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Abstract

For a large class of irregular grid applications, the computational structure of the problem changes in an incremen-
tal fashion from one phase of the computation to another. Eventually, as the graph evolves, it becomes necessary to
correct the partition in accordance with the structural changes in the computation. Partitioning the graph from scratch
and then intelligently remapping the resulting partition will accomplish this task. Two different types of schemes to
accomplish this task have been developed recently. In one scheme, the graph is partitioned from scratch and then the
resulting partition is remapped intelligently to the original partition. The second type of scheme use a multilevel dif-
fusion repartitioner. In this paper, we conduct a comparison study on repartitioning via intelligent remapping versus
repartitioning by diffusion. We show that multilevel diffusion algorithms generally produce significantly lower data
migration overhead for adaptive graphs in which low magnitude localized or non-localized imbalances occur and for
graphs in which high magnitude imbalances occurs globally throughout the domains than partitioning from scratch
and remapping the resulting partition. We show that for the class of problems in which high magnitude imbalances
occur in localized areas of the graph, partitioning from scratch and remapping the resulting partition will result in
very low edge-cuts and data migration overheads which are similar to those obtained by diffusive schemes. Finally,
we show that the run times of the various schemes are all similar.
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1 Introduction
Mesh partitioning is an important problem which has applications in many areas, including scientific computing.
In irregular mesh applications, the amount of computation associated with a grid point can be represented by the
weight of its associated vertex. Similarly, the amount of runtime interaction required between two grid points can be
represented by the weight of the edge between the associated vertices. Efficient parallel execution of these irregular
grid applications requires the partitioning of the associated graph intop parts with the objective that the total number
of edges cut by the partitions (hereafter referred to asedge-cut) is minimized, and subject to the constraint that each
partition has an equal amount of total vertex weight. Since the weight of any given edge represents the amount of
communication required between nodes, minimizing the number of edges cut by the partition tends to minimize the
overall amount of communication required by the computation, while requiring that each partition has the same amount
of vertex weight ensures load balance. This problem has been well defined and discussed in previous work [3, 7].

For a large class of irregular grid applications, the computational structure of the problem changes in an incremental
fashion from one phase of the computation to another. For example, in adaptive meshes [2], areas of the original graph
are selectively coarsened or refined in order to accurately model the dynamic nature of the problem. The adapted
meshes can be represented by appropriately modifying the weights of the vertices and edges of the original graph.
The advantage of this strategy to repeatedly use the initial graph during the course of an adaptive computation over
constructing a new graph with vertex and edge weights equal to one is that the connectivity and the partitioning
complexity remain unchanged. Eventually, as the graph evolves, it becomes necessary to correct the partition in
accordance with the structural changes in the computation and to migrate a certain amount of computation between
processors. Thus, we need a partitioning or repartitioning algorithm to redistribute the adapted graph. This algorithm
should satisfy the following constraints.

1. It robustly balances the graph. Failure to balance the graph will lead to load imbalance, which will result
in higher parallel run time. In order to make the repartitioning algorithm general, it must be able to balance
graphs from a wide variety of application domains.

2. It is fast. The computational cost of repartitioning should be inexpensive since it is done frequently. Also, since
the problem studied in this paper is relevant only in the parallel context, the repartitioning algorithm should be
parallelizable.

Any repartitioning algorithm also needs to satisfy the following objectives.

1. It minimizes edge-cut. The redistributed graph should have a small edge-cut to minimize communication
overhead in the actual computation phase.

2. It minimizes vertex migration time. Once the mesh is repartitioned, and before the computation can begin,
data associated with the migrated vertices also needs to be moved. In many adaptive computations, the data
associated with each vertex is very large. The time for movement of the data can therefore dominate the overall
run time, especially if the mesh is adapted frequently.

Partitioning the graph from scratch and then intelligently remapping the resulting partition is one way to meet the
above criteria. Various algorithms which do so are described in [8]. Here, the imbalanced graph is partitioned from
scratch using one of the multilevel graph partitioning algorithms described in [6, 7]. The resulting partition is then
intelligently mapped to the processors in order to reduce the amount of vertex migration required. In [1], a simple
greedy remapping algorithm was described and shown to obtain near-optimal results on application graphs.

Another way to meet the above criteria is through diffusive repartitioning. Multilevel diffusion schemes have been
developed that incrementally construct a new partition of the graph [10, 9, 11]. These schemes generally have three
phases: a graph coarsening phase, a diffusion phase, and a multilevel refinement phase. However, the diffusion and
refinement phases may be interleaved.

