4, the internal and external degrees of the vertices of
Gm are computed using (4). This is the only time that these quantities are computed
explicitly. The internal and external degrees of all other graphs Gi with i < m are
computed incrementally during the projection stage. This is done as follows. Consider
vertex v ∈ Vi and let v1 and v2 be the vertices of Vi−1 that were combined into v.
Depending on the values of ID[v] and ED[v] we have three different cases.

ED[v] = 0. In this case, ED[v1] = 0 and ID[v1] is equal to the sum of the edge-
weights of v1. Similarly ED[v2] = 0 and ID[v2] is equal to the sum of the
edge-weights of v2.

ID[v] = 0. In this case ID[v1] and ID[v2] is equal to the weight of the edge (v1, v2)
that can be computed from the difference of the contracted edge weights of
v1, v2, and v. The value for ED[v1] (ED[v2]) is equal to the sum of the
edge-weights of v1 (v2) minus ID[v1] (ID[v2]).

ED[v] > 0 and ID[v] > 0. In this case the value of ID[v1] and ED[v1] are com-
puted explicitly, and the values of ID[v2] and ED[v2] are computed as a
difference of those for v1 and v. Specifically ED[v2] = ED[v]− ED[v1], and
ID[v2] = ID[v]− ID[v1]− w(v1, v2).

Thus, only when vertex v is at the partition boundary do we need to explicitly
compute its internal and/or external degrees. Since boundary vertices are a small per-
centage of the total number of vertices, computing the internal and external degrees
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during projection results in dramatic speed improvements. During the refinement
stage, the internal and external degrees are kept consistent with respect to the par-
tition. This is done by updating the degrees of the vertices adjacent to the one just
being moved from one partition to the other (a computation that is required by the
KL algorithm) and by rolling back any speculative computation at the end of the
refinement algorithm.

Given the above framework, the boundary refinement algorithms described in
Section 5.2 require inserting into the data structures only the vertices whose external
degree is positive.

A.4. Data structures for KL. As discussed in Section 4.2, the efficiency of
the KL algorithm depends on the data structure used to store the gains of the vertices
that have not been swapped yet. In our algorithm, for each partition, depending on
the level of the coarse graph, we use either a doubly linked list of gain buckets or a
table of gain buckets.

The doubly linked list is maintained in a decreasing gain order. Vertices with the
same gain are inserted in the same gain bucket. The table of gain buckets contains
an entry for each possible value of the gain and is effective when the range of values
is small. This is usually the case for Gi when i is small. When i is large (coarser
graphs), the range of values that the gain can get is high, making this implementation
more expensive than the one that uses linked lists.

Each gain bucket is implemented as a doubly linked list and contains the vertices
that have a particular gain. An auxiliary table is used that stores for each vertex v
a pointer to the node of the gain bucket that stores v. This table allows us to locate
the gain bucket’s node for a vertex in constant time.

When the gains are stored using a doubly linked list of gain buckets, extracting
the maximum gain vertex takes constant time; however, inserting a vertex takes time
linear to the size of the doubly linked list. However, when using an array of gain
buckets, inserting a vertex takes constant time, but extracting the vertex with the
maximum gain may sometimes take more than constant time.

In the implementation of the boundary KL algorithm, the method that is used
to store the boundary vertices is also important. One possibility is to not store the
boundary vertices anywhere, and simply determine them during each iteration of the
boundary KL algorithm. Determining if a vertex is on the boundary is simple since
its external degree is greater than zero. However, in doing so, we make the complexity
of the boundary KL algorithm to be in the order of the number of vertices, even when
the boundary is very small. In our implementation, we use a hash table to store the
boundary vertices. A vertex is in the boundary if it is stored in the hash table. The
size of the hash table is set to be twice the size of the boundary of the next level finer
graph. During BKL, any vertices that move away from the boundary are removed
from the hash table, and any vertices that move to the boundary are inserted in the
hash table.

REFERENCES

[1] S. T. Barnard and H. Simon, A parallel implementation of multilevel recursive spectral bi-
section for application to adaptive unstructured meshes, in Proc. 7th SIAM Conf. Parallel
Processing for Scientific Computing, 1995, pp. 627–632.

