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Abstract

Traditional graph partitioning algorithms compute ak-way partitioning of a graph such that the number of edges
that are cut by the partitioning is minimized and each partition has an equal number of vertices. The task of minimizing
the edge-cut can be considered as theobjectiveand the requirement that the partitions will be of the same size can
be considered as theconstraint. In this paper we extend the partitioning problem by incorporating an arbitrary
number of balancing constraints. In our formulation, a vector of weights is assigned to each vertex, and the goal
is to produce ak-way partitioning such that the partitioning satisfies a balancing constraint associated with each
weight, while attempting to minimize the edge-cut. Applications of this multi-constraint graph partitioning problem
include parallel solution of multi-physics and multi-phase computations, that underly many existing and emerging
large-scale scientific simulations. We present new multi-constraint graph partitioning algorithms that are based on
the multilevel graph partitioning paradigm. Our work focuses on developing new types of heuristics for coarsening,
initial partitioning, and refinement that are capable of successfully handling multiple constraints. We experimentally
evaluate the effectiveness of our multi-constraint partitioners on a a variety of synthetically generated problems.
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1 Introduction

The traditional graph partitioning problem focuses on computing ak-way partition of a graph such that the edge-cut is
minimized and each partition has an equal number of vertices (or in the case of weighted graphs, the sum of the vertex-
weights in each partition are the same). The task of minimizing the edge-cut can be considered as theobjectiveand
the requirement that the partitions will be of the same size can be considered as theconstraint. This single-objective
single-constraint graph partitioning problem is widely used for static distribution of the mesh in parallel scientific
simulations.

Unfortunately, this single-objective single-constraint graph partitioning problem is not sufficient to model the under-
lying computational requirements of many large-scale scientific simulations. For example, in multi-phase mesh-based
computations, single constraint is not sufficient to effectively balance the overall computations. Multi-phase compu-
tations consist ofm distinct computational phases, each separated by an explicit synchronization step. In general, the
amount of computations performed for each element of the mesh is different for different phases. In order to effec-
tively solve such multi-phase computations in parallel, we must partition the mesh such that the computation in each
phase is balanced, and the amount of interaction among the different processors in each phase is minimized. Note that
the traditional single-constraint graph partitioning model is not effective in such computations. For example, if we
assign to each node a weight that corresponds to the total amount of computations performed by all phases, we will
get a partitioning that is not necessarily balanced during each computational phase (due to the explicit synchronization
phases). An alternate solution to this problem is to obtain a different partitioning of the graph for each phase. This
will balance the work and minimize interactions within each phase. However, transferring data among the different
phases may incur high communication overhead, severely decreasing the overall performance of the computations.
Ideally, we would like to treat the balancing of computations performed in each phase as separate constraints. Now
the objective is to obtain a partitioning such that the communication is minimized subject to the constraints that the
computations performed within each phase is balanced.

As another example, consider the multi-physics simulation in which the amount of computation as well as the
memory requirements are not uniform across the mesh. Existing single-constraint graph partitioning algorithms allow
us to easily partition the mesh among the processors such that either the amount of computations is balanced or the
amount of memory required by each partition is balanced; however, they do not allow to compute a partitioning
that simultaneously balances both of these quantities. Our inability to compute such partitioning can either lead to
significant computational imbalances, limiting the overall efficiency, or significant memory imbalances, limiting the
size of the problems that we can solve using parallel computers.

In many emerging applications there is also a need to produce partitionings that try to achieve multiple objectives.
For example, a number of preconditioners have been developed that are focused on the subdomains assigned to each
processor and ignore any intra-subdomain interactions (e.g., block diagonal preconditioners and local ILU precondi-
tioners). In these preconditioners, a block diagonal matrix is constructed by ignoring any intra-domain interactions,
a preconditioner of each block is constructed independently, and they are used to precondition the global linear sys-
tem. The use of a graph partitioning algorithm to obtain the initial domain decomposition ensures that the number of
non-zeros that are ignored in the preconditioning matrix is relatively small. However, existing graph models do not
allow us to control both the number as well as the magnitude of these ignored non-zeros. Ideally, we would like to
obtain a decomposition such that not only the number of intra-domain interactions is minimized (reducing the com-
munication overhead) but also the numerical magnitude of these interactions is minimized (potentially leading to a
better preconditioner).

The key characteristic of these problems is that they require the partitioning algorithm to handle an arbitrary number
of balancing constraints as well as an arbitrary number of minimization (or maximization) objectives. In this paper
we focus on developing graph partitioning algorithms for effectively computing ak-way partitioning of a graph in the
presence of an arbitrary number of balancing constraints. The problem of computing a partitioning when multiple
objectives are present is discussed in [12].

We first present a generalized problem in which a vector of weights is assigned to each vertex. The goal is to
produce ak-way partitioning such that the partitioning satisfies a balancing constraint associated with each weight,
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while attempting to minimize the edge-cut (i.e., the objective function). We refer to it as amulti-constraint graph
partitioning problem. This multi-constraint framework can be easily used to balance multi-phase computations, and
balance memory and computational requirements. In the case of multi-phase computations, we can use as many
balancing constraints as the number of phases. Balancing both computational as well as memory requirements can be
achieved by using two constraints, one for the computational requirements and the other for the memory requirements.

We present new multi-constraint graph partitioning algorithms that are based on the multilevel graph partitioning
paradigm. Our work focuses on developing new types of heuristics for coarsening, initial partitioning, and refinement
that are capable of successfully handling multiple constraints. We experimentally evaluate the effectiveness of our
multi-constraint partitioners on a a variety of synthetically generated problems. Our experimental results show that
our algorithms are able to effectively partition graphs with up to five different balancing constraints. Comparing the
quality of these multi-constraint partitionings to those of the (much easier) single-constraint partitionings, we see that
our algorithms lead to only a moderate increase in the number of edges that are cut by the partitioning.

The rest of this paper is organized as follows. Section 2 introduces the multi-constraint graph partitioning problem
and presents two formulations; the horizontal and the vertical formulation. Section 3 presents a theoretical analysis
which shows that (a) problems for which a high-quality single-weight partitioning algorithm exists it can be used to
compute a multi-constraint partitioning that has certain quality and balance guarantees; (b) there are algorithms that
can compute highly-balanced partitionings for certain classes of multi-constraint problems. Section 4 describes the
multilevel partitioning paradigm. Section 5 describes the multi-constraint formulation of the multilevel recursive bi-
section algorithm. Section 6 describes the multi-constraint formulation of the multilevelk-way partitioning algorithm.
Section 7 presents an experimental evaluation of the multilevel multi-constraint algorithms. Finally, Section 8 presents
some concluding remarks.

2 Problem Definition

Consider a graphG = (V, E), such that each vertexv ∈ V has a weight vectorwv of sizem associated with it,
and each edgee ∈ E has a scalar weightwe. We place no restrictions on the weights of the edges but we will
assume, without loss of generality, that the weight vectors of the vertices satisfy the property that

∑
∀v∈V w

v
i = 1.0

for i = 1,2, . . . ,m. If the vertex weights do not satisfy the above property, we can divide eachwvi by
∑
∀v∈V w

v
i to

ensure that the property is satisfied. Note that this normalization does not in any way limit our modeling ability.
Let P be the partitioning vector of size|V |, such that for each vertexv, P[v] stores the partition number thatv

belongs to. For any suchk-way partitioning vector, the load imbalanceli with respect to thei th weight of thek-way
partitioning is defined as follows:

li = k max
j

( ∑
∀v:P[v]= j

wvi

)
(1)

If the i th weight is perfectly balanced in thek-way partitioning, then
∑
∀v:P[v]= j w

v
i for all j is 1/k, andli = 1. A load

imbalance ofli = x indicates that a computation of sizeW performed onk processors during thei th phase takesxW/k
time instead ofW/p time needed in the case of perfect load balance, under the assumption of zero communication
overhead. A load imbalance of 1+ α indicates that the partitioning is load imbalanced byα%.

We now define two distinct formulations of the multi-constraint graph partitioning problem:

Horizontal Multi-constraint Partitioning Problem
Find ak-way partitioningP of G such that the sum of the weights of the edges that are cut by the partitioning
is minimized subject to the constraint

∀i, li ≤ ci . (2)

Wherec is a vector of sizem such that∀i, ci ≥ 1.0.

Vertical Multi-constraint Partitioning Problem
Find ak-way partitioningP of G such that the sum of the weights of the edges that are cut by the partitioning
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is minimized subject to the constraint
m∑

i=1

ri li ≤ c. (3)

Wherec is a scalar such thatc ≥ 1.0, andr is a vector of sizem such that∀i, ri ≤ 1.0, and
∑

i ri = 1.0.

The horizontal multi-constraint partitioning problem tries to find ak-way partitioning such that each weighti is
individually balanced within the tolerance specified by thei th entry of vectorc. For example, ifm = 2, (i.e., we
have two weights), then the vectorc = (1.05,1.5) indicates that we are looking for a partitioning such that the load
imbalance with respect to the first weight will be less than or equal to 5%, and that the load imbalance with respect to
the second weight will be less than or equal to 50%.

The horizontal formulation of the multi-constraint partitioning problem can be used, for example, to compute a
partitioning that balances both computational and memory requirements. In particular, the ability of the model to
handle a different tolerance for each individual weight is particularly useful in such a situation. In this example, the
object is to get as tight a balance as possible with respect to the computational load (i.e., the corresponding entry of
c is close to 1.0), whereas a somewhat higher load imbalance with respect to memory is allowable if it improves the
quality of the partitioning (i.e., reduces the edge-cut).