In the graph coarsening phase, these algorithms attempt to coarsen the input graph recursively by collapsing
matched vertices into a single vertex on the next coarser graph. Vertices are matched together by computing a max-
imal set of independent edges. Most multilevel diffusion schemes use some variation of heavy-edge matching [5] to
compute this set. In the diffusion phase, the coarsest (and hence smallest) graph is balanced by incrementally mod-
ifying the input partition. By beginning this process on the coarsest graph, these algorithms are able to move large
chunks of well-connected vertices in a single step. Thus, the bulk of the work required to balance the graph is done
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quickly. Eventually, due to the coarseness of the graph, an incremental diffusion process may not be able to improve
the load balance. At this point, either refinement is begun on the current graph (in the case of interleaved diffusion and
refinement phases) or the partition is projected to the next finer graph and another round of diffusion begins. In these
algorithms, diffusion may be directed globally or locally. In multilevel refinement, border vertices (or pairs of border
vertices) from the coarsest graph are selected in some order. Each vertex is examined to determine if migrating it to an
adjacent domain will accomplish the primary objective (usually to reduce the edge-cut) while maintaining the balance
constraint. If this is so, the switch is made. Once a local minima in this search space is reached for the current graph,
the partition is projected to the next finer level graph and this refinement process begins again.

2 Notations, Definitions, and Issues
LetG = (V;E) be an undirected graph ofV vertices andE edges andP be a set ofp processors. Letsi represent the
cost of moving vertexvi. We will refer tosi as thesizeof vertexi [10]. Letwi represent the weight (i.e., computational
work) of vertexvi andwe(v1; v2) equal the amount of communication required betweenv1 andv2. We denoteB(q)
as the set of vertices with partitionq. The weight of any partitionq can then be defined as:

W (q) =
X

vi�B(q)

wi

A vertex isclean if its current partition is its initial partition on the input graph. Otherwise it isdirty. A vertex
is abordervertex if one of its adjacent vertices is in another partition. If so, then all such partitions are the vertex’s
neighborpartitions. If a partition contains at least one vertex which has another partition as a neighbor partition,
then those two partitions are neighbor partitions to each other. In this paper, we refer to ak-way partition as being
composed ofk disjointeddomains.

As discussed in the introduction, the effectiveness of repartitioning algorithms quite often is determined by how
successful they are in load balancing the computations while minimizing the edge-cut as well as the cost associated
in redistributing the load in order to realize the new partitioning. Two metrics that are widely used [1, 10, 11] for
measuring this redistribution cost areTOTALV which measures the total volume of data moved among all processors,
andMAXV which measures maximum flow of data to or from any single processor. Specifically,TOTALV is defined
as the sum of the sizes of the vertices which change partitions as the result of partitioning or repartitioning. Thus, it is
the sum of the sizes of the dirty vertices.MAXV is defined as the maximum of the sums of the sizes of those vertices
which migrate into and out of any one partition as a result of partitioning or repartitioning. Note that by minimizing
TOTALV, we try to reduce the redistribution time by reducing the overall network contention and the total number
of elements that is moved, whereas by minimizingMAXV, we try to reduce the redistribution time by reducing the
maximum amount of data any processor needs to send and receive.

3 Repartitioning via Intelligent Remapping
Repartitioning algorithms can take advantage of a key fact: multilevel graph partitioning algorithms exist which are
able to consistently compute high quality partitions [3, 6, 7, 12]. Thus, the edge-cut results obtained by these schemes
are extremely difficult to beat.

Once a new partition is computed, it is useful to map the new sub-domains to the processors such that the redistri-
bution cost is minimized. In theory, the number of new sub-domains can be an integer multiplef of the number of
processors. Each processor is then assignedf unique sub-domains. The rationale for allowing multiple sub-domains
per processor is that data mapping at a finer granularity reduces the volume of data movement at the cost of a slightly
larger partitioning time. The first step toward processor reassignment is to compute a similarity measure that indicates
how the vertex sizes of the new sub-domains are distributed over thep processors. It is straightforward to represent
this measure as a matrixS, where entrySij is the sum of the sizes of all the graph vertices in new partitionj that
already reside on processori. A similarity matrix forp = 4 andf = 2 is shown in Figure 1. Only the non-zero entries
are shown.

