Multilevel Diffusion Schemes for Repartitioning of Adaptive Meshes *

Kirk Schloegel, George Karypis, Vipin Kumar
University of Minnesota, Department of Computer Science
Technical Report: 97-013

( kirk, karypis, kumar ) @ cs.umn.edu

June 19, 1997

Abstract

For a large class of irregular grid applications, the structure of the mesh changes from one phase
of the computation to the next. Eventually, as the graph evolves, the adapted mesh has to be repar-
titioned to ensure good load balance. If this new graph is partitioned from scratch, it will lead to an
excessive migration of data among processors. In this paper, we present two new schemes for computing
repartitionings of adaptively refined meshes. These schemes perform diffusion of vertices in a multilevel
framework and minimize vertex movement without significantly compromising the edge-cut. We present
heuristics to control the tradeoff between edge-cut and vertex migration costs. We also show that mul-
tilevel diffusion produces results with improved edge-cuts over single-level diffusion, is potentially much
faster than single-level diffusion in a parallel context, and is better able to make use of heuristics to
control the trade-off between edge-cut and vertex migration costs than single-level diffusion.

1 Introduction

Mesh partitioning is an important problem which has applications in many areas, including scientific comput-
ing. In irregular mesh applications, the amount of computation associated with a grid point is represented by
the weight of its associated vertex. The amount of interaction required between two grid points is represented
by the weight of the edge between the associated vertices. Efficient parallel execution of these irregular grid
applications requires the partitioning of the associated graph into p parts with the following two constraints:
(i) Each partition has an equal amount of total vertex weight; (ii) The total number of edges cut by the
partitions (thereafter referred to as edge-cut) is minimized. Since the weight of any given edge represents
the amount of communication required between nodes, minimizing the number of edges cut by the partition
tends to minimize the overall amount of communication required by the computation. This problem has
been well defined and discussed in previous work [6, 10].

For a large class of irregular grid applications, the computational structure of the problem changes in
an incremental fashion from one phase of the computation to another. For example, in adaptive meshes
[1], areas of the original graph are selectively coarsened or refined in order to accurately model the dynamic
computation. This causes the weights of the vertices and the edges to change. Eventually, as the graph
evolves, it becomes necessary to correct the partition in accordance with the structural changes in the com-
putation and to migrate a certain amount of computation between processors. Thus, we need a partitioning
or repartitioning algorithm to redistribute the adapted graph. This algorithm should satisfy the following
constraints.
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1. It robustly balances the graph. Failure to balance the graph will lead to load imbalance, which
will result in higher parallel run time. In order to make the repartitioning algorithm general it must
be able to balance graphs from a wide variety of application domains.

2. It minimizes edge-cut. The redistributed graph should have a small edge-cut to minimize commu-
nication overhead in the follow on computation.

3. It minimizes vertex migration time. Once the mesh is repartitioned, and before the grid compu-
tation can begin, data associated with the migrated vertices also needs to be moved. In many adaptive
computations, the data associated with each vertex is very large. The time for movement of the data
can dominate overall run time, especially if the mesh is adapted frequently.

4. Tt is fast. The computational cost of repartitioning should be inexpensive since it is done frequently.
Also, since the problem studied in this paper is relevant only in the parallel context, the repartitioning
algorithm should be parallelizable. Performing the repartitioning on a serial processor can become a
very serious bottleneck.

If the adapted graph is partitioned from scratch using a state-of-the-art multilevel graph partitioner
such as MFIIS [11], then it will reasonably optimize criterion 1 and 2. Since a highly parallel formulation of
MEFTIS exist [11], criterion 4 can also be met to a large extent. Partitioning from scratch will, however, result
in high vertex migration, as the partitioning does not take the initial location of the vertices into account.
A partitioning method that incrementally constructs a new partition as simply a modification of the input
partition (e.g. by diffusion [16]) can potentially move a much smaller number of vertices. Such a method can
also be potentially faster than partitioning the graph from scratch.

Repartitioning schemes that incrementally modify an existing partition have been quite successful on
graphs that are small perturbations of the original graphs [15, 16]. For these graphs, such a scheme inherits
a good (i.e. low edge-cut), but imbalanced starting point in the initial partition. It then attempts to fix the
imbalance of this partition while maintaining its good edge-cut. It does this by minimizing the amount of
disturbance (i.e. vertex migration) to the initial partition in the balancing phase. For only slightly imbalanced
graphs, the initial partition does not need to be disturbed very much, and so these algorithms are able
to maintain an edge-cut comparable with the initial partition. However, if the initial partition is highly
imbalanced, then many vertices need to move in order to balance the graph. Thus, even if the disturbance
to the initial partition is minimized, the final partition will necessarily end up quite a bit removed from
it. Hence, the balancing phase of such a method will increase the edge-cut considerably. Local refinement
[15, 16] can only provide a limited improvement in the edge-cut of the resulting partition.

One promising solution to the problem of edge-cut degradation as the degree of imbalance increases
in size and complexity is the use of a multilevel scheme that takes the initial location of the vertices to
consideration. The multilevel paradigm allows the local refinement to be performed at multiple coarsened
versions of the graph, which has been shown to be quite effective in reducing the edge-cut. In addition
to the refinement, the movement of graph vertices (to achieve load balance) can also be done at multiple
coarsened versions. This multilevel diffusion scheme can move large chunks of vertices at coarser levels, and
then achieve better load balance at finer levels. In a multilevel context, a global picture of the graph [8] can
be used to guide graph balancing while utilizing a multilevel view to guide refinement.

In this paper, we describe two multilevel diffusion repartitioning algorithms. The first constructs a
series of contracted graphs by collapsing pairs of vertices together. Once a sufficiently small graph has been
constructed, undirected diffusion is employed to balance the graph. Finally, the graph undergoes multilevel
refinement in an attempt to clean up the edge-cut disturbed by the balancing phase. The second multilevel
diffusion repartitioning algorithm is similar to the first. Here, however, the partition is balanced by means
of directed diffusion [8]. The graph contraction and multilevel refinement phases are otherwise identical
to the first algorithm. We further describe two heuristics which are able to control the tradeoff between
edge-cut and vertex migration costs when used in a multilevel context. Our results show that multilevel
diffusion produces results with improved edge-cuts over single-level diffusion and is better able to make use
of heuristics to control the trade-off between edge-cut and vertex migration costs than single-level diffusion.