The horizontal formulation can also be used to balance multiphase-computations by setting the tolerance for each
of the weights to the desired upper bound on load imbalance. For example, if we want to achieve a maximum of
5% load imbalance, we can setci = 1.05 for i = 1,2, . . . ,m. However, this formulation limits our ability to find
good partitionings. For example, consider the case of a three phase computation such that the overall work performed
in each phase is the same. For this computation, a partitioning with a load imbalance vector of(1.02,1.04,1.09)
will still satisfy the global load imbalance of 1.05, and should be preferred if it leads to a smaller edge-cut over a
partitioning with a load imbalance of(1.05,1.05,1.05). This limitation becomes even more serious when the amount
of computation performed in each phase is significantly different. For example, consider the multiphase computation
with three phases as shown in Figure 1. For the first two phases, computation is performed over large portions of the
domain whereas in the third phase, only a small region of the domain is involved in the computations. Further assume
that in each of the three phases, the amount of computation performed for each element is the same. A partitioning
algorithm that tries to balance each weight separately, will be forced to compute a partitioning of the region that is
active in the third phase. However, since we know that the first two phases perform significantly more computations
than the third phase, we can relax the balancing tolerance of the third phase by slightly tightening the tolerance of the
first two phases. For instance, if each of the first two phases accounts for 45% of the computation, and the third phase
accounts for the remaining 10%, then we can ensure an overall load imbalance of 5% by setting the tolerance for the
first two phases to be 1.03, and the tolerance of the third phase to be 1.23.

Phase IIIPhase IIPhase I

Figure 1: Equally balancing the computations of each phase will lead to the active part of the third phase (shaded region) to be
split into k parts.

In general, ifri is the fraction of the overall computation performed in phasei andli is the load imbalance for
phasei , then the overall load imbalance of performing this multi-phase computation is

∑m
i=1 ri li . This is exactly

what the vertical formulation of the multi-constraint graph partitioning tries to achieve. This formulation takes as
input a vectorr , that provides the relative weighting of each one of the constraints, and it computes a partitioning that
minimizes the cut while the global load imbalance is constrained byc. In general, the vertical formulation is useful
when the different constraints are of the same nature (for example, they all represent computation time), as is the case
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of multiphase computations.
Note that this formulation allows (and encourages) the use of different upper bound on load imbalance for each

phase. Ifci is the maximum load imbalance tolerated for phasei , then the overall load imbalance for performing
this multiphase computation is bounded by

∑m
i=1 ri ci . A vectorc is acceptable if

∑m
i=1 ri ci ≤ c. Given a vectorr ,

many different values forc are acceptable. For example, for a three-phase problem, ifr = (1/3,1/3,1/3) and desired
load imbalance isc = 1.05, thenc1 = (1.05,1.05,1.05) andc2 = (1.02,1.04,1.09) are both acceptable. Relative
merit of different possible values ofc depends upon many factors including the actual distribution of computations
across different phases. Hence, it is not desirable to pre-assign the values ofc. It appears better to let the partitioning
algorithm select these relaxed bounds on the load imbalance dynamically.

2.1 Definition and Notation

Given a set of objectsA such that each objectx ∈ A has a weight-vectorwx of sizem associated with it, we define
wA

i to be the sum of thei th weights of the objects in the set;i.e.,wA
i =

∑
∀x∈A w

x
i .

Consider a graphG = (V, E), and its partitioning vectorP. A vertexv that is adjacent to a vertex that belongs to
a different partition is said to be in thepartition boundaryand it is called aboundary vertex. For each vertexv ∈ V ,
in the partition boundary we define theneighborhoodN(v) of v to be the union of the partitions other thanP[v],
that vertices adjacent tov (i.e., Ad j (v)) belong to. That is,N(v) = ∪u∈Ad j (v)∧P[u]6=P[v]P[u]. For each vertexv we
compute the gains of movingv to one of its neighbor partitions. In particular, for everyb ∈ N(v) we computeE D[v]b
as the sum of the weights of the edges(v, u) such thatP[u] = b. Also we computeI D[v] as the sum of the weights of
the edges(v, u) such thatP[u] = P[v]. The quantityE D[v]b is called theexternal degreeof v to partitionb, while
the quantityI D[v] is called theinternal degreeof v. Given these definitions, the gain of moving vertexv to partition
b ∈ N(v) is g[v]b = E D[v]b − I D[v]. In the case of a two-way partitioning, the neighborhood of each boundary
vertexv contains a single partition, and the subscripts for the gain and the external degree are usually dropped.

3 Feasibility Analysis

The problem of computing a 2-way partitioning of a graph under one constraint has been studied extensively. Even
though the general problem is at least NP-hard, a number of algorithms exist that produce partitionings that satisfy
certain quality properties for special but important classes of graphs. The most notable of these results is the work of
Lipton and Tarjan [10] that showed that a planar graph withn vertices has aO(

√
n) vertex separator1 that partitions

the graph into two sets whose size is at leastn/3. Similarly, Miller et al[11], have shown that a graph withn vertices
corresponding to ad-dimensional well shaped finite element mesh, has a vertex separator of sizeO(n(d−1/d)) that
partitions the graph into two sets whose size is at least(d − 1)n/(2d − 1).

A natural question to ask is whether or not such quality and balance guarantees exist for the multi-constraint
partitioning problem. Especially, it is interesting to see if we can use a high-quality single-weight bisection algorithm
to compute such a bisection for the multi-constraint partitioning problem. That is, assuming that there exists a single-
weight bisection algorithmAλ, f , thatfor any graphG = (V, E), it can bisectG into two parts such that:

(i) each part contains at least aλwV fraction of the total weight ofG (where 0< λ ≤ .5), and

(ii) the size of the separator is no more thanf (wV ).

Can we useAλ, f to compute a high-quality bisection for the multi-constraint problem? The following theorem shows
that for graphs for which such an algorithmAλ, f exists, it is possible to use it to compute bounds on the quality and
balance of the multi-constraint partitioning problem.

1Our discussion in this section focuses on vertex separators. However, the algorithms that are developed in the rest of this paper focus on edge
separators.

5



Theorem 1 Consider a graphG = (V, E) with vector-weights of sizem, for which there exists a single-weight
bisection algorithmAλ, f , as described above. Then, there exists a bisection of them-weight partitioning problem such
that each partition contains at leastλmwV

i weight for eachi , and the size of the separator is less than(2m−1) f (wV
1 ).

Proof. Our proof consists of two steps. First we show by induction that by using the single-weight bisection algorithm
Aλ, f , we can compute a bisection of them-weight problem that satisfies the balance requirements on the weights, and
second we show that the size of the edge-cut of the bisection satisfies the given bounds.

In proving the balance requirements we selectively bisect the original graph in a recursive fashion so that we end
up withm pairs of subgraphs, such that each subgraph in thei th pair is guaranteed to have at least aλm fraction ofi th
weight of the original graph. Given thesem pairs, we can then assign one subgraph from each pair to each of the two
partitions. This ensures that each partition has at least aλm fraction of thei th weight of the original graph.

We use induction onm to show the existence of such pairs of subgraphs:

1. Form = 1, we can use the single-weight bisection algorithm to partition the graph into two parts such that each
part hasλ fraction of the first weight of the graph.

2. Assume that the hypothesis holds form − 1. That is, there existm − 1 pairs of subgraphs, such that each one
the subgraphs in thei th pair has at leastλm−1 fraction of thei th weight of the original graph.

3. We need to prove that it holds form. We do this by bisecting two (properly chosen) subgraphs of the 2(m − 1)
subgraphs that are the solution to the problem in the case ofm − 1 weights. Since we have a total of 2(m − 1)
subgraphs, we know that one of these graphs contains at least a 1/(2(m − 1)) fraction of themth weight. Since
1/(2(m − 1)) ≥ 1/2m−1 ≥ λm−1 (becauseλ ≤ 1/2), we know that this subgraph contains at leastλm−1

fraction of themth weight. LetG1 be this graph, and letG2 be the other subgraph of the pair containingG1.
Furthermore, leti be the weight for whichG1 andG2 contain at least aλm−1 fraction of it (from the induction
assumption). We can use the single-weight bisection algorithmAλ, f to bisectG1 with respect to themth weight
to obtain a pair of graphs that contain at leastλm of the mth weight, and to bisectG2 with respect to thei th
weight to obtain a pair of graphs that contains at leastλm of thei th weight. We now havem pairs of subgraphs
(m − 2 that were there originally and the two that we just created) each pair containing at leastλm fraction of a
different weight; thus, proving the induction step.

In computing the total of 2m subgraphs we perform exactly 2m − 1 bisections. Because, for allm weightsi ,
wV

i = 1, and each of these bisections is performed on successively smaller graphs, the cost of each bisection is
bounded byf (wV

1 ). Thus, the overall cost of computing them-weight bisection is at most(2m − 1) f (wV
1 ).

Theorem 1 provides some interesting insight on the difficulty of the partitioning problem in the presence of multiple
vertex weights. First, the cost of the bisection is linear with respect to the number of weights, which is not necessarily
bad, given the increased complexity of the problem. Second, the balance guarantees decrease exponentially with
respect to the number of constraints, indicating that high quality bisections can be obtained only at the expense of
looser balance bounds. Because of the loose balance guarantees provided by Theorem 1, it is not very useful for
computing ak-way partitioning.

The next question that needs to be answered is whether or not there are any tighter bounds on the relative balance of
the bisections in the absence of our desire to minimize the edge-cut. In the case of the single-weight problem we know
that given a set of objectsV , each having a weightwv, we can use a greedy algorithm to split them among two buckets
such that the weight difference between the two buckets is upper bounded by the maximum weight of any given object
[3]. As the following lemma shows, such a tight bound also exists in the case in which there are two weights.

Lemma 1 Consider a setS of n objects. Let(wi
1, w

i
2) be two weights associated with each objecti , such thatwS

1 = 1
andwS

2 = 1. We can partition these objects into two buckets (i.e., subsets)A and B such that

|wA
1 − wB

1 | ≤ 2µ and |wA
2 − wB

2 | ≤ 2µ (4)
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whereµ = max(wi
j |i = 1,2, . . . ,m, and j = 1,2).