The goal of the processor reassignment phase is to find a mapping between the new partitions and the processors
such that the data redistribution cost is minimized. Both the optimal and a heuristic greedy algorithm have been im-
plemented for solving the processor reassignment problem usingTOTALV [8]. The optimal solution can be obtained
from the corresponding maximally-weighted bipartite graph. Applying the heuristic procedure to the similarity matrix
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Figure 1: A similarity matrix after processor reassignment using the heuristic algorithm and the TOTALV metric.
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Figure 2: Repartitioning via Intelligent Remapping

in Fig. 1 generates the processor assignment shown in the bottom row. It was proved in [8] that a processor assignment
obtained using the heuristic algorithm can never result in a data movement cost that is twice that of the optimal assign-
ment. MAXV, on the other hand, considers data redistribution in terms of solving a load imbalance problem, where
it is more important to minimize the workload of the most heavily-weighted processor than to minimize the sum of
all the loads. The optimal algorithm for solving the assignment problem usingMAXV has also been implemented [8].
The optimal solution forMAXV can be obtained by considering processor reassignment as a bottleneck maximum
cardinality matching problem.

Fig. 2 shows a partition remapping example. If we assume the weight of each vertex to be one, the graph in Fig. 2(a)
is imbalanced because domain 1 has seven vertices while domain 2 has two and domain 3 has three. In Fig. 2(b), the
graph has been partitioned again from scratch. Since, the new partition was computed without regard for the original
partition, a large amount of vertex migration is required here. In this case, every vertex must swap domains. However,
by remapping the newly computed partition with respect to the original partition-to-processor assignment, the amount
of vertex migration can be substantially reduced. In Fig. 2(c), this has been done. The number of vertices which are
required to swap domains has now dropped from 12 (all of them) to five. Notice that since remapping only changes the
labels of the domains and not the partition itself, the edge-cut is not affected. Thus, intelligent remapping can reduce
the amount of data required to balance the graph while maintaining the edge-cut of the newly computed partition.
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3.1 Parallel Repartitioning via Intelligent Remapping

Efficient parallel graph partitioners exist [7]. Furthermore, the remapping phase can be performed serially on a single
processor, since the complexity of remapping is dominated by a sorting routine on the number of processors. Therefore,
parallelizing intelligent remapping schemes is straightforward. Each processor can simultaneously compute one row
of the matrixS, based on the mapping between its current sub-domain and the new partitioning. This information
is then gathered by a single processor that assembles the complete similarity matrix, computes the new partition-to-
processor mapping, and scatters the solution back to the processors. These gather and scatter operations require a
negligible amount of time since only one row ofS needs to be communicated to the host processor.

4 Multilevel Diffusion Algorithms
Several serial multilevel diffusion algorithms are described in [10, 11]. These algorithms have three phases: a coars-
ening phase, a multilevel diffusion phase, and a multilevel refinement phase. In the coarsening phase, only pairs of
nodes that belong to the same partition are considered for merging. Hence, the initial partition of the coarsest level
graph is identical to the input partition of the graph that is being repartitioned, and thus does not need to be computed.
Different algorithms implement these steps somewhat differently. In this paper, we will use two of the multilevel
diffusion schemes described in [10]. In the multilevel diffusion phase, balance is sought by means of eitherundirected
or directeddiffusion. In the case of undirected diffusion, the border vertices are visited in a random order. If a vertex
belongs to an overweight domain (i.e., a domain whose weight is higher than the average weight), then it is moved to
an adjacent domain with lower weight. If there are more than one adjacent domain satisfying this condition, the one
that leads to the smaller edge-cut is selected. If a vertex belongs to a domain with average weight, then it is moved to a
domain that leads to a reduction in the edge-cut as long as it does not make the destination domain overweight. Again,
if there are more than one domains satisfying this condition, the one that leads to the smaller edge-cut is selected. If a
vertex belongs to an under-weight domain, it is not moved. Note that a vertex belonging to an overweight domain can
move even if this migration leads to an increase in the edge-cut. This process is repeated for a small number of steps
or until either balance is obtained or no progress is made in balancing. Note that in this scheme, diffusion is performed
using only local information.