Our results also show that directed diffusion tends to obtain better results than those obtained by undirected
diffusion. Multilevel diffusion can be easily parallelized analogous to multilevel graph partitioning [11] and
is potentially much faster than single-level diffusion in a parallel context.

The organization of this paper is as follows. Section 2 describes the notations and definitions which we use
throughout this paper. Section 3 reviews previous related work. Section 4 describes our multilevel diffusion
repartitioning algorithms in depth. Section 5 gives experimental results of our multilevel repartitioners.
Section 6 describes and gives experimental results for our heuristics to control vertex migration costs. Section
7 gives experimental results of repartitioning graphs from two application domains. Finally, Section 8 states
our conclusions.

2 Notations, Definitions, and Issues

In our discussion we include the concepts of both vertex weight and vertex size. Vertex weight is the compu-
tational cost of the work represented by the vertex while size is its migration cost. Thus, the repartitioner
should attempt to balance the graph with respect to vertex weight while minimizing vertex migration with
respect to vertex size. Depending on the representation and storage policy of the data, size and weight may
not necessarily be equal. One example of such a situation arises in [14]. A method of reducing the vertex
migration overhead used in [14] is to determine both the coarsening and the refinement of the adaptive
mesh prior to repartitioning, but to actually perform only mesh coarsening at this time. This causes the
graph to shrink prior to repartitioning. After repartitioning and subsequent data migration, the previously
determined refinement of the adaptive mesh can be performed. In this way the cost of migrating the newly
created vertices which have been selected to swap processors by the repartitioner need not be paid.

Let G = (V, E) be an undirected graph of V vertices and E edges and P be a set of p processors. Let s;
represent the cost of movement of vertex v;. We will refer to s; as the size of vertex i. Let w; represent the
weight (i.e. computational work) of vertex v; and w,(vy,v2) equal the amount of communication required
between v, and ve. A vertex’s density is equal to its weight divided by its size. We denote B(q) as the set
of vertices with partition ¢q. The weight of any partition ¢ can then be defined as

W(q) = Z Wi

vieB(q)

and so the average partition weight is
W = i1 W (i) )
p

A graph is imbalanced if it is partitioned and
Jq|W(g) >W xk

where k is a small constant. If k& were to equal 1, then all partitions would have to be exactly equal in weight
in order for the graph to be balanced. However, our results indicated that this is often too strict a definition.
For this paper, we set k equal to 1.03.

In an imbalanced graph, partitions, whose weights are greater than the average partition weight times &
are overbalanced. Likewise, those partitions whose weights are less than the average partition weight divided
by k are underbalanced. Otherwise, partitions are balanced. The graph is balanced when no partition is
overbalanced. We will use the term repartitioning when an existing partition is used as an input in an
algorithm in order to find a new partition on the same graph and the term partitioning when no input
partition is used.

A vertex is clean if its current partition is its initial partition on the input graph. Otherwise it is dirty.
A vertex is a border vertex if one of its adjacent vertices is in another partition. If so, then all such partitions
are the vertex’s neighbor partitions. If a partition contains at least one vertex which has another partition
as a neighbor partition, then those two partitions are neighbor partitions to each other.



TotalV is defined as the sum of the sizes of vertices which change partitions as the result of partitioning
or repartitioning. Thus, it is the sum of the sizes of the dirty vertices. MaxV is defined as the maximum of the
sums of the sizes of those vertices which migrate into or out of any one partition as a result of partitioning
or repartitioning.

3 Repartitioning Strategies: Review of Previous Work

A repartitioning of a dynamic graph can be computed by simply partitioning the new graph from scratch.
For example, a state-of-the-art multilevel partitioner such as MFIS [9] can provide a fast, scalable and
balanced partition with a low edge-cut. However, intuition tells us that since no concern is given for the
existing partition, most vertices are not likely to be assigned to their initial partitions with this method.
Thus, vertex migration will be unduly high. The advantage of this strategy is that while vertex migration
time is sacrificed, edge-cut is minimized. In fact, this strategy generally resulted in partitions with the
lowest edge-cuts of any of the algorithms which we tested. However, because vertex migration overhead is
very large with this method, simply partitioning the modified graph from scratch is unacceptable for many
applications.

The second strategy is to use the existing partition as input for a repartitioning algorithm and to attempt
to minimize the difference between the original partition and the output partition. This strategy has the
potential benefit of reducing TotalV by an order of magnitude or more over partitioning the modified graph
from scratch.

TotalV can be minimized if only a subset of vertices, the sum of whose weight equals the difference
between the average partition weight and the actual partition weight, are migrated out of any one partition.
This can be trivially accomplished by the following cut-and-paste repartioning method: Excess vertices in
an overbalanced partition are simply swapped into one or more underbalanced partitions in order to bring
these partitions up to balance. However, while this method will optimize TotalV, it will have an excessively
negative effect on the edge-cut compared with more sophisticated approaches.

Another method which reduces edge-cut degradation over cut-and-paste repartitioning, while increasing
TotalV only moderately, is analogous to diffusion from thermal dynamics. The concept is for vertices to
move from overbalanced partitions to underbalanced partitions and to eventually reach balance, just as in
the analogous case, uneven temperatures in a space cause the movement of heat towards equilibrium [8].