Proof. In proving this lemma we will construct an algorithm to compute the bucketsA and B and show that upon
completion the buckets satisfy Equation 4.

Our algorithm initially puts all the objects intoA and setsB to be empty. It then repeatedly selects a certain object
from A and moves it toB until one ofwA

1 or wA
2 becomes smaller than.5, in which case the algorithm terminates.

The object inA that is selected for movement depends on the relative size ofwA
1 andwA

2 . In particular we have the
following two cases:

wA
1 > w

A
2 In this case we select an objectx such thatwx

1 > wx
2. BecausewA

1 > wA
2 we know that there exists at

least one such object satisfying this property.

wA
1 ≤ wA

2 In this case we select an objectx such thatwx
1 ≤ wx

2. Again, becausewA
1 ≤ wA

2 we know that there
exists at least one such object satisfying this property.

The key observation is that throughout the execution of the above algorithm

|wA
1 −wA

2 | ≤ µ (5)

is maintained as an invariant. This observation can be shown by induction on the number of moves as follows:

1. Letx be the first object that is moved. After this move we have

|(wA
1 −wx

1)− (wA
2 −wx

2)| = |wx
2 −wx

1| ≤ µ,

because the difference between the weights of an object cannot be greater thanµ.

2. Assume that after thei th move, Equation 5 is satisfied.

3. We need to show that the invariant is true after the(i + 1)st move. Letx be the object that we select fromA and
move it toB according to the criteria described above. After the move we need to show that:

|(wA
1 −wx

1)− (wA
2 −wx

2)| ≤ µ or, equivalently |(wA
1 −wA

2 )− (wx
1 −wx

2)| ≤ µ.

Note that both(wA
1 − wA

2 ) and(wx
1 − wx

2) are positive or both are negative because of the method used for
selecting objectx . Let’s consider both cases:

Case I If both (wA
1 −wA

2 ) and(wx
1 − wx

2) are positive, then we have that:

0≤ wA
1 −wA

2 ≤ µ from the induction hypothesis and

0≤ wx
1 − wx

2 ≤ µ from the fact that each weight is less than or equal toµ.

Hence,|(wA
1 −wA

2 )− (wx
1 −wx

2)| ≤ µ.

Case II If both (wA
1 −wA

2 ) and(wx
1 − wx

2) are negative, then we have that:

−µ ≤ wA
1 −wA

2 ≤ 0 from the induction hypothesis and

−µ ≤ wx
1 −wx

2 ≤ 0 from the fact that each weight is less than or equal toµ.

Hence,|(wA
1 −wA

2 )− (wx
1 −wx

2)| ≤ µ.

This completes the proof that Equation 5 remains invariant throughout the execution of the algorithm.

The algorithm terminates as soon as one of the weightswA
1 andwA

2 becomes less than.5. Hence, at the termination
both weights of bucketA will be greater than.5− µ. Because of the invariant (Equation 5), the other weight can be
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no higher than.5+ µ. Hence,

.5− µ ≤ wA
1 ≤ .5+ µ and .5− µ ≤ wA

2 ≤ .5+ µ. (6)

BecausewA
1 +wB

1 = 1.0 andwA
2 +wB

2 = 1.0 it follows that

.5− µ ≤ wB
1 ≤ .5+ µ and .5− µ ≤ wB

2 ≤ .5+ µ. (7)

Equation 4 follows directly from inequalities 6 and 7, completing the proof.

The constructive proof of Lemma 1 provides an algorithm for partitioning 2-weight objects into two buckets such
that the partitioning satisfies a tight balancing constraint. If the number of weights is more than two, then the algorithm
can be modified as follows. We initially put all the objects inA and leaveB empty. We then repeatedly select certain
objects fromA and move them toB. At every step, an object is selected to satisfy certain properties depending on the
relative order of the weights ofA. Consider the case of three weights. IfwA

i ≥ wA
j ≥ wA

k for i , j , andk taking distinct
values from the set{1,2,3}, then we will select an objectx from A that satisfieswx

i ≥ wx
j ≥ wx

k , and move it toB.
By a reasoning similar to that used in the proof of Lemma 1, it can be shown that if we always can find such objects,
we can maintain an invariant similar to Equation 5. More precisely, form weights, we can show that the difference
between each of the weights is also bounded by(m − 1)µ. However, unlike the case ofm = 2 for which it is always
possible to find an object whose relative weights satisfy the desired property, this cannot be ensured when the number
of weightsm is greater than two. Nevertheless, if the distribution of the weights among the objects is such that it
contains a sufficiently large number of objects of all possible relative-weight permutations, then the above algorithm
can be used to split these objects into two buckets and achieve a balanced partitioning.

4 Multilevel Graph Partitioning for the Multi-constraint Formulations

A number of graph partitioning algorithms have been developed that provide different cost/quality trade-offs in com-
puting ak-way partitioning of a graph. Recently, graph partitioning algorithms that are based on the multilevel
paradigm have gained wide-spread acceptance as they provide extremely high quality partitionings, they are very
fast, and they can scale to graphs containing several millions of vertices [1, 5, 7].

Multilevel graph partitioning algorithms consist of three phases: (i) coarsening phase, (ii) initial partitioning phase,
and (iii) uncoarsening (or refinement) phase. During the coarsening phase, a sequence of successively coarser graphs
G1,G2, . . . ,Gn is constructed from the original graphG such that the number of vertices in successive coarser graphs
is smaller. These coarser graphs are commonly constructed by computing a maximal independent set of edges (i.e., a
matching of the vertices), and then collapsing the vertices that are matched together. In the initial partitioning phase,
a partitioning of the coarsest graphGn is computed, using a conventional partitioning algorithm. Finally, during the
uncoarsening phase, starting with the coarsest graph, the partitioning of the graph at leveli is successively projected
to the next level finer graphi − 1, and refined using a local partitioning refinement heuristic. Partitioning refinement
heuristics move vertices among the different partitions to improve the quality of the partitioning (i.e., reduce the edge-
cut). Two commonly used classes of such algorithms are those based on the greedy heuristic or the FM algorithm
[7].

Two approaches have been developed for computing ak-way partitioning using the multilevel paradigm. The first
approach, calledmultilevel recursive bisection, computes ak-way partitioning by using the multilevel paradigm to
perform recursive bisection [5, 7]. That is, ak-way partitioning is computed by performing logk levels of recursive
bisection. Because of the recursive nature of this algorithm, its complexity for computing ak-way partitioning is
O(|V | logk). The second approach, calledmultilevel k-way partitioning, performs coarsening and (and uncoarsen-
ing only once). The resulting coarsest graphs is directly partitioned ink parts during the initial partitioning phase,
and ak-way partitioning refinement algorithm is used to improve the quality of the induced partitionings during the
uncoarsening phase. In principle, any partitioning algorithm can be used to compute the initialk-way partitioning
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of the coarsest graph. The multilevel recursive bisection algorithm has been shown to produce high quality initial
partitionings of this much smaller graph. Because this approach coarsens and uncoarsens the graph only once, and
it uses a recursive bisection algorithm on the coarsest graph (whose size isO(k)), its complexity for computing a
k-way partitioning isO(|V |+k logk). Extensive experiments on a variety of graphs have shown that multilevelk-way
partitioning produces partitionings whose quality is comparable and sometimes better than the partitionings produced
by multilevel recursive bisection, while requiring substantially less time [6]. The complexity expressions for both
multilevel recursive bisection and multilevelk-way partitioning assume that during the coarsening phase, the size of
the successive coarse graphs decreases by a constant factor.

In the context of the horizontal and vertical formulations of the multi-constraint partitioning problem described in
Section 2, the multilevelk-way partitioning algorithm has some additional advantages for the following reason. The
constraints of both of these formulations are global in nature as they are evaluated over allk partitions. A partitioning
algorithm based on recursive bisection cannot be used to fully optimize the quality of the partitioning subject to
these global constraints. This does not mean that multilevel recursive bisection cannot be used to compute ak-way
partitioning that satisfies the constraints, but because its view is limited to computing a bisection of a subgraph at a
time, it may actually enforce tighter constraints. This may limit its ability to find a high quality partitioning.

For example, consider the horizontal formulation of a 4-way partitioning of a graph with two constraints subject
to the tolerancesc = (1.10,1.50). It will require two levels of recursive bisection and a total of three bisections to
compute the 4-way partitioning. If we use the tolerance vectorc for each one of the three bisections, we will not
be able to guarantee that the global constraint of Equation 2 will be satisfied. The reason is that if in each of these
bisections, the balance with respect to the second weight is 1.50, then we may end up having a domain that contains
a (1/1.5)2 = .5625 fraction of the second weight leading to a load imbalance of 2.25. One way of ensuring that
the balancing constraint will be satisfied at the end of the recursive bisection is to uniformly distribute the tolerance
specified byc among the two levels of recursive bisection. That is, for each bisection, we will use a tolerance of
c′ = (√1.1,

√
1.5) = (1.05,1.22). However, this effectively tightens the tolerances, potentially limiting the ability of

the algorithm to improve the quality of the partitioning. An alternate way of ensuring that the constraints are satisfied
at the end is to tighten the tolerances from level to level according to the load-imbalance that exists in the previous
level, so that the element-wise products of the load-imbalances from the leaf nodes to the root, will be guaranteed to
be within the specified tolerances. Even though this approach allows somewhat more flexibility, there will be cases
for which the top levels of the recursion tree willconsumemost of the allowed load imbalance; limiting the ability to
better optimize the partitioning at the lower levels. Note that these difficulties do not arise if the multilevel recursive
bisection algorithm is used to compute ak-way partitioning such that each of the weights is perfectly balanced among
thek partitions. On the other hand, the multilevelk-way partitioning algorithm can easily enforce both the horizontal
and vertical constraints while at the same time operating within the entire solution space allowed by the constraints;
thus, it can freely optimize the quality of the partitioning.

