Multilevel k-way Partitioning Scheme for Imegular Graphs*

George Karypis and Vipin Kumar
University of Minnesota, Department of Computer Science / Army HPC Research Center Minneapolis, MN 55455, Technical Report: 95-064

\{karypis, kumar\}@cs.umn.edu
Last updated on March 27, 1998 at 5:25pm

Abstract

In this paper we present and study a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, find a k-way partitioning of the smaller graph, and then uncoarsen and refine it to construct a k-way partitioning for the original graph. These algorithms compute a k-way partitioning of a graph $G=(V, E)$ in $O(|E|)$ time which is faster by a factor of $O(\log k)$ than previously proposed multilevel recursive bisection algorithms. A key contribution of our work is in finding a high quality and computationally inexpensive refinement algorithm that can improve upon an initial k-way partitioning. We also study the effectiveness of the overall scheme for a variety of coarsening schemes.

We present experimental results on a large number of graphs arising in various domains including finite element methods, linear programming, VLSI, and transportation. Our experiments show that this new scheme produces partitions that are of comparable or better quality than those produced by the multilevel bisection algorithm, and requires substantially smaller time. Graphs containing up to 450000 vertices and 3300000 edges, can be partitioned in 256 domains in less than 40 seconds on a workstation, such as SGI's Challenge. Compared with the widely used

[^0]multilevel spectral bisection algorithm, our new algorithm is usually two orders of magnitude faster, and produces partitions with substantially smaller edge-cut.

Keywords: Graph Partitioning, Multilevel Partitioning Methods, Spectral Partitioning Methods, KernighanLin Heuristic, Parallel Sparse Matrix Algorithms.

1 Introduction

The graph partitioning problem is to partition the vertices of a graph in p roughly equal partitions, such that the number of edges connecting vertices in different partitions is minimized. This problem finds applications in many areas including parallel scientific computing, task scheduling, and VLSI design. Some examples are domain decomposition for minimum communication mapping in the parallel execution of sparse linear system solvers, mapping of spatially related data items in large geographical information systems on disk to minimize disk I/O requests, and mapping of task graphs to parallel processors. The graph partitioning problem is NP-complete. However, many algorithms have been developed that find reasonably good partitionings [23, 22, $9,24,19,18,20,2,3,7,8,12,5,21,16,13]$.

The k-way partitioning problem is most frequently solved by recursive bisection. That is, we first obtain a 2 way partitioning of V, and then we recursively obtain a 2 -way partitioning of each resulting partition. After $\log k$ phases, graph G is partitioned into k partitions. Thus, the problem of performing a k-way partitioning is reduced to that of performing a sequence of bisections. Recently [2,12,16] multilevel recursive bisection (MLRB) algorithm has emerged as a highly effective method for computing a k-way partitioning of a graph. The basic structure of a multilevel bisection algorithm is very simple. The graph G is first coarsened down to a few hundred vertices, a bisection of this much smaller graph is computed, and then this partitioning is projected back towards the original graph (finer graph), by periodically refining the partitioning. Since the finer graph has more degrees of freedom, such refinements decrease the edge-cut. The experiments presented in [16] show that compared to the state-of-the-art implementation of the well known spectral bisection [1], MLRB produces partitionings that are significantly better and is an order of magnitude faster. The complexity of the MLRB for producing a k-way partitioning of a graph $G=(V, E)$, is $O(|E| \log k)$ [16].

The multilevel paradigm can also be used to construct a k-way partitioning of the graph directly as illustrated in Figure 1. The graph is coarsened successively as before. But the coarsest graph is now directly partitioned into k parts, and this k-partitioning is refined successively as the graph is uncoarsened back into the original graph. There are a number of advantages of computing the k-way partitioning directly (rather than computing it successively via recursive bisection). First, the entire graph now needs to be coarsened only once, reducing the complexity of this phase to $O(|E|)$ down from $O(|E| \log k)$. Second, it is well known that recursive bisection can do arbitrarily worse than k-way partitioning [27]. Thus, a method that obtains a k-way partitioning directly can potentially produce much better partitionings. Note that the direct computation of a good k-way partitioning is harder than the computation of a good bisection (although both problems are NP-hard) in general. This is precisely why k-way partitioning is most commonly computed via recursive bisection. But in the context of multilevel schemes, we only need a rough k way partitioning of the coarsest graph, as this can be potentially refined successively as the graph is uncoarsened. For example, a simple method for computing this initial partitioning in the multilevel context is simply to coarsen the graph down to k vertices. However in the refinement phase, we need to refine a k-way partitioning, which is considerably more complicated than refining a bisection. In fact, a direct generalization of the KL refinement algorithm to k-way partitioning used in [10] is substantially more expensive than performing a KL refinement of a bisection [17]. Even for 8 -way refinement, the run time is quite high for these schemes [11]. Computing k-way refinement for $k>8$ is prohibitively expensive.