[2] S. T. Barnard and H. D. Simon, A fast multilevel implementation of recursive spectral bisec-
tion for partitioning unstructured problems, in Proc. 6th SIAM Conf. Parallel Processing
for Scientific Computing, 1993, pp. 711–718.



MULTILEVEL GRAPH PARTITIONING 391

[3] E. R. Barnes, An algorithm for partitioning the nodes of a graph, SIAM J. Alg. Discrete
Methods, 3 (1984), pp. 541–550.

[4] T. Bui and C. Jones, A heuristic for reducing fill in sparse matrix factorization, in Proc. of
the 6th SIAM Conf. Parallel Processing for Scientific Computing, 1993, pp. 445–452.

[5] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser, Graph bisection algorithms with
good average case behavior, Combinatorica, 7 (1987), pp. 171–191.

[6] T. F. Chan, J. R. Gilbert, and S.-H. Teng, Geometric Spectral Partitioning, Xerox PARC
Tech. Report., 1994. Available at ftp://parcftp.xerox.com/pub/gilbert/index.html.

[7] C.-K. Cheng and Y.-C. A. Wei, An improved two-way partitioning algorithm with stable
performance, IEEE Trans. Comput. Aided Design, 10 (1991), pp. 1502–1511.

[8] P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland, Parallel algorithms for dynamically
partitioning unstructured grids, in Proc. 7th SIAM Conf. Parallel Processing for Scientific
Computing, 1995, pp. 615–620.

[9] C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving network par-
titions, in Proc. 19th IEEE Design Automation Conference, 1982, pp. 175–181.

[10] J. Garbers, H. J. Promel, and A. Steger, Finding clusters in VLSI circuits, in Proc. of
IEEE International Conference on Computer Aided Design, 1990, pp. 520–523.

[11] A. George, Nested dissection of a regular finite-element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[12] A. George and J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[13] A. George and J. W.-H. Liu, The evolution of the minimum degree ordering algorithm, SIAM
Rev., 31 (1989), pp. 1–19.

[14] M. Ghose and E. Rothberg, A Parallel Implementation of the Multiple Minimum Degree
Ordering Heuristic, Tech. rep., Old Dominion University, Norfolk, VA, 1994.

[15] J. R. Gilbert, G. L. Miller, and S.-H. Teng, Geometric mesh partitioning: Implementation
and experiments, in Proc. International Parallel Processing Symposium, 1995.

[16] J. R. Gilbert and E. Zmijewski, A parallel graph partitioning algorithm for a message-passing
multiprocessor, Internat. J. Parallel Programming, (1987), pp. 498–513.

[17] T. Goehring and Y. Saad, Heuristic Algorithms for Automatic Graph Partitioning, Tech.
rep., Department of Computer Science, University of Minnesota, Minneapolis, 1994.

[18] A. Gupta, G. Karypis, and V. Kumar, Highly scalable parallel algorithms for sparse ma-
trix factorization, IEEE Trans. Parallel and Distributed Systems, 8 (1997), pp. 502–520.
Available on WWW at URL http://www.cs.umn.edu/˜karypis.

[19] L. Hagen and A. Kahng, Fast spectral methods for ratio cut partitioning and clustering, in
Proc. IEEE International Conference on Computer Aided Design, 1991, pp. 10–13.

[20] L. Hagen and A. Kahng, A new approach to effective circuit clustering, in Proc. IEEE Inter-
national Conference on Computer Aided Design, 1992, pp. 422–427.

[21] S. Hammond, Mapping Unstructured Grid Problems to Massively Parallel Computers, Ph.D.
thesis, Rensselaer Polytechnic Institute, Troy, NY, 1992.

[22] M. T. Heath, E. G.-Y. Ng, and B. W. Peyton, Parallel algorithms for sparse linear systems,
SIAM Rev., 33 (1991), pp. 420–460; Parallel Algorithms for Matrix Computations, K. A.
Gallivan, M. Heath, E. Ng, B. Peyton, R. Plemmons, J. Otega, C. Romine, A. Sameh, and
R. Voigt, eds., SIAM, Philadelphia, PA, 1990.

[23] M. T. Heath and P. Raghavan, A Cartesian parallel nested dissection algorithm, SIAM J.
Matrix Anal. Appl., 16 (1995), pp. 235–253.