Nevertheless, due to the robustness of the multilevel recursive bisection algorithms, they are well suited for com-
puting the initial partitioning of the multilevelk-way partitioning algorithm [6].

5 Multi-constraint Multilevel Recursive Bisection

In this section, we present a multilevel recursive bisection algorithm for solving the multi-constraint partitioning
problem. We develop algorithms for the three phases of the multilevel bisection algorithm, namely coarsening, initial
bisection, and bisection refinement during the uncoarsening phase.

Due to the difficulties associated with the enforcement of different load imbalances for different weights (discussed
in Section 4), our main focus in this section will be to develop a multilevel recursive bisection algorithm that tries
to perfectly balance the individual weights among thek partitions;i.e., it tries to solve the horizontal formulation of
the multi-constraint problem with a tolerance vectorc such that∀i, ci = 1.0. The issues involved in the presence of
arbitrarily relaxed balancing constraints is discussed in Section 5.4.
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5.1 Coarsening for Multi-constraint Partitioning

In the coarsening phase of multilevel algorithms, a maximal independent set of edges is computed and is used to
collapse the pair of vertices incident on these edges to form the next level coarse graph. A number of ways have been
proposed for computing this maximal independent set of edges [8]. Theheavy-edgeheuristic is a highly robust method
that gives preference to edges with high weights2 (i.e., heavy edges) while computing a maximal independent set. The
heavy-edge heuristic tends to remove a large amount of the exposed edge-weight in successive coarse graphs, and thus
makes it easy to find high quality initial bisections that require little refinement during the uncoarsening phase.

In the context of multi-constraint partitioning, this feature of the heavy edge heuristic is equally applicable, and
is useful for constructing successive coarse graphs. One can also use the coarsening process to try to reduce the
inherently difficulty of the load balancing problem due to the presence of multiple weights. In general, it is easier
to compute a balanced partitioning if the values of the different elements of every weight vector are not significantly
different. In the simplest case, if for every vertexv, wv1 = wv2 = · · · = wvm , then them-weight balancing problem
becomes identical to that of balancing a single weight. So during coarsening, one should try (whenever possible) to
collapse pairs of vertices so as to minimize the differences among the weights of the collapsed vertex.

One such simple algorithm for computing a maximal independent set will randomly visit the vertices. If a vertex has
not yet been matched, it will match it with one of its adjacent unmatched vertices that minimizes the weight difference
of the collapsed vertex. There are many possible ways to determine the uniformity of a weight vector. One possibility
is to use difference between the maximum and the minimum weight in the vector to represent the lack of uniformity
in weights. In this case, weight vectors whose difference (normalized with respect to the sum of the weights of the
vector) are smaller will be preferred. An alternate approach is to look at the difference with respect to the average
weight of the vector. That is, for vertexv we can look at the quantity

m∑
i=1

∣∣∣∣∣wvi − 1

m

m∑
j=1

wvj

∣∣∣∣∣ , (8)

and prefer vertices for which Equation 8 is smaller. Our experiments has showed that this later scheme quite often
performs better than the former scheme that tries to minimize the difference between the smallest and largest weight.
We will refer to this scheme for computing a maximal independent set of edges as thebalanced-edgeheuristic because
it prefers edges that lead to better balanced weight vectors.

Essentially we have two heuristics that we can use to compute the maximal independent sets. The first, (i.e., heavy-
edge) is geared towards producing successive coarse graphs that minimize the exposed edge-weight; and thus leading
to better quality partitionings. Whereas the second, (i.e., balanced-edge) is geared towards producing successive coarse
graphs that minimize the difference in the weights within each weight vector; and thus making it easier to compute an
initial partitioning that satisfies the balancing constraints. One can also combine these two schemes by using one of
them as the primary objective and the other as the secondary objective.

Our experiments with these two matching scheme have shown that the balanced-edge heuristic significantly in-
creases the exposed edge-weight at successive coarse graphs compared to that of the heavy-edge heuristic. This
usually leads to poor quality partitionings. We also found that by using the balanced-edge scheme as a tie-breaker for
the heavy-edge scheme, the partitioning can be balanced easier (especially for large values ofm andk), leading to
improved partitioning quality. Finally, a scheme that uses the balanced-edge as the primary and the heavy-edge as the
tie breaker heuristic, has been found to be more robust in balancing some particularly hard problems, especially for
large number of constraints and large number of partitions [12].

2Note that even if initially the graph does not have weights on the edges, each edge(v, u) of the coarse graphs will have weights reflecting the
number (or the sum of the weight) of the edges that connect the vertices of the original graph collapsed inv to the vertices of the original graph
collapsed tou.
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5.2 Bisecting for Multi-constraint Partitioning

The initial partitioning phase is the first place in the multilevel paradigm where we have to explicitly compute a
balanced bisection with respect to each one of the weights. Finding an initial balanced bisection with respect to
multiple weights is much harder than the same problem with respect to one weight. In particular, computation of the
initial bisection along the lines of Theorem 1 is not desirable because the balance guarantees provided by this approach
are not sufficiently strong and quickly deteriorate with the number of weights. Here we present a partitioning algorithm
that tries to compute a balanced bisection in the presence of multiple weights. This algorithm combines some of the
ideas used by the single-weight bisection algorithms with the insight provided by Lemma 1.

A simple scheme for computing a bisection of a graph when there is a single weight is to use a greedy region
growing algorithm [7]. LetG = (V, E) be the graph that we want to bisect into two subgraphsG A = (VA, EA) and
G B = (VB, EB). In this scheme, we initially select a vertexv ∈ V randomly, and setVA = {v} andVB = V/VA, and
then insert all the verticesu ∈ VB into a max-priority queue according to their gain function (Section 2.1). Then, we
repeatedly select the top vertexu from the priority queue, move it toG A, and update the priority queue to reflect the
new gains of the vertices adjacent tou. The algorithm terminates as soon as the weight of the vertices inG A become
more than half of the weight of the vertices inG. It can be shown that the maximum difference in the weights of the
two parts is bounded by twice the weight of the heaviest vertex. Furthermore, the quality of the partitioning is quite
good (even though no bounds can be proven) as it often leads to well shaped contiguous subgraphs.

Our algorithm for computing a bisection in the presence of multiple weights is similar in spirit to this region
growing algorithm with the following differences. Instead of using a single priority queue we usem separate queues,
wherem is the number of weights. A vertex belongs to only a single priority queue depending on the relative order
of the weights in its weight vector. In particular, a vertexv with weight vector(wv1, w

v
2, . . . , w

v
m), and belongs to

the j th queue ifwvj = maxi (w
v
i ). The existence of these multiple priority queues also changes how the vertices are

selected and moved fromG B to G A. At any given time, depending on the relative order of the weights of graphG B ,
the algorithm moves the vertex from the top of a specific priority queue. In particular, ifw

VB
j = maxi (w

VB
i ), then the

j th queue is selected. If this queue is empty, then the non-empty queue corresponding to the next heavier weight is
selected. The algorithm terminates as soon as one of the weights ofG A become more than half of the corresponding
weight ofG.

From this description it can be seen that this algorithm shares some of the characteristics of the algorithm developed
in the proof of Lemma 1. For the case of two weights, the above algorithm is different only because it selects vertices
according to their gain value, but the selected vertices satisfy the same conditions as those required by Lemma 1. In
fact, our bisection algorithm ensures exactly the same balance properties as those specified by Lemma 1. In addition,
our algorithm tries to minimize the edge-cut in a greedy fashion, by preferring the highest gain vertices.

a precise implementation of the generalized version of the weight selection algorithm discussed in Section 3 is
quite complex, as it requires maintainingm! priority queues. Hence, our initial bisection algorithm is only a loose
approximation of this generalized algorithm. More precisely, our algorithm tries to achieve balance using a local
greedy scheme that selects a vertex from the queue that decreases the heaviest weight the most. As the experiments in
Section 7 show, this works quite well in practice. Nevertheless, there are cases in which this greedy scheme will fail
to achieve reasonably tight balance. For this reason, after we compute the bisection, we perform an explicit balancing
step (described in Section 5.3) followed by a bisection refinement step (also described in Section 5.3) to obtain both
better balance and also further improve the quality of the bisection.

In our implementation of the initial partitioning phase, we perform a small number of such bisections, seedingG A

with different vertices and select the partitioning that leads to the smallest edge-cut.

5.3 Refining for Multi-constraint Partitioning

During the uncoarsening phase of the multilevel bisection algorithm, the initial partitioning is successively projected
to the next level finer graph and is further refined using local vertex migration heuristics.