In this paper we present a k-way partitioning algorithm. The run time of this k-way multilevel algorithm (MLkP) is linear to the number of edges i.e., $O(|E|)$. A key contribution of our work is a simple and yet powerful scheme for refining a k-way partitioning in the multilevel context. This scheme is substantially faster than the direct generalization [11] of the KL bisection refinement algorithm, but is equally effective in the multilevel context. Furthermore, this new k-way refinement algorithm is inherently parallel [14] (unlike the original KL refinement algorithm which is
known to be inherently sequential in nature [6]), making it possible to develop high-quality parallel graph partitioning algorithms.

We test our scheme on a large number of graphs arising in various domains including finite element methods, linear programming, VLSI, and transportation. Our experiments show that this new scheme produces partitionings that are of comparable or better quality than those produced by the state-of-the-art implementation of the MLRB algorithm [16], and requires substantially smaller time. Graphs containing up to 450000 vertices and 3300000 edges, can be partitioned in 256 partitions in less than 40 seconds on a workstation, such as SGI's Challenge. For many of these graphs, the process of graph partitioning takes even less time than the time to read the graph from the disk into memory. Compared with the widely used multilevel spectral bisection algorithm [23,22,12], our new algorithm is usually two orders of magnitude faster, and produces partitionings with substantially smaller edge-cut. The run time of our k-way partitioning algorithm is comparable to the run time of a small number (2-4) runs of geometric recursive bisection algorithms [9,24, 19, 18, 20]. Note that geometric algorithms are applicable only if coordinates of the vertices are available, and require tens of runs to produce cuts that are of similar quality to those produced by spectral bisection.

The remainder of the paper is organized as follows. Section 2 defines the graph partitioning problem and presents the basic concepts of multilevel k-way graph partitioning. Some of the material presented in this section on coarsening strategies is similar to that for multilevel recursive bisection [12, 16], but is included here to make this paper self contained. Section 3 presents an experimental evaluation of the various parameters of the multilevel graph partitioning algorithm and compares its performance with that of multilevel recursive bisection algorithm.

2 Graph Partitioning

The k-way graph partitioning problem is defined as follows: Given a graph $G=(V, E)$ with $|V|=n$, partition V into k subsets, $V_{1}, V_{2}, \ldots, V_{k}$ such that $V_{i} \cap V_{j}=\emptyset$ for $i \neq j,\left|V_{i}\right|=n / k$, and $\bigcup_{i} V_{i}=V$, and the number of edges of E whose incident vertices belong to different subsets is minimized. A k-way partitioning of V is commonly represented by a partitioning vector P of length n, such that for every vertex $v \in V, P[v]$ is an integer between 1 and k, indicating the partition to which vertex v belongs. Given a partitioning P, the number of edges whose incident vertices belong to different partitions is called the edge-cut of the partitioning.

The basic structure of a multilevel k-way partitioning algorithm is very simple. The graph $G=(V, E)$ is first coarsened down to a small number of vertices, a k-way partitioning of this much smaller graph is computed and then this partitioning is projected back towards the original graph (finer graph), by successively refining the partitioning at each intermediate level. This three stage processor of coarsening, initial partitioning, and refinement is graphically illustrated in Figure 1.

Next we describe each of these phases in more detail.