Figure 1 illustrates these methods. In Figure 1(a), the original graph is imbalanced because partition 3
has a partition weight of 6, while the average partition weight is only 4. Edge-cut for the original graph is
12. In Figure 1(b), the original partition was thrown out and the graph was then partitioned from scratch.
Edge-cut is 12 here. This is as good as the original partition. However, TotalV is 13. This is because
most vertices migrated, not in order to balance the graph, but simply because they were assigned to a new
partition which was different from their original partitions. In Figure 1(c), cut-and-paste repartitioning was
used. Here, TotalV is 2, since vertices d and ! migrate to partition 1. The edge-cut is now 17. Notice that
some of the vertices in partition 1 are now disconnected from the rest. This is a result of cut-and-paste
repartitioning and explains the edge-cut degradation. In Figure 1(d), a diffusion-type repartitioning was
conducted. Vertex movement increases to 4, but edge-cut drops to 14 in comparison with the cut-and-paste
method. Notice that partition 3 migrates vertex d to partition 2 and vertex p to partition 4. This, in turn,
causes the recipient partitions to become imbalanced. They then migrate vertices j and f to partition 1. At
this point the graph is balanced.

From these examples, we see an illustration of how cut-and-paste repartitioning minimizes TotalV while
completely ignoring edge-cut. Likewise, partitioning the graph again from scratch minimizes edge-cut while
resulting in extremely high TotalV results. Diffusion, however, attempts to keep TotalV low by ensuring
that the vertices which do not need to be migrated in order to balance the graph are reassigned to their
original partitions. It also attempts to keep edge-cut low by maintaining partition connectivity.

Undirected diffusion is diffusion which occurs through distributed actions employing only local views of
the graph. Thus, vertex migration decisions are made at every partition according to the relative difference



Figure 1(c): Cut-and-Paste Repartitioning Figure 1(d): Diffusion Repartitioning

Figure 1: Partitioning and Repartitioning Examples

in partition weights between each partition and all of its neighbor partitions. Undirected diffusion has the
advantage that it is highly distributed in nature. However, balancing occurs without the guidance of a global
view of the graph. This can increase the edge-cut, vertex migration costs, and run time of the algorithm.
The general context of load balancing has been studied in [2, 3, 19].

Directed diffusion is diffusion guided by a global view of the graph. It is accomplished by obtaining a
diffusion solution and applying it to the vertices of the imbalanced graph. The diffusion solution, A, is a
vector with p elements. An amount of vertex weight equal to A; — A, needs to be moved from partition ¢
to partition r for every partition r which is adjacent to partition ¢ in order for the graph to balance. A
negative value indicates vertex flow in the opposite direction [7, 8, 17].

Two methods of computing the diffusion solution involve minimization of the one-norm of the diffusion
solution and minimization of its two-norm. One-norm minimization is the minimization of the sum of the
elements of the diffusion solution vector. Two-norm minimization is a minimization of the sum of the squares
of the elements of the diffusion solution. Figure 2 shows two different diffusion based solutions for a graph in
which partition A and B are overbalanced and partitions E and F are underbalanced. Arrows indicate vertex
flow. The numbers next to the arrows indicates the magnitude of this flow. The solution in Figure 2(a)
minimizes the one-norm by assigning all of the vertex flow on the shortest route available. Thus, TotalV
is minimized. However, one-norm minimization does not guarantee the minimization of MaxV. This can be
seen if we focus on partition G of Figure 2(a). This partition receives all of the vertex flow from both
overbalanced partitions. The total vertex weight both into and out of partition G is 20. The lower bound for
MaxV here is 10. Thus, MaxV is twice the minimal necessary to balance the graph. Another disadvantage is
that, the communication channels are not used efficiently. Many are idle, while a few are overworked. This
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Figure 2(a) One-norm Minimization Figure 2(b) Two-norm Minimization

Figure 2: One- and Two-Norm Diffusion Examples

can potentially lead to contention when the vertices are actually moved.

The solution in Figure 2(b) minimizes the two-norm. Here the vertex flow is split among the available
channels. Hence, the channel-use is more efficient and MaxV is approximately minimized. The trade-off is
that TotalV will be higher in two-norm minimization.

Ou and Ranka developed a method which optimally minimizes the one-norm of the diffusion solution
using linear programming. They used this solution in a repartitioning algorithm, called the Incremental
Graph Partitioner (IGP), which calculates the solution vector, moves the necessary vertex weight, and then
refines the balanced graph in a order to reduce the edge-cut upset by the shifting vertices. They used this
algorithm to repartition a set of graphs and compared the results to the original partitioning which was done
by Recursive Spectral Bisection. Their results indicate that the repartitioned edge-cut was comparable to
the original edge-cut and that the IGP run time was dramatically lower than the run time of the original
partition [15].

Hu and Blake described a method which computes the diffusion solution while optimally minimizing the
two-norm. They proved that this solution can be found by solving the linear equation

LA=1b

where A is the diffusion solution, b is the vector containing the load of each partition minus the average
partition load, and L is a Laplacian matrix, defined as

-1, if ¢ # r, ¢ and r are neighbors,
(L)qr = deg(Q)a lf q=r,
0, otherwise.

Furthermore, they showed that when using the parallel conjugate gradient algorithm [5] to solve for A, the
algorithm converges in less than p iterations [8].

Walshaw, Cross, and Everett implemented, JOSTLE, a combined partitioner and directed diffusion
repartitioner based on an optimization of the Hu and Blake diffusion solver. The JOSTLE algorithm has
two distinct phases. The first is a balancing phase in which the diffusion solution guides vertex migration
in order to balance the graph. The second is a refinement phase in which a local view of the graph guides
vertex migration in order to decrease the edge-cut upset by the balancing phase [17].

Walshaw, Cross, and Everett developed JOSTLE-MD by changing the refinement phase of the original
JOSTLE repartitioner to a multilevel refinement phase [16]. A summary of their results is included in
Section 7.1. Unlike our algorithm, JOSTLE-MD employs a single-level diffusion scheme for balancing and
then performs multilevel refinement. It also does not include the concepts of vertex weight, size, or of MaxV.
Neither is it able to specifically minimize edge-cut, TotalV, or MaxV.
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4 Multilevel Graph Repartitioning

Multilevel graph repartitioning is essentially a modification of the k-way multilevel partitioning algorithm
[11]. Hence, we first review the k-way multilevel scheme for partitioning.