A class of local refinement algorithms that tend to produce very good results when the vertices have a single
weight, are those that are based on the Kernighan-Lin (KL) partitioning refinement algorithm [9] and their variants
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[2, 5, 7]. The KL algorithm incrementally swaps vertices among partitions of a bisection to reduce the edge-cut of
the partitioning, until the partitioning reaches a local minima. One commonly used variation of the KL algorithm
for bisection refinement is due to Fiduccia-Mattheyses (FM) [2]. In particular, for each vertexv, the FM algorithm
computes the gain (as defined in Section 2.1) achieved by movingv to the other partition. These vertices are inserted
according to their gains into two max-priority queues, one for each partition. Initially all vertices areunlocked, i.e.,
they are free to move to the other partition. The algorithm iteratively selects an unlocked vertexv with the largest
gain from the heavier partition, and moves it to the other partition. When a vertexv is moved, it islockedand the
gain of the vertices adjacent tov are updated. After each vertex movement, the algorithm also records the size of the
cut achieved at this point. Note that the algorithm does not allow locked vertices to be moved since this may result in
thrashing (i.e., repeated movement of the same vertex). A single pass of the algorithm ends when there are no more
unlocked vertices (i.e., all the vertices have been moved). Then, the recorded cut-sizes are checked, the point where
the minimum cut was achieved is selected, and all vertices that were moved after that point are moved back to their
original partition. Now, this becomes the initial partitioning for the next pass of the algorithm. In the case of multilevel
recursive bisection algorithms [1, 5, 7], KL refinement becomes very powerful, as the initial partitioning available at
each successive uncoarsening level is already a good partition. Furthermore, in the context of multilevel bisection
algorithms, two optimizations are often performed on the above algorithm [7] that together greatly reduce its runtime.
First, instead of inserting all the vertices in the priority queues, only vertices that are on the partition boundary are
inserted. Note that this does not affect the semantics of the algorithm, because as non-boundary vertices move to the
partition boundary (due to the movement of some of their adjacent vertices), they are inserted into the appropriate
priority queue. Second, instead of moving all the vertices, the FM iteration is terminated as soon as a small number of
moves does not lead to an improvement in the edge-cut.

For refining a bisection in the presence of multiple vertex weights, we have extended the above single-weight
refinement algorithm in the following way. First, instead of maintaining one priority queue we maintainm queues for
each one of the two partitions, wherem is the number of weights. As in the initial partitioning algorithm (Section 5.2),
each vertexv belongs to queuei if wvi is the largest weight among itsm weights. Given these 2m queues, the algorithm
starts by initially inserting all the boundary vertices to the appropriate queues according to their gains. Then, the
algorithm proceeds by selecting one of these 2m queues, picking the highest gain vertex from this queue, and moving
it to the other partition. The queue is selected depending on the relative weights of the two partitions. Specifically, ifA
andB are the two partitions, then the algorithm selects the queue corresponding to the largestwx

i with x ∈ {A, B} and
i = 1,2, . . . ,m. If it happens that the selected queue is empty, then the algorithm selects a vertex from the non-empty
queue corresponding to the next heaviest weightof the same partition. For example, ifm = 3 and

(wA
1 , w

A
2 , w

A
3 ) = (.55, .60, .48) and (wB

1 , w
B
2 , w

B
3 ) = (.45, .4, .52),

then the algorithm will select the second queue of partitionA. If this queue is empty, it will then try the first queue of
A, followed by the third queue ofA. Note that we give preference to the third queue ofA as opposed to the third queue
of B, even thoughB has more of the third weight thanA. This is because our goal is to reduce the second weight of
A. If the second queue ofA is non-empty, we will select the highest gain vertex from that queue and move it toB.
However, if this queue is empty, we still will like to decrease the second weight ofA, and the only way to do that is to
move a node fromA to B. This is why when our first-choice queue is empty, we then select the most promising node
from the same partition that this first-queue belongs to.

Throughout the sequence of vertex moves, the algorithm keeps track of the point at which the smallest edge-cut
occurred while the balance (in the horizontal sense) was better than the one at the beginning of the iteration. Note
that the above description applies to the case in which we try to perfectly balance each weight individually. If we
are interested in a bisection in which the balance constraints are looser, then the algorithm selects the queue with the
highest gain vertex as long as the balance constraints are already satisfied.

From the above description we see that our extension of the FM algorithm to multiple vertex weights retains the
spirit of the single-weight algorithm, in the sense that it tries to move the highest gain vertex from the heaviest partition.
The main difference is that instead of just focusing on the partition that is the heaviest overall, it focuses on selecting
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a vertex that will tend to reduce the heaviest individual weight.
As discussed in Section 5.2, sometimes the initial bisection algorithm is unable to provide a bisection that is ad-

equately balanced. Even though the multilevel bisection refinement algorithm tries to improve the balance of the
bisection, it is not guaranteed to do so. For this reason, during the uncoarsening phase, after inducing a partitioning
for the next level finer graph, and prior to calling the above bisection refinement algorithm, we invoke an iterative
balancing algorithm that focuses on improving the balance while minimizing its impact on the bisection quality. This
iterative balancing algorithms is called only if the bisection at the current level is not adequately balanced.

Our iterative balancing algorithm is similar to the multi-constraint FM refinement algorithm, but its primary focus
is to improve the balance even if that will lead to an increase in the edge-cut. During each iteration of the balancing
algorithm, vertices are selected for movement in a fashion identical to that of the FM algorithm (described earlier) but
the balancing algorithm is different in the following two ways. First, all the vertices are inserted in their corresponding
priority queues (as opposed to only the vertices along the boundary). This allows the algorithm to select vertices that
quickly decrease the heavy weight of a particular domain, even if that means that a non-boundary vertex is allowed
to be moved. In fact, in the presence of multiple weights, it may either be impossible to find a bisection of the
original graph such that the two partitions are contiguous, or if such a contiguous bisection exists, its quality will be
significantly worse than one in that allows non-contiguous domains. This is illustrated in Figure 2 in the case when
there are two weights. In this example, the vertices have two weights. With respect to the first weight, all the vertices
in the domain are similar, but with respect to the second weight, only the vertices in the dark shaded portion of the
domain have weight whereas the other vertices have zero. Note that a balanced contiguous bisection will cut the
domain horizontally. However, a non-contiguous bisection can cut these two regions vertically, leading to a smaller
edge-cut.
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Figure 2: Computing a bisection such that the two parts are contiguous in the presence of multiple weights does not necessarily
minimizes the edge-cut.

The second difference is that at the end of the iteration, instead of selecting the point in the sequence of moves that
obtained the best edge-cut, the balancing algorithm selects the point that achieved the best balance. Our experience
has shown that this algorithm is able to quickly balance the bisection for a wide range of problems. Note that during
the uncoarsening phase, if graphGi becomes balanced, then it remains balanced for the remaining finer graphs as the
refinement algorithm will never worsen the balance.

5.4 Recursive Bisection For Arbitrarily Relaxed Balancing Constraints

As discussed in Section 4, the recursive bisection algorithm is not well suited to handle arbitrarily relaxed balancing
constraints. The key problem is to determine the point during the recursive bisection at which the relaxation is allowed
to take place. For example, consider the recursive bisection tree for an 8-way partitioning shown in Figure 3, and
assume that we want to partition a graph with two constraints (i.e., m = 2) subject to the horizontal constraint vector
c= (1.0,1.5).

As Figures 3(a)–(c) illustrate, there are many distinct schemes in applying this relaxation. One possibility is to
perform the relaxation gradually at each level of the recursive bisection. Since there are three recursive bisection levels,
we can guarantee the bound onc by using the horizontal constraint vector(1.0,1.14) at each bisection (Figure 3(a)).
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Another possibility is to allow the entire relaxation to take place at the root of the recursive bisection tree (as shown in
Figure 3(b)) and use a constraint vector of(1.0,1.0) for each subsequent bisection. An alternate scheme applies the
relaxation at the leaf levels of the recursive bisection tree, as shown in Figure 3(c). That is, use a constraint vector of
(1.0,1.5) for all the bisections at the last level, and a constraint vector of(1.0,1.0) for all prior bisections.

Leaf nodes
of the tree

Final Partitions

Recursive Bisection Tree

1.0
1.5c = 

We need to compute an
8-way partitioning of a 
2-weight graph subject
to the constraint vector

1.0
1.14

1.0
1.14

1.0
1.14

1.0
1.14

1.0
1.14

1.0
1.14

1.0
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(a) Gradual relaxation
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1.0
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(b) Relaxation at the root node
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1.0

1.0
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(c) Relaxation at the lead nodes

Figure 3: The recursive bisection tree for an 8-way partitioning. A number of schemes can be used in relaxing the constraints. (a)
The constraints are gradually relaxed through-out the three levels of recursive bisection. (b) The constraints are relaxed at the top
level of the recursive bisection. (c) The constraints are relaxed at the leaf nodes of the recursive bisection tree.

In the case of the first two schemes, we can monitor the amount of relaxation (if any) that was not used in the
prior levels and propagate it downwards in the tree. For instance, in the case of the second scheme in our example,
if the bisection at the top node of the tree resulted in two partitions such that the left one contains(50%,60%) of
the two weights, and the right one contains(50%,40%) of the two weights, then we can relax the constraint vectors
for the subsequent bisections as follows. From the requirement that the overall 8-way partitioning should satisfy the
c= (1.0,1.5) horizontal constraint, we know that in each partition, the upper bound with respect to the first weight is
12.5% (i.e., 1/8 of the total weight), and with respect to the second weight is 18.75% (i.e., .1875∗8= 1.5). In order to
maintain the same upper bounds on the left subtree we must use a constraint vectorcL such thatcL

1 = .125∗4/.5= 1.0,
andcL

2 = .1875∗ 4/.6 = 1.25. Similarly, for the right subtree we have that the constraint vectorcR is such that
cR

1 = .125∗ 4/.5= 1.0, cR
2 = .1875∗ 4/.4= 1.875.

In our implementation we selected to implement the third choice. That is, wait until the leaf nodes of the recursive
bisection tree prior to relaxing the balancing constraints. The motivation behind this choice is that we are able to
take advantage of maximum degree of relaxation in as many bisections as possible. Nevertheless, a better evalua-
tion and comparison of the various relaxation schemes is needed to identify the one that leads to the better overall
partitionings. Furthermore, our current implementation can only handle relaxations in the horizontal formulation of
the multi-constraint partitioning problem. Relaxation in the context of the vertical formulation is currently under
investigation.
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6 Multi-constraint Multilevel k-way Partitioning
Our multi-constraint formulation of the multilevelk-way partitioning algorithm follows closely its single-constraint
counterpart. During the coarsening phase, a sequence of successively coarser graphs is constructed using the coarsen-
ing schemes described in Section 5.1 for the multilevel recursive bisection. The coarsening proceeds until the number
of vertices in the graph becomes a small multiple of the number of partitions. In our implementation, we stop the
coarsening as soon as we obtain a graph with fewer than 50k vertices.