In the case of directed diffusion, a global picture is used to guide the vertex migration. This global picture is
computed by the 2-norm minimization solution described in [4]. The result of this computation is a transfer matrix
that indicates how much weight needs to be transfered between neighboring domains. Using this transfer matrix, the
directed diffusion scheme works as follows. Again, the border vertices are visited in a random order. If a vertex has a
neighbor domain which according to the transfer matrix needs work, then the vertex can be migrated to the neighbor
domain. If a vertex is a neighbor of more than one such domain, it is migrated to the domain that will produce the
highest gain in edge-cut. The vertex is migrated even if the gain in edge-cut is negative. After a vertex is migrated,
the transfer matrix is updated to reflect the vertex migration (i.e., the weight of the vertex that was moved is subtracted
from the appropriate entry of the transfer matrix). After each border vertex is visited exactly once, the process repeats
until either balance is obtained or no progress is made in balancing.

In either of these schemes that are used during the multilevel diffusion phase, it may not be possible to balance the
graph at the coarsest graph level. That is, there may not be sufficiently fine vertices on the coarsest graph to allow for
total balancing. If this is the case, the graph needs to be uncoarsened one level in order to increase the number of finer
vertices. The process described above is then begun on the next coarsest graph.

After the graph is balanced, multilevel diffusion ends and multilevel refinement begins on the current graph. Here,
the emphasis is on improving the edge-cut. The border vertices are again visited randomly and are checked to see if
they can be migrated to another domain so that

1. the edge-cut and graph balance are maintained, and the selected domain is the vertex’s initial domain from the
input graph, or

2. the edge-cut is decreased while the graph balance is maintained, or

3. the edge-cut is maintained and the graph balance is improved.

If so, the vertex is migrated. These three conditions make up therefinement phase vertex migration criteria. Criterion 1
allows vertices to migrate to their initial domains (as long as the migration does not increase the edge-cut and worsen
the load balance), and therefore, to lowerTOTALV and possiblyMAXV [10].
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4.1 Parallel Multilevel Diffusion Algorithms

Parallel versions of multilevel diffusion algorithms have been described in [9, 11]. Here, vertices are initially assumed
to be distributed acrossp processors. This division of vertices corresponds to the original partition of a static partitioner
and is assumed to be of good quality (i.e., low edge-cut). However, the sums of the vertex weights of the vertices
resident on each processor are assumed to be variant. Thus, the original partition is not balanced and so there is a need
for repartitioning.

Parallel multilevel repartitioning algorithms typically begin with a coarsening phase in which a sequenceGi =
(Vi; Ei) for i = 0; 1; :::;m, of successively coarser graphs is constructed. GraphGi+1 is constructed fromGi by
first computing a matching of vertices ofGi and then collapsing together the matched vertices. The matchings com-
puted are restricted to vertices residing on the same processors. By adhering to this restriction, coarsening is almost
embarrassingly parallel.

The parallel formulation of the multilevel diffusion phase described in [10] depends on whether directed or undi-
rected diffusion is being utilized. In the directed case, diffusion is performed on the coarsest graph serially. Since
the coarse graph is very small (its size is proportional to the number of processors), this serial computation does not
significantly affect the overall performance and scalability of the parallel multilevel directed diffusion algorithm. Fur-
thermore, the additional processors are utilized to obtain a higher-quality partition as follows. The graph is broadcast to
all processors. Each processor then simultaneously balances the coarsest graph using the directed diffusion algorithm
described in Section 4. Since the diffusion scheme is inherently random, each processor computes a potentially unique
partition. The best partition is selected. The selection criteria are either; (i) lowest edge-cut, (ii) lowestTOTALV, (iii)
lowestMAXV, or (iv) best balance. In [10], the partition that has the lowest edge-cut is selected. In some cases, the
coarsest graph may be too coarse to allow for complete balancing. For this reason, the parallel undirected diffusion
algorithm (described in the next paragraph) is then utilized to correct any minor imbalances.

The parallel formulation of the undirected diffusion algorithm described in [9] is modeled after coarse-grained par-
allel multilevel refinement algorithm [7]. Each iteration of the parallel multilevel refinement algorithm consists of two
sub-phases. During the first sub-phase, vertices are migrated only from lower- to higher-numbered domains. During
the second sub-phase, vertices are migrated from higher- to lower-numbered domains. In this way, unexpected edge-
cut increases caused by the simultaneous migration of neighboring vertices is avoided. Furthermore, these schemes
avoid any bias towards the lower- or higher-numbered domains, by using a random partition ordering at each step.
In each sub-phase, vertices are visited and selected for migration according to the criteria for undirected diffusion
described earlier.

The parallel formulation of multilevel refinement algorithms are similar to that for undirected diffusion with the
exception that vertices are moved according to therefinement phase vertex migration criteriadescribed in [9].