[24] B. Hendrickson and R. Leland, An Improved Spectral Graph Partitioning Algorithm for
Mapping Parallel Computations, Tech. rep. SAND92-1460, Sandia National Laboratories,
Albuquerque, NM, 1992.

[25] B. Hendrickson and R. Leland, The Chaco User’s Guide, Version 1.0, Tech. rep. SAND93-
2339, Sandia National Laboratories, Albuquerque, NM, 1993.

[26] B. Hendrickson and R. Leland, A Multilevel Algorithm for Partitioning Graphs, Tech. report
SAND93-1301, Sandia National Laboratories, Albuquerque, NM, 1993.

[27] G. Karypis, A. Gupta, and V. Kumar, A parallel formulation of interior point algorithms,
in Supercomputing 94, 1994; also available online from http://www.cs.umn.edu/˜karypis.

[28] G. Karypis and V. Kumar, Analysis of Multilevel Graph Partitioning, Tech. rep. TR 95-037,
Department of Computer Science, University of Minnesota, 1995; also available online from
http://www.cs.umn.edu/˜karypis; a short version appears in Supercomputing 95.

[29] G. Karypis and V. Kumar, Multilevel graph partition and sparse matrix ordering, in Intl. Conf.
on Parallel Processing, 1995; also available online from http://www.cs.umn.edu/˜karypis.

[30] G. Karypis and V. Kumar, A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering, J. Parallel and Distributed Computing, 48 (1998), pp. 71–95; also avail-
able online from http://www.cs.umn.edu/˜karypis; a short version appears in Intl. Parallel
Processing Symposium 1996.



392 GEORGE KARYPIS AND VIPIN KUMAR

[31] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell
Sys. Tech. J., 49 (1970), pp. 291–307.

[32] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing:
Design and Analysis of Algorithms, Benjamin/Cummings Publishing Company, Redwood
City, CA, 1994.

[33] T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms, in 29th Annual
Symposium on Foundations of Computer Science, 1988, pp. 422–431.

[34] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math.,
36 (1979), pp. 177–189.

[35] J. W.-H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141–153.

[36] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis, Automatic mesh partitioning,
in Sparse Matrix Computations: Graph Theory Issues and Algorithms, A. George, J. R.
Gilbert, and J. W.-H. Liu, eds. (an IMA workshop volume), Springer-Verlag, New York,
1993.

[37] G. L. Miller, S.-H. Teng, and S. A. Vavasis, A unified geometric approach to graph sep-
arators, in Proc. 31st Annual Symposium on Foundations of Computer Science, 1991,
pp. 538–547.

[38] B. Nour-Omid, A. Raefsky, and G. Lyzenga, Solving finite element equations on concurrent
computers, in Amer. Soc. Mech. Engrg., A. K. Noor, ed., 1986, pp. 291–307.

[39] J. P. Ciarlet and F. Lamour, On the Validity of a Front-Oriented Approach to Partitioning
Large Sparse Graphs with a Connectivity Constraint, Tech. rep. 94-37, Computer Science
Department, UCLA, Los Angeles, CA, 1994.

[40] C. C. Paige and M. A. Saunders, Solution to sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1974), pp. 617–629.

[41] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice–Hall, Engle-
wood Cliffs, NJ, 1982.

[42] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, Englewood Cliffs, NJ,
1980.

[43] R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox, Graph contraction and physical
optimization methods: A quality-cost tradeoff for mapping data on parallel computers, in
International Conference of Supercomputing, ACM, New York, 1993.

[44] A. Pothen and C.-J. Fan, Computing the block triangular form of a sparse matrix, ACM
Trans. Math. Software, 16 (1990), pp. 303–324.

[45] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of
graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430–452.

[46] A. Pothen, H. D. Simon, and L. Wang, Spectral Nested Dissection, Tech. rep. 92-01, Com-
puter Science Department, Pennsylvania State University, University Park, PA, 1992.

[47] A. Pothen, H. D. Simon, L. Wang, and S. T. Bernard, Towards a fast implementation
of spectral nested dissection, in Supercomputing ’92 Proceedings, IEEE Computer Society
Press, Washington, DC, 1992, pp. 42–51.

[48] P. Raghavan, Line and Plane Separators, Tech. rep. UIUCDCS-R-93-1794, Department of
Computer Science, University of Illinois, Urbana, IL 61801, February 1993.