4.1 A Review of Multilevel Schemes for Graph Partitioning

The k-way multilevel graph partitioning algorithm [10] implemented in MELS ! has three phases, a coarsening
phase, a partitioning phase, and a refinement (or uncoarsening) phase. During the coarsening phase, a
sequence of smaller graphs are constructed from an input graph by collapsing vertices together. When enough
vertices have been collapsed together so that the coarsest graph is sufficiently small, a k-way partition is found
using one from among a variety of methods. Finally, the partition of the coarsest graph is projected back
to the original graph by refining it at each uncoarsening level. Since now every uncoarsening level consists
of a finer graph, each subsequent graph has more degrees of freedom than the previous one had. These
degrees of freedom can be used to decrease the edge-cut at each level. Figure 3 illustrates this paradigm.
In essence, using this multilevel approach accomplishes three things. First, it speeds up the computation
of an initial partition since this is computed on a small graph. Second, this initial partition is quite good
if the coarsening is done intelligently. Third, it allows multilevel refinement which improves the quality of
the initial partition. Thus, the MELS algorithm uses a global view of a graph to quickly find a good initial
partition and multilevel views of the graph to further improve this partition.

Refinement is done in MENS by a method based on the Kernighan-Lin refinement algorithm [4, 13].
Vertices are visited randomly. Each border vertex visited is checked to see if the migration of the vertex to
another partition will

1. decrease the edge-cut while maintaining the graph balance, or

I Throughout this paper, we will refer to the k-way multilevel graph partitioning algorithm implemented in MES as simply
MEIS.



2. maintain the edge-cut and improve graph balance.

If so, the vertex is migrated. This process is repeated until it converges [10]. We define these two conditions
as the vertex migration criteria.

4.2 Multilevel Diffusion Repartitioning Algorithms

A multilevel undirected diffusion repartitioning algorithm (MLD) as a modification of the multilevel k-way
partitioning algorithm implemented in MELS can be derived as follows. In the coarsening phase, only pairs
of nodes that belong to the same partition are considered for merging. Hence, the initial partition of the
coarsest level graph is identical to the input partition of the graph that is being repartitioned, and thus does
not need to be computed. This makes the coarsening phase completely parallelizable, as coarsening is local
to each processor.

The uncoarsening phase of MLD contains two subphases: multilevel diffusion and multilevel refinement.
In the multilevel diffusion phase, balance is sought on the coarsest graph in a process similar to multilevel
refinement. This is accomplished by forcing the migration of vertices out of overbalanced partitions. The
vertices are visited in a random order. Since this is done on the coarsest graph, the number of vertices is
small. Each border vertex is examined. If a vertex is in an overbalanced partition and is neighbors with a
non-overbalanced partition, then that vertex will migrate to the non-overbalanced partition. If the vertex is
neighbors with several non-overbalanced partitions, then it will migrate to the partition that produces the
greatest improvement in edge-cut. The vertex is migrated even if the gain is negative. After each border
vertex is visited exactly once, the process repeats until either balance is obtained or no balancing progress
is made.

Given this scheme, it may not be possible to balance the graph at the coarsest graph level. That is, there
may not be sufficiently fine vertices on the coarsest graph to allow for total balancing. If this is the case,
the graph needs to be uncoarsened one level in order to increase the number of finer vertices. The process
described above is then begun on the next coarsest graph. Our experiments have shown that the graph will
typically balance on one of the first three coarsest graphs.

After the graph is balanced, multilevel diffusion ends and multilevel refinement begins on the current
graph. Here, the emphasis is on improving the edge-cut. The vertices are visited randomly. Each border
vertex visited is checked to see if the migration of the vertex to another partition will

1. maintain the edge-cut, maintain the balance, and the selected partition is the vertex’s initial partition
from the input graph, or

2. decrease the edge-cut while maintaining the graph balance, or
3. maintain the edge-cut and improve graph balance.

If so, the vertex is migrated. These three conditions make up the refinement phase vertex migration criteria.
Criterion 1 allows vertices to migrate to their initial partitions (as long as the migration does not increase
the edge-cut and worsen the load balance), and therefore, to lower TotalV and possibly MaxV.

Our multilevel directed diffusion repartitioning algorithm (MLDD) is as follows. Coarsening is accom-
plished as described for MLD above. However, balance is sought by means of a global picture of the graph
(i.e. the diffusion solution) guiding vertex migration. That is, the border vertices are visited randomly. If a
vertex is neighbors with a partition which has a positive flow value according to the diffusion solution with
respect to the vertex’s current partition and this flow value is greater than 90% of the vertex’s weight, then
that vertex is migrated to the neighbor partition. If a vertex is neighbors with more than one such partition,
it is migrated to that partition which will produce the highest gain. The vertex is migrated even if this
gain is negative. When a vertex is migrated, the flow value obtained by the diffusion solution for the two
partitions is updated by decreasing it by the migrating vertex’s weight. After each border vertex is visited
exactly once, the process repeats until either balance is obtained or no balancing progress is made. Once
balance is obtained, multilevel refinement is begun as described in the MLD algorithm above.
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Figure 4: Multilevel Diffusion Repartitioning

In summary, as illustrated in Figure 4, our multilevel diffusion repartitioning algorithms are made up of
three phases, graph coarsening, multilevel diffusion, and multilevel refinement. The coarsening phase results
in a series of contracted graphs. The multilevel diffusion phase balances the graph using the very coarsest
graphs. The multilevel refinement phase seeks to improve the edge-cut disturbed by the balancing process.
Optionally, the multilevel diffusion can be guided by a diffusion solution. We will refer to our multilevel
undirected diffusion repartitioning algorithm as MLD and to our multilevel directed diffusion repartitioning
algorithm as MLDD. Single-level directed diffusion will be used to provide a comparison with our multilevel
diffusion schemes. We will refer to a version of our multilevel directed diffusion algorithm in which the graph
is not initially contracted as single-level directed diffusion or SLDD.