5 Experimental Results
We tested our parallel repartitioning algorithms on a Cray T3E-1200 with 128 processors. Each processor on the
T3E-1200 is a 600 Mhz Dec Alpha (EV5). The processors are interconnected via a three dimensional torus net-
work that has a peak unidirectional bandwidth of 450 bytes per second, and a small latency. We used Cray’s MPI
library for communication. Cray’s MPI achieves a peak bandwidth of 200 MBytes and an effective startup time of 30
microseconds.

We evaluated the performance of the parallel repartitioning algorithms described above on synthetically generated
adaptive meshes, derived from three medium to large size 3D finite element meshes, on 32, 64, and 128 processors.
The characteristics of the corresponding dual graphs of these meshes are described in Table 1. Our synthetically
generated problems simulate the process of mesh adaptation by changing the weight of the vertices and the edges of
the graph. The weight of some of the vertices was changed from one (prior to adaptation) to a number greater than
one (indicating the degree of adaptation). The weight of edges betweenadaptedvertices was also changed to reflect
the higher degree of connectivity in the adapted graph. For every edge(vi; vj), its weight was set to(min(wi; wj))

2=3

(wherewi is the weight of vertexvi). Note that this edge-weighting model tries to capture the face connectivity of 3D
finite element meshes. For each of these synthetically generated graphs, the parallel repartitioning algorithms are used
to compute a new partitioning such that the sum of the weight of the vertices assigned to each processor is the same.

For each of the three meshes and for each processor configuration, we generated two types of adaptive meshes,
TYPEA and TYPEB. Meshes ofTYPEA attempt to simulate the situation in which the mesh is adapted at various
regions throughout the mesh, whereas meshes ofTYPEB attempt to simulate the situation in which the adaptation
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Graph Name Number of Vertices Number of Edges
MRNGB 1017253 2015714
MRNGC 4039160 8016848
MRNGD 7833224 15291280

Table 1: The various graphs used in the experiments.

occurs in a small region of the mesh. For bothTYPEA and TYPEB meshes onp processors, we first computed
a p-way partitioning of the graph (using the parallelk-way graph partitioner implemented inPARMETIS), and then
redistributed the graph according to this partitioning. This became the initial partitioning that we used to adjust the
weight of the vertices to emulate the effect of adaptation.

For meshes ofTYPEA, the weights of the vertices were changed as follows. Each processor generated a random
numberr between zero and 100, then it randomly selectedr% of its vertices, and set their weight to�. The weight
of the remaining vertices was set to one. For meshes ofTYPEB, the weights of the vertices were changed as follows.
Each processor generated a random number between zero andp� 1, and then for the processors in whichr was less
than0:05p, the weight of all the vertices in these processors was set to�. The weight of the remaining vertices was set
to one. Note that the expected number of processors that will increase the weight of its vertices is 1.6, 3.2, and 6.4 for
32, 64, and 128 processors, respectively. For bothTYPEA andTYPEB problems, we let� take the values of 2, 5, 10,
20, 30, and 40. These synthetically generated graphs are then used as the input to the parallel repartitioning algorithms
described in Sections 3 and 4. In all of our experiments, a graph that has less than 5% load imbalance is assumed to
be well balanced. Also, in all of our experiments, the cost to migrate a vertex between processors is assumed to be
proportional to its weight.

The parallel implementations which we used for the experiments are all fromPARMETIS. That is, PARMETIS
implements the undirected diffusion algorithm described in Section 4.1 in the subroutine PARUAMETIS, the directed
diffusion algorithm in PARDAMETIS, and the intelligent greedy remapping algorithm in PARPAMETIS.

In order to compare the three schemes we graphically depicted the results in the sequence of graphs shown in
Figs. 3– 8. In particular, Fig. 3 compares the quality in terms of edge-cut andTOTALV produced by the two multilevel
diffusion schemes (PARUAMETIS and PARDAMETIS) relative to partitioning from scratch and then performing a
greedy remapping (PARPAMETIS) forTYPEA experiments in which� was set to 2, 5, and 10. For each experiment,
we computed the ratio of the edge-cut andTOTALV produced by the diffusion algorithms to that of PARPAMETIS
and plotted it using a bar chart.