The initial partitioning phase of this coarsest graph is computed using the multi-constraint multilevel recursive
bisection algorithm described in Section 5. As discussed in Section 4, the recursive bisection algorithm is not ideally
suited for dealing with arbitrarily relaxed horizontal and vertical constraints. In the case of the horizontal multi-
constraint partitioning we use the relaxation scheme described in Section 5.4, which to a limited extend, takes into
account the relaxed load imbalances (if any). In the case of the vertical multi-constraint partitioning, regardless
of values of vectorr , we use the multilevel recursive bisection algorithm to compute ak-way partitioning that is as
balanced as possible, and rely on thek-way refinement algorithm to optimize the partitioning subject to the constraints.
As the experiments in Section 7 will show, this approach usually results in very good overall partitionings when
constraints are not overly relaxed. However, for many problems, an initial partitioning that applies the relaxation at the
leaf levels (as it is the case with the horizontal formulation) or equally balances each weight (as it is the case with the
vertical formulation), may have reduced the ability of thek-way refinement algorithm to effectively search the entire
feasible solution space.

6.1 Multi-Constraint k-way Refinement

Undoubtedly, the key step in the multilevelk-way partitioning algorithm is the scheme used to perform thek-way
refinement. Research in the context of partitioning graphs with a single weight has shown that relatively simple greedy
k-way refinement heuristics are sufficient for producing high quality partitionings [6]. This is primarily because (i)
the initial partitioning is of very high quality, and (ii) the multilevel paradigm, by applying these simple heuristics
at different coarsening levels, is able to sufficiently explore the space of feasible solutions and find a high quality
solution.

This greedyk-way refinement algorithm operates as follows. The vertices that are along the boundary of the
partitioning are visited in a random order and they are moved to one of their adjacent partitions if this movement:

(a) improves the quality of the partitioning subject to the balance constraints,

(b) improves the balance without worsening the quality.

Specifically, consider a graphG = (V, E), and its partitioning vectorP. For each vertexv ∈ V on the partitioning
boundary, letN(v) be its neighborhood as defined in Section 2.1. Now during the greedyk-way refinement, the
partitionb ∈ N(v) to which vertexv is moved to is determined as follows. First we compute a subsetN ′ ⊆ N(v) of
the neighboring domains ofv such that the movement ofv to any of these domains does not increase the edge-cut;
that is, for allb ∈ N ′, g[v]b ≥ 0. Next, we remove fromN ′ all the domains for which the movement ofv into them
will violate the balancing constraints. LetN ′′ ⊆ N ′ be this subset ofN ′. Now, we movev to one of the subdomainsb
in N ′′ for which we achieve the largest reduction in the edge-cut; that is,g[v]b = maxi∈N ′′ (g[v]i ), and breaking ties
in favor of the domains for which we achieve the best balance. If for all domains inN ′′, the gain achieved in moving
to them is zero and the balance is no better than it was originally, thenv does not move. Whenever a vertex is moved,
the neighboring and gain information of the existing and currently emerging boundary vertices is updated to reflect the
current state of the partitioning.

The abovek-way partitioning refinement algorithm for single constraint partitioning can be extended for multi-
constraint partitioning as follows. The computation ofN(v) andn′ is performed exactly as in the original algorithm,
by simply keeping track ofI D[v] andE D[v]b for every nodev and for every partitionb ∈ N(v). DeterminingN ′′
from N ′ requires the following function:

IsBalanceOK(v, a, b)
This function determines if the movement of a vertexv from domaina into domainb satisfies the balancing
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constraints. This function is essential in constructing the setN ′′ from the setN ′ of moves that do not increase
the edge-cut.

Determining the domain inN ′′ to whichv may be moved requires the following two additional functions:

IsBalanceBetterFT(v, a, b)
This function determines if the movement of a vertexv from domaina to domainb will lead to a better balance
compared to not movingv. This function is used to determine ifv will be moved tob when the gain associated
with that move is zero.

IsBalanceBetterTT(v, a, b1, b2)

This function determines if the movement of a vertexv from domaina to domainb2 will lead to a better balance
compared to a move to domainb1. This function is used to select among the domains inN ′′ with the highest
gain, the one that leads the best balance.

Given the above functions, the algorithm that determines the domain (if any) in which a vertexv will move is shown
in Algorithm 6.1.

SelectMoveTarget(v, N(v))
{

N ′ = {b | b ∈ N(v) and ED[v]b− ID[v] ≥ 0}
N ′′ = {b | b ∈ N ′ and IsBalanceOK(v, P[v], b)}

if (|N ′′| = 0) then return -1

b = N ′′[1];
for (i = 2; i ≤ |N ′′|; i = i + 1) {

j = N ′′[i ]
if (ED[v] j > EDb[v]) then b = j
elif (ED[v] j = EDb[v] and IsBalanceBetterTT(v, P[v], b, j)) then b = j

}

if (ED[v]b-ID[v] > 0 or (ED[v]b-ID[v] = 0 and IsBalanceBetterFT(v, P[v], b))) then return b
else return -1;

}

Algorithm 6.1: The above routine returns the domain in which v should be moved, or -1 if no such domain was found.

In the next sections we describe the implementation of the above function in the case of the horizontal and vertical
formulations of the multi-constraint partitioning problem.

6.1.1 Horizontal Formulation

In the case of the horizontal formulation of the multi-constraint partitioning problem (described in Section 2) given a
constraint vectorc, we can easily implement theIsBalanceOKfunction because the constraint vectorc puts an upper
bound on the size of each weight for each domain. Specifically, for ak-way partition, from Equations 1 and 2 the
upper bound of thei th weight for each domain isci/k.

We can implement theIsBalanceBetterFTfunction by using the load imbalance formula (Equation 1) as follows.
We can compute the load imbalance vectorl a whenv stays ina and the load imbalance vectorl b when it moves tob,
and use these two vectors to determine whether the balance improved or not. In comparing these vectors one should
also take into account the allowed tolerances provided by vectorc. This can be done by computing two vectorsda and
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db as follows:

da
i =

la
i − 1

ci − 1
and db

i =
lb
i − 1

ci − 1
. (9)

That is, vectorsda anddb are points in them-dimensional unit cube of the allowed load imbalances. We can now
compare these two vectors by using a norm. In particular, we can use the infinity-norm to compare their largest element
or the one-norm to compare their sum. In our implementation we prefer the vectors that have the smaller infinity-norm
and use the one-norm as a tie-breaker.

Unfortunately, quite often the movement of a single vertex does not change the overall load imbalance; that is,da

anddb are identical. This is because the load imbalance vector given by Equation 1 does not easily change due to the
movement of a particular vertex. In particular, each entryli of the vector is determined by a single subdomain that
contains the most of thei th weight. So we can think ofl as being determined bym weight values out of a total of
km. The movement of a single vertex will change only 2m weight values. So for reasonably large values ofk, the
likelihood of these 2m weight values affecting them weights used in determining the load imbalance vector is quite
small.

For this reason we also need to use a scheme for determining whether or not a move will lead to a better balanced
partitioning that is based on local balancing considerations which should be used as a tie-breaker when the global load
imbalance does not change. We can do that by computing the load imbalance with respect to a pair of partitionsa and
b using the following formula:

l(a,b)i = 2

max∀ j∈{a,b}

( ∑
∀P[v]= j

wvi

)
∑

∀v:P[v]=a

wvi +
∑

∀v:P[v]=b

wvi

. (10)

Now, using this formula we can compute the local load imbalance betweenl (a,b),a whenv stays ina and the local load
imbalancel (a,b),b whenv moves tob and compare them by comparing the norms of the vectorsd(a,b),a andd(a,b),a

that are computed as follows:

d(a,b),ai = l(a,b),ai − 1

ci − 1
and d(a,b),bi = l(a,b),bi − 1

ci − 1
. (11)

The above framework is also used to implement theIsBalanceBetterTTfunction. In particular, we can compute the
global load imbalance vectorsl b1 andl b2 and compare the norms of the vectorsdb1 anddb2 computed as follows:

db1
i =

lb1
i − 1

ci − 1
and db2

i =
lb2
i − 1

ci − 1
.

If these global load imbalance vectors are not sufficient in differentiating the moves, we can then use the local load
imbalance vectors of Equation 10, and compare the norms of their correspondingd(a,b1),b1 andd(a,b2),b2 vectors.

6.1.2 Vertical Formulation

In the case of the vertical formulation of the multi-constraintk-way partitioning problem, we can implement the
IsBalanceOKfunction by computing the load imbalancel b after movingv from domaina to domainb and see ifl b

satisfies Equation 3,i.e., if
∑m

i=1 ri lb
i ≤ c. If Equation 3 is satisfied, then the movement will satisfy the balancing

constraints.
Equations 1 and 3 are also used to implement theIsBalanceBetterFTfunction. We can compute the load imbalance

vectorl a whenv stays ina and the load imbalance vectorl b when it moves tob, and use Equation 3 to compare them.
In particular, if

∑m
i=1 ri la

i <
∑m

i=1 ri lb
i , then the balance before the move is better, and if

∑m
i=1 ri la

i >
∑m

i=1 ri lb
i ,

then the balance after the move is better. Unfortunately, as in the case of the horizontal formulation, movingv from
a to b may not change the overall load imbalance even though it does improve the load imbalance in a local sense
between domainsa andb. In this case, we use a local scheme to determine whether or not the move will lead to a
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better balance. We do that by using Equation 10 to compute the local load imbalancel (a,b),a whenv stays ina, and
the local load imbalancel (a,b),b whenv moves tob. Then, if

∑m
i=1 ri l

(a,b),a
i ≤∑m

i=1 ri l
(a,b),b
i , then the balance before

the move is better, and if
∑m

i=1 ri l
(a,b),a
i >

∑m
i=1 ri l

(a,b),b
i , then the balance after the move is better.