5 Experimental Results

The experiments in Sections 5 and 6 were performed using five different graphs arising in finite element
applications. They are enumerated and described in Table 1. MEIS was originally used on the input graphs
to obtain a 128-way partition. Then the weights of some randomly selected vertices were increased so as
to overbalance and underbalance certain partitions. Specifically, for one series of experiments four of the
128 partitions were overbalanced by 80%. This was accomplished by doubling the vertex weights of 80% of
the vertices in each of the four selected partitions. In the next series of experiments, four partitions were
overbalanced and four partitions were underbalanced in order to create source and sink partitions. Here,
partition weights were modified by multiplying the vertex weight of each vertex in a given partition by a
constant. All source partition vertex weights were multiplied by 19. All sink partition vertex weights were
multiplied by 1. All others were multiplied by 10. Finally, in two series of experiments, source and sink
partitions were created by multiplying the vertex weights of each vertex in a partition by a random number.
These random numbers were distributed in such a way as to produce an average vertex weight of 18 in source
partitions, 2 in sink partitions, and 10 in all other partitions.



| Table 1: Input Graphs

Graph Num of Verts | Num of Edges Description

AUTO 448,695 3,314,611 3D mesh of GM’s Saturn
m14b 214,765 1,679,018 3D mesh of submarine
MDUAL2 988,605 1,947,069 dual of a 3D mesh
TORSO 201,142 1,479,989 3D mesh of a human thorax
WAVE 156,317 1,059,331 3D mesh of a submarine

Figure 5 compares the results from single-level directed diffusion with two multilevel diffusion schemes.
All of the results are normalized against the results obtained by partitioning the imbalanced graph from
scratch using MELS.

Figure 5(a) shows the results of repartitioning using these three schemes on graphs which were overbal-
anced by 80% in four partitions. First we see that TotalV and MaxV for all three of these schemes are much
better compared with partitioning from scratch. This is not unexpected, since MELIS does not make use of
the information provided by an input partition. Thus, it is highly unlikely that vertices are reassigned to
their initial partitions. Figure 5(a) also shows that for this simple balancing problem, there is not much
difference between the results from MLD, MLDD, and SLDD. These results confirm our hypothesis that for
relatively simple balancing problems, SLDD is able to maintain a good edge-cut. It is only for more complex
imbalance problems that the SLDD algorithm begins to break down.

Figures 5(b), (c), and (d) illustrate this point. Figure 5(b) shows the results of repartitioning on graphs
with four source and four sink partitions. Here, the weight of every vertex in each partition was multiplied by
a constant. Figure 5(c) shows the results of repartitioning on graphs with four source and four sink partitions.
Here, however, the weight of every vertex in each partition was multiplied by a randomly generated number.
Figure 5(d) shows the results of repartitioning on graphs with eight source and eight sink partitions and
randomly distributed vertex weights. These results show that our multilevel directed diffusion algorithm is
effective in keeping the edge-cut degradation and TotalV down for arbitrarily complex balancing problems.
MLDD consistently results in lower edge-cuts and TotalV than SLDD and MLD in every experiment. The
edge-cuts of SLDD and MLD are generally similar. With respect to MaxV, the MLDD scheme did not fair as
well. In seven of the 20 results, the MLDD scheme resulted in MaxV results which were 10% to 50% higher
than the other repartitioners. However, these were still lower than the MaxV results from partitioning from
scratch.

The results indicate that the multilevel diffusion paradigm is very powerful. Both multilevel diffusion
algorithms (MLD and MLDD) are able to repartition each of the imbalanced graphs effectively. We see that
multilevel directed diffusion is more effective at keeping edge-cut and TotalV results down than multilevel
undirected diffusion. However, this difference is not as great as that obtained when we compared the results
(not shown in this paper) from single-level undirected diffusion to those of single-level directed diffusion.
Here, edge-cut, TotalV, MaxV, and the repartitioning algorithm run time were all higher virtually across the
board for single-level undirected diffusion compared to single-level directed diffusion. Thus, the multilevel
paradigm is so powerful that it can produce good results with even an undirected diffusion algorithm.

6 Heuristics

We showed from the previous results that our multilevel directed diffusion repartitioner can repartition
imbalanced graphs resulting in edge-cuts which are lower than those obtained with the single-level diffusion
algorithm and with far less data movement than results obtained from partitioning from scratch.

We found that it is also possible to trade edge-cut in order to lower both TotalV and MaxV. In those
applications in which vertex migration time dominates, TotalV and/or MaxV determines execution time.
Here we see that the single-level diffusion algorithm performed comparably or better than the multilevel
diffusion repartitioners. In order to improve these results we developed heuristics to lower TotalV and MaxV,

10
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Figure 5: Repartitioning Results

while sacrificing edge-cut only marginally.

6.1 A Heuristic to Reduce TotalV

As defined in Section 2, a vertex is dirty if it is currently in a partition different from its initial partition on
the input graph. TotalV then is the sum of the sizes of the dirty vertices. In order to reduce this sum we
developed a heuristic called the cleanness factor. During the multilevel diffusion phase, a certain amount of
vertices become dirty. This is unavoidable, as the graph must be balanced. These vertices can be migrated
further, however, without increasing TotalV. Hence, in the multilevel refinement phase, if only dirty vertices
are migrated, TotalV cannot increase further, and it may even decrease if dirty vertices find their way back
to their original partitions. However, it appears overly restrictive to completely eliminate the migration
of clean vertices, as it may result in higher edge-cuts. Nevertheless, it appears reasonable to restrict the
migration of clean vertices. This is done by means of the cleanness factor. During multilevel refinement,
only those clean vertices whose gain resulting from migrating partitions is greater than their size times the
cleanness factor are considered for migration. Thus, we limit the movement of larger clean vertices who
result in only small edge-cut gains. If the cleanness factor is infinity, the result is that only dirty vertices
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are considered for migration during multilevel refinement. If it is zero, then all vertices, clean and dirty, are
considered and may be migrated even if they do not reduce the edge-cut.