2.1 Coarsening Phase

During the coarsening phase, a sequence of smaller graphs $G_{i}=\left(V_{i}, E_{i}\right)$, is constructed from the original graph $G_{0}=\left(V_{0}, E_{0}\right)$ such that $\left|V_{i}\right|<\left|V_{i-1}\right|$. In most coarsening schemes, a set of vertices of G_{i} is combined to form a single vertex of the next level coarser graph G_{i+1}. Let V_{i}^{v} be the set of vertices of G_{i} combined to form vertex v of G_{i+1}. In order for a partitioning of a coarser graph to be good with respect to the original graph, the weight of vertex v is set equal to the sum of the weights of the vertices in V_{i}^{v}. Also, in order to preserve the connectivity information in the coarser graph, the edges of v are the union of the edges of the vertices in V_{i}^{v}. In the case where more than one vertex of V_{i}^{v} contain edges to the same vertex u, the weight of the edge of v is equal to the sum of the weights of these

Multilevel k-way partitioning

Figure 1: The various phases of the multilevel k-way partitioning algorithm. During the coarsening phase, the size of the graph is successively decreased; during the initial partitioning phase, a k-way partitioning of the smaller graph is computed (a 6-way partitioning in this example); and during the uncoarsening phase, the partitioning is successively refined as it is projected to the larger graphs.
edges. This coarsening method ensures the following properties [12]: (i) the edge-cut of the partitioning in a coarser graph is equal to the edge-cut of the same partition in the finer graph; (ii) a balanced partitioning of the coarser graphs leads to a balanced partitioning of the finer graph.

This edge collapsing idea can be formally defined in terms of matchings [2,12]. A matching of a graph is a set of edges, no two of which are incident on the same vertex. Thus, the next level coarser graph G_{i+1} is constructed from G_{i} by finding a matching of G_{i} and collapsing the vertices being matched into multinodes. The unmatched vertices are simply copied over to G_{i+1}. Since the goal of collapsing vertices using matchings is to decrease the size of the graph G_{i}, the matching should be maximal. A matching is called maximal matching, if it is not possible to add any other edge to it without making two edges become incident on the same vertex. Note that depending on how matchings are computed, the size of the maximal matching may be different.

The coarsening phase ends when the coarsest graph G_{m} has a small number of vertices or if the reduction in the size of successively coarser graphs becomes too small. In our experiments, for a k-way partition, we stop the coarsening process when the number of vertices becomes less than $c k$, where $c=15$ in our experiments. The choice of this value of c was to allow the initial partitioning algorithm to create k partitions of roughly the same size. We also end the coarsening phase if the reduction in the size of successively graphs is less than a factor of 0.8 .

In the remaining sections we describe three ways that we used to select maximal matchings for coarsening. Two of these matchings, RM [2,12] and HEM [16], have been previously investigated in the context of MLRB.

Random Matching (RM) A maximal matching can be generated efficiently using a randomized algorithm. In our experiments we used a randomized algorithm similar to that described in [2, 12, 16]. The random maximal matching algorithm works as follows. The vertices are visited in random order. If a vertex u has not been matched yet, then we randomly select one of its unmatched adjacent vertices. If such a vertex v exists, we include the edge (u, v) in the matching and mark vertices u and v as being matched. If there is no unmatched adjacent vertex v, then vertex u remains unmatched in the random matching. The complexity of the above algorithm is $O(|E|)$.

Heavy Edge Matching (HEM) Random matching is a simple and efficient method to compute a maximal matching and minimizes the number of coarsening levels in a greedy fashion. However, our overall goal is to find a partitioning that minimizes the edge-cut. Consider a graph $G_{i}=\left(V_{i}, E_{i}\right)$, a matching M_{i} that is used to coarsen G_{i}, and its coarser graph $G_{i+1}=\left(V_{i+1}, E_{i+1}\right)$ induced by M_{i}. If A is a set of edges, define $W(A)$ to be the sum of the weights of the edges in A. It can be shown that

$$
\begin{equation*}
W\left(E_{i+1}\right)=W\left(E_{i}\right)-W\left(M_{i}\right) . \tag{1}
\end{equation*}
$$

Thus, the total edge-weight of the coarser graph is reduced by the weight of the matching. Hence, by selecting a maximal matching M_{i} whose edges have a large weight, we can decrease the edge-weight of the coarser graph by a greater amount. As the analysis in [13] shows, since the coarser graph has smaller edge-weight, it also has a smaller edge-cut.

Finding a maximal matching that contains edges with large weight is the idea behind the heavy-edge matching originally introduced in [16]. A heavy-edge matching is computed using a randomized algorithm similar to that for computing a random matching described earlier. The vertices are again visited in random order. However, instead of randomly matching a vertex u with one of its adjacent unmatched vertices, we match u with the vertex v such that the weight of the edge (u, v) is maximum over all valid incident edges (heavier edge). Note that this algorithm does not guarantee that the matching obtained has maximum weight (over all possible matchings), but our experiments have shown that it works very well in practice. The complexity of computing a heavy-edge matching is $O(|E|)$, which is asymptotically similar to that for computing the random matching.