Performance on Slightly to Moderately Adapted Graphs The experiments shown in Fig. 3 simulate a low
to moderate degree of adaption taking place globally throughout the adapted graph. Fig. 3 shows that the edge-
cuts obtained by the multilevel diffusion algorithms were, in general, 0% to 10% higher than those obtained by
PARPAMETIS. Furthermore, the degradation in edge-cut for the diffusion schemes tended to increase with�. Thus,
as the level of imbalance increased, PARPAMETIS did an increasingly better job than either PARUAMETIS or PAR-
DAMETIS in minimizing the edge-cut. TheTOTALV produced by both of the diffusion schemes is considerably less
than that obtained by PARPAMETIS. In general, diffusion resulted inTOTALV which is 15% to 30% that produced
by the intelligent remapping scheme. As the level of imbalance increased, the difference inTOTALV results tended
to decrease. Comparing PARUAMETIS with PARDAMETIS, the edge-cut andTOTALV results are generally very
similar (within 5%). However, PARUAMETIS tended to obtain slightly lowerTOTALV results than PARDAMETIS.

The experiments shown in Fig. 4 simulate a low degree of adaption taking place in localized areas of the adapted
graph. Fig. 4 shows that the edge-cuts obtained by the multilevel diffusion algorithms were, in general, 0% to 20%
higher than those obtained by PARPAMETIS. Again, the degradation in edge-cut for the diffusion schemes tended to
increase with�. TheTOTALV produced by both of the diffusion schemes is again considerably less than that obtained
by PARPAMETIS. Here, diffusion resulted inTOTALV which is 10% to 70% of that produced by PARPAMETIS.
Furthermore, as the level of imbalance increased, the difference inTOTALV results tended to decrease dramatically.
This indicates that as the level of localized imbalance increases, PARPAMETIS’s performance increasingly approaches
that of the diffusion algorithm with respect toTOTALV. Comparing PARUAMETIS with PARDAMETIS, the edge-cut
andTOTALV results are again similar (usually within 4-6%).

In summary, for this class of problems, the results indicate that multilevel diffusion can significantly reduce the
amount of total vertex migration required to realize the new partition while maintaining quality in terms of edge-cut
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which is comparable to that of intelligent remapping algorithms. These results indicate that the way to do repartitioning
for applications with low levels of adaption is to perform multilevel diffusion. However, after a number of diffusion
iterations, the quality of the partition may begin to deteriorate. Therefore, a new partition should be computed (and
remapped) in order to restore a high-quality starting point for further diffusion iterations. Thus, the edge-cut and the
amount of data migration overhead are both kept low.

Performance on Highly Adapted Graphs The experiments shown in Fig. 5 simulate a high degree of adaption
taking place globally throughout the adapted graph. Fig. 5 shows that the edge-cuts obtained by the multilevel diffu-
sion algorithms were, in general, 20% to 30% greater than those obtained by PARPAMETIS. Again, the degradation in
edge-cut for the diffusion schemes tended to increase with�. TheTOTALV produced by both of the diffusion schemes
is considerably less than that obtained by PARPAMETIS. Diffusion resulted inTOTALV which is 30% to 40% that
produced by the intelligent remapping scheme. Here however, the relativeTOTALV results remain constant (indepen-
dent of�) between the diffusion algorithms and PARPAMETIS. Comparing PARUAMETIS with PARDAMETIS, we
again see only a slight difference among the schemes.

The experiments shown in Fig. 6 simulate a high degree of adaption taking place in localized areas of the adapted
graph. Fig. 6 shows that the edge-cuts obtained by the multilevel diffusion algorithms were, in general, 20% to 30%
greater than those obtained by PARPAMETIS. Notice that for three of the experiments, the edge-cuts obtained by
the diffusion algorithms were 58% to 98% higher than those obtained by PARPAMETIS. This is because in these
experiments, the diffusion algorithms failed to balance the graphs to within 5%. Because of this, multilevel refinement
never began, and so the edge-cut quality suffered. Fig. 6 also shows that theTOTALV produced by PARPAMETIS
is generally similar or lower than that produced by the diffusion algorithms. This is especially true of the highly
imbalanced problems. Note, these results indicate that for this class of problems, PARPAMETIS is more effective in
reducing both the edge-cut and theTOTALV than multilevel diffusion algorithms.

In summary, for these classes of problems, the results indicate that multilevel diffusion can reduce the amount of
total vertex migration required to realize the new partition while maintaining quality in terms of edge-cut only for
graphs in which imbalances occur globally throughout the graph. For localized adaptions of the mesh with high levels
of imbalance, partitioning from scratch and remapping the newly computed partition produces both edge-cut and
TOTALV results which are similar or lower than those obtained by diffusion. For this class of problems, the adapted
graph should be partitioned from scratch after each iteration as diffusion will not help in lowering data migration.