Figure 6 shows the results of repartitioning using three different values for the cleanness factor. These
experiments are performed on the same imbalance problems as described in Section 5. All of the results are
from the multilevel directed diffusion repartitioner with vertex cleanness and suppression (MLDD-CS). Each
experiment is conducted with an input suppression factor heuristic of .5. The suppression factor heuristic
is described in Section 6.2. Clean = .0001 indicates results from the multilevel diffusion repartitioner with
a cleanness factor of .0001. Thus, a clean vertex is migrated only if it produces a positive gain. In other
words, for Clean = .0001, item 3 of the refinement phase vertex migration criteria is not applicable. Likewise
Clean = .0 and Clean = 999999 indicate results from multilevel diffusion with cleanness factors of zero and
999999, respectively. Note that Clean = 999999 does not allow clean vertices to migrate. The results are
normalized against those obtained with the cleanness factor of zero.

In each of the results, TotalV decreases as the cleanness factor increases. This is as expected, as raising
the cleanness factor decreases the number of vertices allowed to migrate during multilevel refinement. We
also see a corresponding rise in the edge-cut as the cleanness factor increases. Thus, we have shown that it
is possible to lower TotalV by trading edge-cut.

This decrease in TotalV is able to affect MaxV in certain cases. Since, there is less total vertex migration,
it stands to reason that the maximum vertex migration into or out of any one partition might also drop.
However, this is not necessarily the case. In fact, MaxV could increase as the cleanness factor increases.
This would be the result when MaxV is dominated by the sum of the sizes of the incoming vertices into one
partition. Since dirty vertices are free to migrate regardless of the cleanness factor, there is nothing stopping
them (apart from balance constraints) from migrating into this partition. Doing so would, of course, increase
the sum of the sizes of the vertices migrated into the partition. This would, in turn, increase MaxV as MaxV
was equal to the prior sum.

6.2 A Heuristic to Reduce MaxV

MaxV is the max of the sum of the sizes of vertices into or out of any one partition. The max of the sum of the
sizes of vertices which migrate out of any one partition is lower bounded by the most overbalanced partition.
That is, a certain weight of vertices must migrate out of this partition in order to obtain balance. It is, of
course, upper bounded by the partition with the highest sum of vertex sizes. Our experiments have shown
that the outgoing component of MaxV is not usually a concern. Intuitively, this is because vertices tend to
migrate out of an overbalanced partition only until the partition is balanced. Furthermore, overbalanced
partitions generally have an ample supply of average to highly dense vertices. That is, they tend to have a
good supply of vertices whose weight divided by their size is relatively high. Choosing highly dense vertices
whenever possible balances the graph while keeping the cost of vertex migration down. Simply by selecting
vertices randomly for migration in overbalanced partitions, there is a good chance that mostly relatively
dense vertices will be migrated. Thus, the sum of the sizes of the outgoing vertices will be in the vicinity to
the lower bound.

On the other hand, the max of the sum of the sizes of vertices which migrate into any one partition
is potentially problematical. Overbalanced partitions tend to be full of average to highly dense vertices,
and so it is relatively easy to select a good (i.e. dense) vertex for migration. However, underbalanced
partitions must depend on neighbor partitions to migrate vertices into them. There is no guarantee that an
underbalanced partition’s neighbors will have a large supply of dense vertices to migrate. The worst case
scenario is when two underbalanced partitions are neighbors and only one of these partitions is neighbors
with an overbalanced partition. Figure 7 illustrates this point. Here partition A is overbalanced, partitions
B and C are underbalanced, and partitions D and E are balanced. The diffusion solution will call for
vertex migration as indicated by the arrows. Notice that partition B is supposed to migrate vertices into
partition C. However, partition B will initially be full of relatively low-density vertices since it is also an
underbalanced partition. Since these vertices are of low density, it will take a much greater number of them
to balance partition C' than it would have taken average or highly dense vertices. If this happens, partition
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Figure 6: Repartitioning with Cleanness

C will get an overabundance of inflowing, low-density vertices. These vertices will dominate MaxV. However,
if the migration of these low-density vertices could be suppressed, the result would be that only average
density vertices from partitions D and E would be able to migrate into partition C'. Thus, MaxV would be
reduced.

The underlying problem lies in the migration of low-density vertices. Partitions are balanced according
to vertex weights. However, vertex migration costs are paid in terms of vertex size. Therefore, migrating
vertices with relatively low weight-to-size ratios will tend to increase the vertex migration cost necessary to
balance the graph. In order to avoid this situation, we developed a heuristic called the suppression factor.

During multilevel diffusion only those vertices whose densities are greater than the average density of
all of the vertices on the graph multiplied by the suppression factor are considered for migration. Therefore,
if the suppression factor is zero, no vertex migration is suppressed. If the suppression factor is infinity, all
vertex migration is suppressed during multilevel diffusion. In this case it is, of course, impossible for the
graph to balance as no vertices are allowed to move. If the suppression factor is one, only vertices which
are above the average density are allowed to migrate during balancing. The cost here is that the higher the
amount of vertex suppression, the less free vertices are to migrate, and so the more difficult it is to balance
the graph. With higher suppression factors, the graph will tend to balance at higher and higher uncoarsening
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Figure 7: Blocking a Sink to Sink Transfer

levels. This is harmful to edge-cut, as multilevel refinement is the key to keeping edge-cut low. (Multilevel
refinement begins only after multilevel diffusion completes.) Thus, the more uncoarsening levels it takes to
balance the graph, the less levels are free for refinement of the edge-cut.

Figure 8 shows the results of repartitioning the imbalance problems (described above) using a range of
values for the suppression factor. We have set the cleanness factor at a constant .0001 for each of these
experiments. Here, the results are normalized against the results obtained from using a suppression factor of
zero (i.e. no suppression of vertices during balancing). We see that as the balancing problem becomes more
complex, using even small positive values for the suppression factor reduces MaxV by up to 55%. Meanwhile,
across the board, edge-cut is increased by only a few percent. As the suppression factor increases, MaxV
tends to decrease, while edge-cut decreases. Thus, the results show that by employing vertex suppression in
a multilevel context, it is possible to decrease MaxV by trading edge-cut.