Modified Heavy Edge Matching (HEM*) The analysis of the multilevel bisection algorithm in [13] shows that a good edge-cut of a coarser graph is closer to that of a good edge-cut of the original graph if the average degree of the coarser graph is small. The modified heavy edge matching (HEM*) is a modification of HEM that tries to decrease the average degree of coarser graphs.

A HEM* is computed using a randomized algorithm similar to that for computing a HEM. The vertices are again visited in random order. Let v be such a vertex, and let H be the set of unmatched adjacent vertices of v that are connected to v by an edge of maximum weight (H can contain more than one vertex if some edges connected to v have identical weights). For each vertex $u \in H$, let W_{v-u} be the sum of the weights of the edges of u that connect u to vertices adjacent to v. In the HEM^{*} scheme, v is matched with the vertex $u \in H$, such that W_{v-u} is maximized over all vertices in H.

As illustrated in Figure 2, HEM* leads to fewer edges in the coarser graph and the average weight of edges in coarser graphs tend to be higher. Hence, in subsequent coarsening levels, the weight of the edges included in the matching increases, making HEM* to be more effective. HEM* is more effective than HEM in producing a good coarsening of the original graph G_{0} when the edges of G_{0} have identical weights. In fact, the first level coarser

Figure 2: Example of the matchings produced by RM and HEM*.
graph G_{1} produced by HEM is similar to that produced by RM, since there are no heavy edges in G_{0}. In contrast, G_{1} produced by HEM* will have smaller average degree because the vertices matched by HEM* will be adjacent to many common vertices. The complexity of computing HEM^{*} is $O(|E|)$, which is asymptotically the same as that for computing the random matching and heavy edge matching. But the constant for HEM* is somewhat higher than that for HEM and RM.

2.2 Initial Partitioning Phase

The second phase of a multilevel k-way partitioning algorithm is to compute a k-way partitioning P_{m} of the coarse graph $G_{m}=\left(V_{m}, E_{m}\right)$ such that each partition contains roughly $\left|V_{0}\right| / k$ vertex weight of the original graph. Since during coarsening, the weights of the vertices and edges of the coarser graph were set to reflect the weights of the vertices and edges of the finer graph, G_{m} contains sufficient information to intelligently enforce the balanced partitioning and the minimum edge-cut requirements.

One way to produce the initial k-way partitioning is to keep coarsening the graph until it has only k vertices left. These coarse k vertices can serve as the initial k-way partitioning of the original graph. There are two problems with this approach. First, for many graphs, the reduction in the size of the graph in each coarsening step becomes very small after some coarsening steps, making it very expensive to continue with the coarsening process. Second, even if we are able to coarsen the graph down to only k vertices, the weights of these vertices are likely to be quite different, making the initial partitioning highly unbalanced.

In our algorithm, the k-way partitioning of G_{m} is computed using our multilevel bisection algorithm [16]. Our experience has shown that our multilevel recursive bisection algorithm produces good initial partitionings and requires relatively small amount of time as long as the size of the original graph is sufficiently larger than k.

2.3 Uncoarsening Phase

During the uncoarsening phase, the partitioning P_{m} of the coarser graph G_{m} is projected back to the original graph, by going through the graphs $G_{m-1}, G_{m-2}, \ldots, G_{1}$. Since each vertex v of G_{i+1} contains a distinct subset of vertices V_{i}^{v} of G_{i}, P_{i} is obtained from P_{i+1} by simply assigning the set of vertices V_{i}^{v} to the partitioning $P_{i+1}[v]$; i.e., $P_{i}[u]=P_{i+1}[v], \quad \forall u \in V_{i}^{v}$.

Note that, even if the partitioning of G_{i} is at a local minima ${ }^{1}$, the projected partitioning of G_{i-1} may not be at a local minima. Since G_{i-1} is finer, it has more degrees of freedom that can be used to further improve the partitioning and thus decrease the edge-cut. Hence, it may still be possible to improve the projected partitioning of G_{i-1} by local refinement heuristics.