A similar scheme is used to implement theIsBalanceBetterTTfunction. This first uses the global load imbalance
formula to determine whether the move tob2 leads to a more balanced partitioning than the move tob1, and uses the
local load imbalance formula whenever the global balance does not change.

6.1.3 Computational Complexity

Our description of the horizontal and vertical implementation of the three functions required by thek-way refinement
algorithm may suggest that the cost of theSelectMoveTargetfunction isO(mk). This is because for each vertexv that
we want to potentially move, we need to compute the load imbalance vector (Equation 1) for a subset of the partitions
in N(v). However, if we know for each of them weights the two domains that contain the two largest fractions of that
weight, then we can quickly compute the new load imbalance vector resulting from movingv to any of the domains
in N(v). In this case, the cost of callingSelectMoveTargetbecomesO(m), i.e., linear on the number of constraints.

Note that if theSelectMoveTargetfunction selects a domain to which vertexv is moved to, then we may need to
recompute the domains that contain the two largest fractions of each of them weight. The cost of this operation is
O(mk). However, ink-way refinement only a small fraction of the boundary vertices actually moves; thus, the above
optimization results in a dramatic reduction in the overall refinement time.

6.2 Multi-constraint Iterative k-way Balancing

The primary focus of thek-way refinement algorithm described in the previous section is to improve the quality
of a k-way partitioning subject to multiple constraints. However, if the partitioning does not initially satisfy the
balancing constraints, then thek-way refinement algorithm may not be able to balance the partitioning. Since the
k-way refinement algorithm moves only vertices that do not decrease the edge-cut, it may not be able to balance an
unbalanced partitioning if such a balancing requires the movement of vertices with negative gains. For this reason,
after projecting a partitioning to the next level finer graph and prior to calling thek-way refinement algorithm, we use
a k-way balancing algorithm to improve the load imbalance whenever such a load imbalance exists.

Our multi-constraintk-way balancing algorithm is similar in nature to thek-way refinement algorithm but instead
of focusing on improving the edge-cut it focuses on improving the balance. In particular, as it randomly visits the
vertices, it determines whether or not the domain thatv belongs to violates the balancing constraints. In that case,v is
moved to an adjacent domain if the post-movement balance improves. If multiple such destination domains exist, then
the one that leads to the least decrease in the edge-cut is selected. An iteration of the balancing algorithm terminates
as soon as the balancing constraints are satisfied.

7 Experimental Results

We used two sets of problems to test the effectiveness of our multilevelk-way partitioning algorithm to solve the
horizontal and vertical formulations of the multi-constraint partitioning problem. Both sets of problems were generated
synthetically from two graphsBRACK2 andMDUAL. BRACK2 is a graph corresponding to a 3D finite element mesh
with 62631 vertices and 366559 edges.MDUAL is a graph corresponding to the dual of a 3D finite element mesh with
tetrahedra elements that has 258569 vertices and 513132 edges. All experiments were performed on a Intel-based
workstation equipped with a Pentium II at 300Mhz and 256MBytes of memory.

The purpose of the first set of problems was to test the ability of the multi-constraint partitioner to compute a
balancedk-way partitioning for some relatively hard problems. For each of the two graphs we generated three different
graphs with two, three, and four weights, respectively. For each graph the weights of the vertices were generated as
follows. First, we computed a 16-way partitioning of the graph and then we assigned the same weight vector to all the
vertices of each one of these 16 domains. The weight vectors for each domain was generated randomly, such that each
vector containsm (for m = 2,3,4) random numbers ranging from 0 to 19.
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The purpose of the second set of problems was to test the performance of the multi-constraint partitioner in the
context of multiphase computations in which different (possibly overlapping) subsets of nodes participate in different
phases. For each of the two graphs, we generated a graph with three weights and a graph with five weights corre-
sponding to a three- and to a five-phase computation, respectively. In the case of the three-phase graph, the portion
of the graph that is active (i.e., performing computations) is 100%, 75%, and 50% for each one of the three phases,
whereas in the case of the five-phase graph, the active portion corresponds to 100%, 75%, 50%, 50%, and 25% of the
domain. The portions of the graph that are active was determined as follows. First, we computed a 32-way partitioning
of the graph and then we randomly selected a subset of these domains according to the overall active percentage. For
instance, to determine the portion of the domain that is active during the second phase of both the three- and five-phase
computation, we randomly selected 24 out of these 32 domains (i.e., 75%). The weight vectors associated with each
vertex depends on the phases in which it is active. For instance, in the case of the five-phase computation if a vertex
is active only during the first, second, and fifth phase, its weight vector will be(1,1,0,0,1). In generating these test
problems we also assigned weight on the edges to better reflect the overall communication volume of the underlying
multiphase computation. In particular, the weight of an edge(v, u) was set to the number of phases that both vertices
v andu are active at the same time. This is an accurate model of the overall information exchange between vertices
since during each phase, vertices access each other’s data only if both are active.

7.1 First Problem Set

In our first set of experiments, we used the horizontal formulation of multi-constraint partitioning problem to partition
the first set of graphs in 16, 32, 64, and 128 partitions. For all of these partitioning we set the tolerance for each con-
straint to be 1.05. That is, for the two, three, and four constraints we setc to be equal to(1.05,1.05), (1.05,1.05,1.05),
and(1.05,1.05,1.05,1.05), respectively. In all cases, the multi-constraint partitioning algorithm was able to produce
partitionings that satisfied the horizontal constraints.

Figure 4 compares the quality of the partitionings produced by the multi-constraint algorithm relative to the quality
produced by using the traditional single constraint multilevelk-way partitioning algorithmKMETIS that is available
in theMETIS 3.0 partitioning package.KMETIS was used to partition the graphs with respect to the first weight. Con-
sequently, the produced partitionings were balanced with respect to the first weight but they were highly unbalanced
with respect to the remaining weights. In fact, the load imbalance with respect to the other constraints was particularly
bad and it ranged between 300% and 2000%.

A number of observations can be made by looking at Figure 4. First, the quality of the partitionings produced
by the multi-constraint algorithm are in general 20% to 70% worse than the corresponding partitionings of the single-
constraint algorithm. Considering the added constraints that the multi-constraint algorithm needs to satisfy, we can see
that the degradation in quality is not very significant. The second thing to notice is that as the number of constraints
increases, the quality of the multi-constraint partitioning decreases. Again, this was expected because when we go
from two to four constraints, the multi-constraint algorithm is more restricted in trying to minimize the edge-cut.
Fortunately, as the experiments show, this degradation in quality is quite gradual.

The third thing to notice is that in general, the relative quality of the partitionings decreases as we increase the
number of partitions. For example, in the case ofMDUAL with two constraints, the 16-way partitioning is 18% worse
than the single constraint partitioning, whereas the 128-way partitioning is about 22% worse. This indicates that the
multi-constraint partitioning problem becomesharderas we increase the number of partitions. This can be explained
if we consider the characteristics of these synthetically generated graphs. Recall that these problems were generated
by partitioning the original graph into 16 domains and assigning a weight vector to all the vertices of each domain
which is different for each domain. Given the above structure of the graphs, one can argue that for smallk, there exists
a k-way partitioning of the graph such that each one of thesek partitions are contiguous. However, ask increases,
it becomes harder for the final partitioning to consist of partitions that are contiguous. This is primarily due to the
fact that the size of each final subdomain is small (i.e., small region of the graph) and because of that there will not
be sufficiently many nodes of different weight classes to lead to a balanced partitioning. Consequently, the multi-
constraint partitioning algorithm will be forced to select portions from different regions in the graph thus leading to
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Figure 4: Quality of the partitionings produced by the multilevel k-way partitioning algorithm for solving the horizontal multi-
constraint problem. The tolerance for each weight was set to 1.05. For each graph, the ratio of the edge-cut of the multi-constraint
to that of the single-constraint partitioning is plotted for 16-, 32-, 64-, and 128-way partitionings. Bars above the baseline indicate
that the multi-constraint partitioning cuts more edges than the single constraint partitioning.

non-contiguous partitions. Note that the single-constraint partitioning problem does not suffer from this problem as
long as the weights of the vertices are not significantly different.

Due to the scheme used in generating the graphs in our first problem set, we can use the single constraint partitioning
algorithm to naively compute ak-way partitioning that will satisfy the multiple balancing constraints. We can do that
by taking each one of the 16 domains and further partitioning it intok parts. From these 16× k subdomains we can
compute a balancedk-way partitioning by assigning to each partition one subdomain from each one of the 16 groups.
Since all the vertices of each one of the 16 domains have identical weight vectors and each of the finalk partitions has
1/k of each of these 16 domains, the resulting partitioning will be balanced with respect to each one of the constraints.
We will refer to this approach as the 16∗ k-KMETIS partitioning since we essentially partition the graph into 16k
domains3.

Figure 5 compares the partitioning quality achieved by our multi-constraint partitioning algorithm relative to this
naive algorithm for computing a balance partitioning for this class of problems. From this graph we can see that
our multi-constraint algorithm cuts in general, 50% to 70% fewer edges than the naive approach. It is interesting to
note that as the number of partitions increases, the gap in quality decreases. For example, forBRACK2 with four
constraints, in the case of the 16-way partitioning our multi-constraint algorithm cuts 63% fewer edges than the naive
algorithm but in the case of the 128-way partitioning it cuts only 50% fewer edges. Again, as discussed earlier, this
is because as the number of partitions increases, the only way to compute a balanced partitioning is to assign portions
of each one of the 16 domains to each one of the partitionings; thus, both algorithm will tend to produce similar
partitionings.