An interesting side-effect occurs with respect to TotalV. Since suppression keeps low-density vertices
from migrating during multilevel diffusion, load balancing is accomplished through the migration of higher
density vertices. Thus, TotalV tends to drop.

Notice in Figure 8(a) that suppression has had no effect. This is because in this imbalance problem
vertex density is highly homogeneous. The densities range from one to two here. The average vertex density
for the graph is 1.03. Thus, in order to suppress the lowest density vertices (those of density one), the
suppression factor will have to be greater than .97. Since 97.5% of the vertices in these imbalance problems
are of density one, this suppression factor is much too large to allow the graph to be balanced. In fact,
we conducted experiments with a suppression factor as large as one and none of the graphs consistently
balanced.

Figures 8(b) through (d) show that as the homogeneity of vertex density decreases, vertex suppression
becomes more effective. However, by reexamining the results from Figure 5, we also see that as homogeneity
decreases, MaxV becomes more problematical for the multilevel schemes. Thus, while vertex suppression is
less effective on homogeneous graphs, it tends to be less necessary here, as well. That is, as the homogeneity
decreases, MaxV becomes more problematical, at the same time however, vertex suppression becomes more
effective. These results show that vertex suppression is a powerful heuristic for controlling MaxV.

6.3 The MLDD-CS Algorithm Results

Figure 9 shows the results of repartitioning with a cleanness factor of zero and a suppression factor of
.5. These were chosen as likely parameters for our multilevel diffusion algorithm since they create a nice
compromise between edge-cut, TotalV, and MaxV. Each of these results are normalized against the results
obtained from partitioning the imbalanced graphs from scratch using MELS. These are the same results as
those shown under MEILS in Figure 5. MLDD-CS indicates results obtained from our multilevel directed
diffusion algorithm with cleanness factor of zero and a suppression factor of .5. SLDD indicates results
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Figure 8: Repartitioning with Suppression

obtained from the single-level directed diffusion algorithm. SLDD-CS indicates results obtained from the
single-level directed diffusion algorithm with cleanness factor of zero and a suppression factor of .5. In
comparing these results, we see that the multilevel scheme is more effective in employing our heuristics than
the single-level diffusion algorithm. By comparing these results with those from Figure 5 in which cleanness
and suppression were not used, we can see that TotalV and MaxV are down considerably for multilevel
directed diffusion. The MaxV results for SLDD is down as well, but this improvement is smaller, while
edge-cut degradation is greater compared with MLDD-CS.

The results show that MLDD-CS employing vertex suppression is able to lower MaxV considerably while
increasing edge-cut only marginally. This is due to the fact that the effects of using such heuristics are
increased by the multilevel view of the graph which the multilevel paradigm provides.

6.4 Dynamic Suppression

As the previous results have shown, increasing the suppression factor tends to decrease MaxV. If the sup-
pression factor is set too low, no vertices will be suppressed, and so vertex suppression will be ineffective.
However, if this suppression factor is too high, the majority of vertices will be suppressed and the graph
will not be balanced. If the characteristics of mesh adaptation are known in advance, then the suppression
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Figure 9: Comparison of Repartitioning Schemes

factor can be set at an appropriate level. However, if this is not the case, then it may be difficult to set
the suppression factor at an appropriate level. Thus, we have implemented dynamic suppression. During
multilevel diffusion, after every vertex has been visited, the dynamic suppression algorithm checks to see if
at least 80% of vertices were suppressed. If this is the case, then the suppression factor is divided by 1.3
prior to the start of the next iteration. The suppression factor is then reset at each uncoarsening level. The
next Section shows the results of using MLDD with dynamic suppression on two application domains.

7 Repartioning of Application Graphs

We have conducted experiments on repartitioning application graphs from two domains. The first set is
taken from the DIME software package [18]. The application solves Laplace’s equation with Dirichelet
boundary conditions on a square, 2-dimensional mesh with a stylized ’S’ hole. The problem is solved by
Jacobi iteration, refined, and load-balanced [16]. The result is a domain with a small degree of change at
each successive stage in the mesh adaptation.
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The second set shows a series of application meshes with a high degree of adaptation at each stage.
These graphs are 3-dimensional mesh models of a rotating helicopter blade. As the blade spins, the mesh
must be adapted by coarsening the mesh in the area where the rotor has entered and refining it in the area
of the mesh where the rotor has passed through. These meshes were provided by Rupak Biswas of MRJ
Technology Solutions, NASA Ames Research Center, Moffett Field, CA.

For each of these application domains, the first of a series of x graphs, G1, G, G, ... , G, was originally
partitioned with MFIIS. The partition of graph GG acted as the input partition for graph G>. Repartitioning
this now imbalanced graph, G2, resulted in the experiment named First and the input partition for graph
G'3. Similarly, the repartition of graph G5 resulted in experiment Second, and so on. For the first application
domain below z is 10. Therefore, there are x — 1, or nine, repartitioning experiments. For the second domain
x is 7, so there are six repartitioning experiments.