A class of local refinement algorithms that tend to produce very good results are those that are based on the Kernighan-Lin (KL) partitioning algorithm [17] and their variants [4, 12]. The KL algorithm incrementally swaps vertices among partitions of a bisection to reduce the edge-cut of the partitioning, until the partitioning reaches a local minima. One commonly used variation of the KL algorithm for bisection refinement is due to Fiduccia-Mattheyses [4]. In particular, for each vertex v, this variation of the KL algorithm computes the gain which is the reduction in the edge-cut achieved by moving v to the other partition. These vertices are inserted into two priority queues, one for each partition, according to their gains. Initially all vertices are unlocked, i.e., they are free to move to the other partition. The algorithm iteratively selects an unlocked vertex v with the largest gain from one of the two priority queues and moves it to the other partition. When a vertex v is moved, it is locked and the gain of the vertices adjacent to v are updated. After each vertex movement, the algorithm also records the size of the cut achieved at this point. Note that the algorithm does not allow locked vertices to be moved since this may result in thrashing (i.e., repeated movement of the same vertex). A single pass of the algorithm ends when there are no more unlocked vertices (i.e., all the vertices have been moved). Then, the recorded cut-sizes are checked, and the point where the minimum cut was achieved is selected, and all vertices that were moved after that point are moved back to their original partition. Now, this becomes the initial partitioning for the next pass of the algorithm. In the case of multilevel recursive bisection algorithms [2, 12, 16], KL refinement becomes very powerful, as the initial partitioning available at each successive uncoarsening level is already a good partition.

However, refining a k-way partitioning is significantly more complicated because vertices can move from a partition to many other partitions; thus, increasing the optimization space combinatorially. An extension of the KL refinement algorithm in the case of k-way refinement is described in [10]. This algorithm uses $k(k-1)$ priority queues, one for each type of move. In each step of the algorithm, the moves with the highest gain are found from each of these $k(k-1)$ queues, and the move with the highest gain that preserves or improves the balance, is performed. After the move, all of the $K(k-1)$ priority queues are updated. The complexity of k-way refinement is significantly higher than that of 2-way refinement, and for a graph with m edges, this complexity is $O(k * m)$. This approach is only practical for small values of k. Due to this high complexity, the multilevel recursive octasection algorithm described in [10], requires the same amount of time as multilevel recursive bisection, even though recursive octasection spends much less time for coarsening.

We have developed simple k-way refinement algorithms that are simplified versions of the k-way Kernighan-Lin refinement algorithm, and their complexity is independent of the number of partitions being refined. As the results in Section 3 show, despite the simplicity of our refinement algorithms, they produce high quality partitionings in small

[^1]

Figure 3: lllustration of neighboring partitions, internal, and external vertex degrees.
amount of time. In the rest of this section we describe some key concepts and definitions that are used in the description of our two k-way partitioning refinement algorithms, described in the next two sections.

Consider a graph $G_{i}=\left(V_{i}, E_{i}\right)$, and its partitioning vector P_{i}. For each vertex $v \in V_{i}$ we define the neighborhood $N(v)$ of v to be the union of the partitions that the vertices adjacent to $v(i . e ., \operatorname{Adj}(v))$ belong to. That is, $N(v)=$ $\cup_{u \in \operatorname{Adj}(v)} P_{i}[u]$. Note that if v is an interior vertex of a partition, then $N(v)=\emptyset$. On the other hand, the cardinality of $N(v)$ can be as high as $\operatorname{Adj}(v)$, for the case in which each vertex adjacent to v belongs to a different partition. During refinement, v can move to any of the partitions in $N(v)$. For each vertex v we compute the gains of moving v to one of its neighbor partitions. In particular, for every $b \in N(v)$ we compute $E D[v]_{b}$ as the sum of the weights of the edges (v, u) such that $P_{i}[u]=b$. Also we compute $I D[v]$ as the sum of the weights of the edges (v, u) such that $P_{i}[u]=P_{i}[v]$. The quantity $E D[v]_{b}$ is called the external degree of v to partition b, while the quantity $I D[v]$ is called the internal degree of v. Given these definitions, the gain of moving vertex v to partition $b \in N(v)$ is $g[v]_{b}=E D[v]_{b}-I D[v]$. These definitions are illustrated in Figure 3. For example for vertex $5, N[5]=\{0,2\}$, $I D[5]=2, E D[5]_{0}=2$, and $E D[5]_{2}=3$.