MAXV Results Fig. 7 gives the relativeMAXV performance of the three schemes forTYPEA experiments. Re-
sults show that, in general, the diffusion schemes produced much lowerMAXV results than PARPAMETIS. Specifi-
cally, theMAXV results obtained by the multilevel diffusion algorithms were about 20% to 70% of those obtained by
PARPAMETIS.

Fig. 8 gives the relativeMAXV performance of the three schemes forTYPEB experiments and shows that the
diffusion schemes again produced lowerMAXV results, in general, than PARPAMETIS. However, here there was a
convergence point as� increased in which all three algorithms produced generally similarMAXV results. This is
because theMAXV of these problems is dominated by the amount of vertex weight that needs to move out of the few
overbalanced domains. This migration is required in order to balance the graph, and so becomes the lower bound for
MAXV.

Run Time Results Table 2 gives some sample data points with respect to the execution times of the various
algorithms. All of these results are from the largest graph, MRNGD. Table 2 shows that the run times of all of the
schemes are quite fast. Also, the run times are very similar among the schemes. Notice, however, that the diffusion
algorithms tend to take longer for theTYPEB problems than they do forTYPEA problems, while PARPAMETIS
times are more consistent. This is because localized imbalances cause diffusion to propagate further on average than
global imbalances. Thus, diffusion algorithms will require more iterations of diffusion in order to become balanced
for TYPEB problems than forTYPEA problems. Hence, the run times are higher. Computing a new partition from
scratch avoids this problems. Thus, the PARPAMETIS times are not affected by the localized imbalances.

6 Conclusion and Related Work
In this paper, we have shown that multilevel diffusion algorithms are generally able to produce significantly lower
TOTALV and MAXV results for adaptive graphs in which either localized or non-localized imbalances are low in
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Figure 5: Quality in terms of edge-cut and TOTALV of the partitionings produced by the multilevel directed and undirected diffusion
algorithms relative to partitioning from scratch followed by intelligent remapping for high imbalance TYPEA problems. For each
graph, the ratio of the edge-cut and TOTALV of the multilevel diffusion algorithms to that of multilevel k-way partitioning and
subsequent greedy remapping is plotted for 32-, 64-, and 128-way partitions on 32, 64, and 128 processors, respectively. Bars
under the baseline indicate that the multilevel diffusion algorithms perform better than the remapping algorithm.
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Figure 6: Quality in terms of edge-cut and TOTALV of the partitionings produced by the multilevel directed and undirected diffusion
algorithms relative to partitioning from scratch followed by intelligent remapping for high imbalance TYPEB problems. For each
graph, the ratio of the edge-cut and TOTALV of the multilevel diffusion algorithms to that of multilevel k-way partitioning and
subsequent greedy remapping is plotted for 32-, 64-, and 128-way partitions on 32, 64, and 128 processors, respectively. Bars
under the baseline indicate that the multilevel diffusion algorithms perform better than the remapping algorithm.
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Figure 7: Quality in terms of MAXV of the partitionings produced by the multilevel directed and undirected diffusion algorithms
relative to partitioning from scratch followed by intelligent remapping for TYPEA problems. For each graph, the ratio of the MAXV
produced by the multilevel diffusion algorithms to that of multilevel k-way partitioning and subsequent greedy remapping is plotted
for 32-, 64-, and 128-way partitions on 32, 64, and 128 processors, respectively. Bars under the baseline indicate that the multilevel
diffusion algorithms perform better than the remapping algorithm.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

   
   

  a2 a5 a1
0

a2
0

a3
0

a4
0 a2 a5 a1

0
a2

0
a3

0
a4

0 a2 a5 a1
0

a2
0

a3
0

a4
0 a2 a5 a1

0
a2

0
a3

0
a4

0 a2 a5 a1
0

a2
0

a3
0

a4
0 a2 a5 a1

0
a2

0
a3

0
a4

0 a2 a5 a1
0

a2
0

a3
0

a4
0 a2 a5 a1

0
a2

0
a3

0
a4

0 a2 a5 a1
0

a2
0

a3
0

a4
0

MRNGB MRNGC MRNGD

32 Processors

MRNGB MRNGC MRNGD

64 Processors

MRNGB MRNGC MRNGD

128 Processors

PARUAMETIS MaxV PARDAMETIS MaxV PARPAMETIS (baseline)