7.1 Laplace’s Equation Solver

Table 2 shows a comparison between our single and multilevel directed diffusion repartitioning algorithm
and JOSTLE-D and JOSTLE-MD on the first application domain. Here, the edge-cuts and run times are
averaged over the nine experiments. Also, the TotalV results are first divided by the total number of vertices
in each graph and then averaged together to obtain TotalV%. JOSTLE-D is a single-level diffusion algorithm
described in [17]. JOSTLE-MD is a single-level diffusion algorithm with multilevel refinement described in
[16]. SLDD indicates results obtained from our single-level directed diffusion repartitioning algorithm with
cleanness and suppression factors set at zero. MLDD indicates results obtained from the MLDD algorithm.
MLDD-CS indicates results obtained from our multilevel directed diffusion repartitioning algorithm with
cleanness factor of .0001 and suppression factors of .25. MLDD-CdS indicates results from the MLDD-CS
algorithm using a cleanness factor of .0001 and a dynamic suppression factors of 1. MFIIS indicates results
from partitioning from scratch with MELRS. We have taken the results for JOSTLE-D and JOSTLE-MD
directly out of [16]. Note that although experiments in [16] were also done on the graphs obtained from the
DIME software package, the graphs used in our experiments are not identical to those used in [16]. However,
we attempted to reconstruct the graphs used in [16]. Our graphs are very similar in size and nature to those
used in [16]. We use nine graphs with sizes from 31,624 vertices and 46,986 edges to 281,706 vertices and
421,172 edges, while the graphs in [16] range from 23,787 vertices and 35,281 edges to 224,843 vertices and
336,024 edges. All of the results are obtained using a 64-way partition.

The results show that even though our graphs were about 25-30% larger than those repartitioned by
JOSTLE-D and JOSTLE-MD, our multilevel diffusion schemes produced edge-cuts within 3, 6, and 11%
of JOSTLE-MD while obtaining TotalV results 84, 63, and 37% those obtained by JOSTLE-D. All of the
multilevel schemes have comparable run times.

Table 2: MLDD Compared to JOSTLE |

Algorithm Edge-Cut | TotalV%
JOSTLE-D 2,598 3.76
JOSTLE-MD 2,410 8.82
SLDD 2,677 5.10
MLDD 2,463 3.16
MLDD-CS 2,553 2.38
MLDD-CdS 2,673 1.39
METIS 2,485 97.3

7.2 Helicopter Blade Application

Figure 10 shows the results obtained from repartitioning a series of rapidly changing adapted meshes de-
scribed above on a 64-way partition. The results are normalized against those in which MEIIS was used to
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Figure 10: Repartitioning of Helicopter Blade Application Graphs

partition the imbalanced graph from scratch. MLDD-dS indicates the results from the multilevel undirected
diffusion repartitioning algorithm using a dynamic suppression factor of .75. SLDD-dS indicates the results
from the single-level directed diffusion repartitioner with a dynamic suppression factor of .75.

We used the multilevel undirected diffusion algorithm because the multilevel directed diffusion algorithm
was unable to balance the graph. This was because the weights of the vertices were highly heterogeneous.
That is, they differed from each other by up to a factor of 1,000. Thus, vertices were often too coarse to be
able to be guided my the diffusion solution.

The results confirm that multilevel diffusion is very powerful. We see that the multilevel undirected
diffusion repartitioner outperforms the single-level scheme. It obtains lower edge-cut and TotalV results
across the board than the single-level scheme. It also obtains MaxV results lower than SLDD-dS in four out
of six cases.

With respect to partitioning from scratch, the multilevel scheme again reduces both TotalV and MaxV
while increasing edge-cut. Here, however, the TotalV and MaxV of MLD are only slightly improved over that
of partitioning from scratch. In fact, for some graphs MaxV of partitioning from scratch actually beats that
of repartitioning. This is due to the complexity of the imbalance problem, which necessitates migration of a
large number of vertices in order to balance the graph. For some of these graphs, so much vertex migration
is necessary that repartitioning brings little benefit here over partitioning from scratch.

8 Conclusions

Our results on a variety of synthetic and application meshes show that multilevel diffusion is a highly
robust scheme for repartitioning adaptive meshes. The resulting edge-cuts are generally close to those
resulting from partitioning from scratch with a state-of-the-art graph partitioner, while vertex movement is
quite reduced. Furthermore, parameterized heuristics allow for edge-cut, TotalV, or MaxV to be specifically
optimized depending on application requirements. Multilevel diffusion also produces significantly better
edge-cuts compared with single-level directed diffusion. Our experiments show that directed diffusion tends
to obtain results improved over those obtained by undirected diffusion.

The multi-level diffusion scheme and its variants discussed in this paper are at least as easy to parallelize
as the multilevel graph partitioner discussed in [11]. Recently, scalable parallel formulations of MFLS’s
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multilevel k-way graph partitioning have been developed [11, 12] that are able to significantly reduce the
amount of time required to partition large graphs. The multilevel diffusion algorithms described in this
paper can be effectively parallelized using similar techniques. In particular, the local coarsening phase of our
multilevel diffusion algorithms are highly parallel since each processor can independently compute successive
coarse graphs. The only communication required during this phase are a prefix sum followed by an exchange
of labels for the interface vertices in order to maintain consistent numbering. Note that since the graph
is already nicely partitioned among the processors, the number of interface vertices is small; hence, the
communication overhead of each coarsening step is very small. During the refinement phases groups of
vertices are moved among partitions in order to improve the balance as well as reduce the edge-cut. A
parallel formulation of this step can select these vertices using either independent sets discussed in [11], or
the odd-even scheme discussed in [12]. In either case, the communication overhead of each refinement step is
very small as it is proportional to the number of interface vertices of the original partitioning. Note also that
in the case of the directed diffusion schemes, the diffusion solution can be easily computed in parallel using a
Conjugate-Gradient iterative solver. However, it can also be done serially since the size of the system is only
p and the overall amount of time is very small. Our preliminary experiments with such parallel formulation
indicates that meshes with over eight million vertices can be repartitioned on 256-processor Cray T3D in
well under two seconds.

However, the results also show that for highly complex balancing problems, the benefits obtained from
repartitioning over partitioning from scratch are reduced. The helicopter blade experiments illustrated that
MaxV results obtained from multilevel diffusion might degrade to the point in which they approach or even
surpass those of partitioning from scratch for highly imbalanced graphs. In a bandwidth-rich system, MaxV
will tend to determine vertex movement time. Therefore, for certain application domains, it may well be
beneficial to partition from scratch in order to maintain low edge-cut while not giving up much in terms of
MaxV. Thus, for such applications, repartitioning may seldom be used in favor of partitioning from scratch.
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