However, in addition to decreasing the edge-cut, moving a vertex from one partition to another must not create partitions whose size is unbalanced. In particular, our partitioning refinement algorithms move a vertex only if it satisfies the following Balancing Condition. Let W_{i} be a vector of k elements, such that $W_{i}[a]$ is the weight of partition a of graph G_{i}, and let $W^{\text {min }}=0.9\left|V_{0}\right| / k$ and $W^{\max }=C\left|V_{0}\right| / k$. A vertex v, whose weight is $w(v)$ can be moved from partition a to partition b only if

$$
\begin{array}{r}
W_{i}[b]+w(v) \leq W^{\max }, \quad \text { and } \\
W_{i}[a]-w(v) \geq W^{\text {min }} \tag{3}
\end{array}
$$

The first condition ensures that movement of a node into a partition does not make its weight higher than $W^{\text {max }}$. Note that by adjusting the value of C, we can vary the degree of imbalance among partitions. If $C=1$, then the refinement algorithm tries to make each partition of equal weight. In our experiments we found that letting C to be greater than 1.0 , tends to improve the quality of the partitionings. However, in order to minimize the load imbalance, we used $C=1.03$; that puts an upper bound of 3% on load imbalance. Note that the second condition is not critical for load balance, but it ensures that there is no partition with too few vertices.

Greedy Refinement (GR) The lookahead in the KL algorithm serves a very important purpose. It allows movement of an entire cluster of vertices across a partition boundary. Note that it is quite possible that as the cluster is moved across the partition boundary, the edge-cut increases, but after the entire cluster of vertices moves across the partition, then the overall edge-cut comes down. In the context of multilevel schemes, this lookahead becomes less important. The reason is that these clusters of vertices are coarsened into a single vertex at successive coarsening phases. Hence, movement of a vertex at a coarse level really corresponds to the movement of a group of vertices in the original graph.

If the lookahead part of KL is eliminated (i.e., if vertices are moved only if they lead to positive gain), then it becomes less useful to maintain a priority queue. In particular, vertices whose move results in a large positive gain will be moved anyway even if they are not moved earlier (in the priority order. Hence, a variation of KL that simply visits the boundary vertices in a random order and moves them if they result in a positive gain is likely to work well in the multilevel context. Our greedy refinement algorithm is based on this observation. It consists of a number of iterations. In each iteration all the vertices are checked to see if they can be moved so that either the edge-cut of the partitioning can be decreased (while preserving balance), or the balance is improved.

In particular, GR works as follows. Consider a graph $G_{i}=\left(V_{i}, E_{i}\right)$, and its partitioning vector P_{i}. The vertices are checked in a random order. Let v be such a vertex, let $P_{i}[v]=a$ be the partition that v belongs to. If v is a node internal to partition a then $N(v)=\emptyset$, and v is not moved. If v is at the boundary of the partition, then $N(v)$ is non-empty. Let $N^{\prime}(v)$ be the subset of $N(v)$ that contains all partitions b such that movement of vertex v to partition b does not violate the Balancing Condition. Now vertex v is moved to one of the adjacent partitions b, if either one of the following conditions is satisfied:

1. $E D[v]_{b}>I D[v]$ and $E D[v]_{b}$ is maximum among all $c \in N^{\prime}(v)$.
2. $E D[v]_{b}=I D(v)$ and $W_{i}[a]-W_{i}[b]>w(v)$.

That is, the GR algorithm moves v to a partition that leads to the largest reduction in the edge-cut without violating the balance condition. If no reduction in the edge-cut is possible, by moving v, then v is moved to the partition (if any) that leads to no increase in the edge-cut but improves the balance. After moving vertex v, the algorithm updates the internal and external degrees of the vertices adjacent to v to reflect the change in the partition.

The GR algorithm converges after a small number of iterations. In our experiments, we found that for most graphs, and with the HEM (or HEM*) matching scheme in particular, GR converged within four to eight iterations.

Global Kernighan-Lin Refinement (GKLR) As discussed in the previous section, the GR algorithm lacks any capabilities of climbing out of local minima. Our second refinement heuristic called global Kernighan-Lin, is somewhat more powerful and is closer to the original KL algorithm in spirit. It adds some limited hill-climbing capabilities to the GR algorithm and also uses a priority queue to determine the sequence of vertex moves.