Figure 8: Quality in terms of MAXV of the partitionings produced by the multilevel directed and undirected diffusion algorithms
relative to partitioning from scratch followed by intelligent remapping for TYPEB problems. For each graph, the ratio of the MAXV
produced by the multilevel diffusion algorithms to that of multilevel k-way partitioning and subsequent greedy remapping is plotted
for 32-, 64-, and 128-way partitions on 32, 64, and 128 processors, respectively. Bars under the baseline indicate that the multilevel
diffusion algorithms perform better than the remapping algorithm.
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Problem Partition � PARUAMETIS PARDAMETIS PARPAMETIS
TYPEA 32-way 5 5.469 5.529 5.134
TYPEA 32-way 30 5.555 5.551 5.198
TYPEA 64-way 5 2.834 2.859 2.725
TYPEA 64-way 30 2.816 2.870 2.799
TYPEA 128-way 5 1.546 1.602 1.791
TYPEA 128-way 30 1.581 1.661 1.846
TYPEB 32-way 5 5.568 5.488 5.079
TYPEB 32-way 30 5.470 5.488 5.047
TYPEB 64-way 5 2.860 2.880 2.743
TYPEB 64-way 30 2.930 3.029 2.758
TYPEB 128-way 5 1.563 1.641 1.764
TYPEB 128-way 30 1.895 2.059 1.817

Table 2: The run times of selected experiments.

magnitude as well as for graphs in which high magnitude imbalances occur globally throughout the grid. This is
because the optimal solution for these problems is relatively near to the initial partition in the search space. Hence,
diffusion, which attempts to minimize the difference between the original partition and the output partition, is a good
strategy here. For these classes of problems, diffusive repartitioning should be applied a number of times, in order
to keep data migration overhead low, followed by a single iteration of partitioning from scratch and remapping the
resulting partition. This will allow edge-cut results to remain low, while minimizing the data migration overhead.

For the class of problems in which a large amount of imbalance occurs in localized areas of the graph, partitioning
from scratch and remapping the resulting partition will result in very low edge-cuts andTOTALV andMAXV results
which are similar to those obtained by multilevel diffusive schemes. This is because the optimal solution for these
problems is substantially removed from the initial partition in the search space. Hence, partitioning from scratch and
intelligent remapping should be followed in favor of multilevel diffusion for such cases.

References
[1] R. Biswas and L. Oliker. Experiments with repartitioning and load balancing adaptive meshes. Technical Report NAS-97-021, NASA Ames

Research Center, Moffett Field, CA, 1997.

[2] R. Biswas and R. C. Strawn. A new procedure for dynamic adaption of three-dimensional unstructured grids.Applied Numerical Mathematics,
13:437–452, 1994.

[3] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. Technical Report SAND93-1301, Sandia National
Laboratories, 1993.

[4] Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm. Technical Report DL-P-95-011, Daresbury Laboratory, Warrington,
UK, 1995.

[5] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. Technical Report TR 95-035, Department
of Computer Science, University of Minnesota, 1995. Also available on WWW at URL http://www.cs.umn.edu/˜karypis. A short version
appears in Intl. Conf. on Parallel Processing 1995.

[6] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for irregular graphs. Technical Report TR 95-064, Department of Computer
Science, University of Minnesota, 1995. Also available on WWW at URL http://www.cs.umn.edu/˜karypis.

[7] George Karypis and Vipin Kumar. A coarse-grain parallel multilevelk-way partitioning algorithm. InProceedings of the eighth SIAM
conference on Parallel Processing for Scientific Computing, 1997.

[8] L. Oliker and R. Biswas. Plum: Parallel load balancing for adaptive unstructured meshes. Technical Report NAS-97-020, NASA Ames
Research Center, Moffett Field, CA, 1997.

[9] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel multilevel diffusion algorithms for repartitioning of adaptive meshes. Technical
Report TR 97-014, University of Minnesota, Department of Computer Science, 1997. http://www.cs.umn.edu/˜karypis.

[10] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes for repartitioning of adaptive meshes.Journal of Parallel
and Distributed Computing, 47(2):109–124, Dec 15, 1997. http://www.cs.umn.edu/˜karypis.

[11] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for adaptive unstructured meshes.Journal of Parallel and
Distributed Computing, 47(2):102–108, Dec 1997.

[12] C. Walshaw, M. Cross, S. Johnson, and M. G. Everett. Jostle: Partitioning of unstructured meshes for massively parallel machines.Proc.
Parallel CFD’94, Kyoto, 1994.

12