Finally, Figure 6 compares the amount of time required by the multi-constraint partitioning algorithm relative to
the time required by the single-constraint partitionerKMETIS. From this figure we can see that the multi-constraint
algorithm is in general 1.5 to 3 times slower than the single constraint algorithm. There are two factors that contribute
to the increase in the runtime of the multi-constraint algorithm. First, the initial partitioning algorithm used for the
multi-constraint problem is slower than the corresponding algorithm used for the single constraint problem. This is
because (i) the initial graph is larger because we stop the coarsening at an earlier point, (ii) the refinement phase of
the multilevel recursive bisection algorithm for multiple weights is slower as it employs multiple queues, and (iii) the
algorithm spends substantially more time performing the explicit balancing step. Second, the multi-constraintk-way

3It is possible to further improve the partitioning produced by this naive method by using an intelligent assignment of the 16k domains tok
parts such that connected subdomains stay together. However, for sufficiently large value ofk, the gains achieved by this approach will be relatively
small.
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Figure 5: Quality of the partitionings produced by the multilevel k-way partitioning algorithm for solving the horizontal multi-
constraint problem. The tolerance for each weight was set to 1.05. For each graph, the ratio of the edge-cut of the multi-constraint
to that of the naive multi-constraint partitioning is plotted for 16-, 32-, 64-, and 128-way partitionings. Bars bellow the baseline
indicate that the multi-constraint partitioning cuts fewer edges than the naive multi-constraint partitioning.

refinement algorithm is slower due to a more expensive movement evaluation function and because of the explicit
balancing step. Fortunately, the increase in the runtime is relatively small as long ask is not very large compared to
the number of vertices in the graph.
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Figure 6: Amount of time required by the multilevel k-way partitioning algorithm for solving the horizontal multi-constraint problem.
The tolerance for each weight was set to 1.05. For each graph, the ratio of the run-time of the multi-constraint to that of the
single-constraint partitioning is plotted for 16-, 32-, 64-, and 128-way partitionings. Bars above the baseline indicate that the
multi-constraint partitioning requires more time than the single constraint partitioning.

Unequal Balancing Constraints All of our experiments so far tried to balance each one of the constraints within
5%. However the horizontal formulation of the multi-constraint problem allow us to use different balancing constraints
for each individual weight; thus, relaxing or tightening each constraint according to the underlying requirements. We
used the first set of problems to perform this type of multi-constraint partitionings. In particular, we used the constraints
of (1.05,1.5), (1.05,1.5,1.5), and(1.05,1.05,1.5,1.5) for the two, three, and four weight problems, respectively.

Figure 7 compares the performance achieved by this relaxed multi-constraint partitioning over that achieved by the
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Figure 7: Quality of the partitionings produced by the multilevel k-way partitioning algorithm for solving the horizontal multi-
constraint problem. For each graph, the ratio of the edge-cut of the relaxed multi-constraint to that of the strict multi-constraint
partitioning is plotted for 16-, 32-, 64-, and 128-way partitionings. Bars bellow the baseline indicate that the multi-constraint
partitioning cuts fewer edges than the strict multi-constraint partitioning. The constraints for the relaxed partitioning are (1.05,1.5),
(1.05,1.5,1.5), and (1.05,1.05,1.5,1.5) for two, three, and four weights, respectively.

earlier (and tighter) partitioning. From this figure we can see, as expected, that as we relax the balancing constraints
the quality of the partitionings improves. In general, we achieve a reduction in the edge-cut ranging from 10% to
20%. Comparing the performance of this relaxed multi-constraint partitioner with that of the single-weight partitioner
Figure 8 we see that the quality is worse only by 10% to 40%, a considerable improvement over that of the strict
horizontal formulation.

7.2 Second Problem Set

Figure 9 compares the quality of the partitionings produced by the horizontal formulation of the multi-constraint
partitioning problem with that of the single-constraint partitionerKMETIS. The balancing constraints for each one of
the weights was set to 1.05. Looking at this figure we see that the relative quality of the produced partitionings is quite
similar to that obtained on the first set of problems (Figure 4). The degradation in the quality of the partitionings ranges
between 22% and 100% and increases as the balancing problem becomes harder by either increasing the number of
constraints or increasing the number of partitions. For example, forMDUAL with three constraints, the 16-way
partitioning cuts 22% more edges and the 128-way partitioning cuts 39% more edges.

Even though the increase in the edge-cut (and the associated communication cost in the context of parallel solution
of multi-phase computations) may seem significant, one must consider the two alternatives. One alternative is to just
balance with respect to a single constraint, in which case the overhead due to load imbalance will significantly decrease
the overall performance. For example, in the problems of Figure 4, partitioning with respect to a single weight yields
load imbalances with respect to the other constraints in the range of 300% to 1100%! The second alternative is to
partition each phase separately, and move information between the different decompositions from phase to phase.
Depending on the amount of information that needs to be moved, the communication overhead of this approach can
be prohibitively high.

As discussed in Section 2, an alternate approach for partitioning graphs that correspond to multi-phase computations
is to use the vertical formulation of the multi-constraint problem by choosing an appropriate values of the vectorr to
reflect the relative amount of computation performed in each phase. In the case of our three- and five-phase problems,
the values of the vectorr are(.45, .33, .22) and(.33, .25, .165, .165, .09) respectively. Figure 10 compares the quality
of the partitionings produced by the vertical formulation over that achieved by the horizontal formulation for the same
allowed load imbalance of 5%. Looking at this figure we see that in general the quality of the vertical formulation
is slightly better than that of the horizontal. For most problems the improvement ranges from 1% to 7%. In general,
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Figure 8: Quality of the partitionings produced by the multilevel k-way partitioning algorithm for solving the horizontal multi-
constraint problem. For each graph, the ratio of the edge-cut of the relaxed multi-constraint to that of the single-constraint partition-
ing is plotted for 16-, 32-, 64-, and 128-way partitionings. Bars above the baseline indicate that the multi-constraint partitioning cuts
more edges than the single-constraint partitioning. The constraints for the relaxed partitioning are (1.05,1.5), (1.05,1.5,1.5),
and (1.05,1.05,1.5,1.5) for two, three, and four weights, respectively.

the achieved improvement is not very significant. This is due, in part, to the fact that our recursive bisection based
initial partitioning algorithms computes ak-way partitioning for the horizontal formulation (in which each phase is
individually balanced). Since thek-way refinement algorithm has only limited capability to climb out of local minima,
it is not able to find solutions that are substantially better (according to the vertical formulation) but are far removed
from the initial partitioning of the coarsest graph.

8 Conclusions and Future Work

In this paper we introduced the problem of computing ak-way partitioning of a graph in which the vertices have
multiple weights and the partitioning is required to balance each weight individually. We introduced two different
formulations of this problem, the horizontal and vertical formulations. The horizontal multi-constraint formulation
is applicable when different weights represent different type of entities, and the vertical formulation is relevant when
different weights represent the same type of quantity. We have shown that the multilevel graph partitioning paradigm
is capable of finding satisfactory solution to at least some type of problems. However a number of issues need to be
investigated further.

What are the best methods for coarsening for multi-constraint partitioning? For the single weight graph partitioning
problem, the sole focus on edge weight, as in the heavy-edge heuristic, appears adequate. But for multi-constraint
partitioning problems, it appears important to emphasize the degree of balance of the different weights of the collapsed
vertices. In particular, as the problem becomes harder (due to larger number of weights), the balanced-edge heuristic
becomes more and more crucial in obtaining good coarsening. The right mix of these two heuristics needs to be
determined for different problems.

The method for finding the initialk-way partitioning of the coarsest graph plays a major role in the overall partition-
ing paradigm, as the follow-up refinement has only limited capabilities to improve the quality of the initial partitioning.
For reasons of simplicity, we choose to use a recursive bisection method to compute thek-way initial partitioning. But
recursive bisection scheme has a number of limitations. First, it is appropriate only for the horizontal formulation
in which all weights are almost fully balanced. This scheme has difficulty handling cases in which some degree of
imbalance is allowed. It is unclear if substantially better and/or different initial partitioning algorithms can be derived.
One possibility is to just keep using the coarsening paradigm until the number of vertices in the coarsest graph is
only k. This scheme works quite well for single constraint graph partitioning problems [4], but needs to be tested for
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Figure 9: Quality of the partitionings produced by the multilevel k-way partitioning algorithm for solving the horizontal multi-
constraint problem. The tolerance for each weight was set to 1.05. For each graph, the ratio of the edge-cut of the multi-constraint
to that of the single-constraint partitioning is plotted for 16-, 32-, 64-, and 128-way partitionings. Bars above the baseline indicate
that the multi-constraint partitioning cuts more edges than the single constraint partitioning.

multi-constraint problems.
In coarsening, initial partitioning, and in refinement, there are a number of possibilities for determining the quality

or degree of balance of the coarsened graph or the partitioning. We have only investigated few possibilities. Others
need greater investigation.

Our scheme has been tested on a set of synthetic benchmarks. It will be useful to test the performance on real data
sets. It will also be useful to find out what multi-constraint problems are intrinsically hard, and in particular, what
problems cannot be handled satisfactory, using the heuristics studied in this paper.

The experimental success of our scheme is at least partly due to the fact that the tested graphs were 3D finite element
meshes. Such meshes have been proven to have many good bisections for the single constraint problem [11]. All test
graphs used in our experiments can be considered as superposition of many graphs, each with a different weight (that
needed to be balanced individually, possibly to different degrees). Even-though Theorem 1 shows that this structure
by itself is not very useful in proving tight bounds for load balance and edge-cut, the possibility of many satisfactory
partitionings for each individual weight may be responsible for good overall solutions obtains by our algorithm.
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