The GKLR algorithm uses a global priority queue that stores the vertices according to their gains. Initially, all the vertices are scanned, and those whose sum of external degrees ${ }^{2}$ is greater or equal to their internal degrees are inserted into the priority queue. In particular, let v be such a vertex, let $N(v)$ be the neighborhood of v, and $b \in N(v)$ such that

[^2]$E D[v]_{b}$ is maximum over the external degrees of partitions in $N(v)$. We insert v into the priority queue with a gain equal to $E D[v]_{b}-I D[v]$.

The algorithm then proceeds and selects the vertex from the priority queue with the highest gain. Having selected such a vertex v, then the algorithm selects a part $b \in N(v)$ to move v such that $E[v]_{b}$ is maximized while satisfying the balance condition (Equations 2 and 3). Note that these swaps may lead to an increase in the edge-cut, since vertices are moved even if they have a negative gain value. The GKLR algorithm continues moving vertices until it has performed x vertex moves that have not decreased the overall edge-cut. In that case, the last x moves are undone. Once a vertex is moved, it is not considered for movement in the same iteration. This is repeated for a small number of iterations or until convergence.

Note that in each step, the vertices selected for movement by the GKLR algorithm and by the generalized KL of [11] may be quite different. GKLR selects a vertex v that has a move (among all possible moves to neighboring partitions $N(v)$) with the highest gain $g[v]_{\max }$. However, depending on the weight of the partitions, this move may never take place, and instead v can be moved to a partition $a \in N(v)$ that leads to a smaller gain $g[a]_{v}$. However, there may be another vertex u on the priority queue that has a move with the highest gain $g[u]_{\text {max }}$ that may be permissible. Now if $g[v]_{a}<g[u]_{\max }<g[v]_{\max }$, the generalization of the KL algorithm will select to move vertex u before considering vertex v. Thus, in each step, GKLR does not necessarily selects the vertex with the largest realizable gain. Furthermore, since the single priority queue contains only vertices whose sum of the external degrees is greater or equal to the internal degree, GKLR has less powerful hill-climbing capabilities than the generalized KL [11] that uses multiple priority queues and considers all the vertices.

3 Experimental Results

We evaluated the performance of the multilevel graph partitioning algorithm on a wide range of graphs arising in different application domains. The characteristics of these graphs are described in Table 1. These graphs are classified into six groups. The first group contains graphs that correspond to finite element meshes, the second group contains graphs that correspond to coefficient matrices (i.e., assembled matrices) with multiple degrees of freedom and linear basis functions, the third group corresponds to assembled matrices with non linear basis functions, the fourth group corresponds to graphs that represent highway networks, the fifth group corresponds to graphs arising in linear programming applications, and the sixth group corresponds to graphs that represent VLSI circuits. For each of the first two groups, we have a large number of graphs, but for the last four groups, we have only a few graphs per group. So observed trends for the first two groups are more reliable than those for the last four groups.

All the experiments were performed on an SGI Challenge with 1.2 GBytes of memory and 200 MHz MIPS R4400 processor. All times reported are in seconds. Since the nature of the multilevel algorithm discussed is randomized, we performed all experiments with fixed seed.

3.1 Matching Schemes

We implemented the three matching schemes described in Section 2.1. These schemes are (a) random matching (RM), (b) heavy edge matching (HEM), and (c) modified heavy edge matching (HEM*). For all the experiments, we used the GR refinement policy during the uncoarsening phase. The results for 32 -way and 256 -way partitioning are shown in Figures 4 and 5 for all the graphs in Table 1.

From Figure 4 we see that both HEM and HEM* consistently produce partitionings whose edge-cut is better than that of the partitionings produced by RM. For some groups of graphs, HEM and HEM* produce partitionings whose

Figure 4: Quality of the partitionings of HEM and HEM* relative to RM matching. For each graph, the ratio of the edge-cut of the HEM and HEM* matching schemes to that of the RM matching scheme is plotted for 32 - and 256 -way partitionings. Bars under the baseline indicate that the corresponding matching scheme performs better than RM.

Figure 5: Run time of partitioning using HEM and HEM^{*} relative to RM matching. For each graph, the ratio of the time required by the HEM and HEM* matching schemes to that of the RM matching scheme is plotted for 32 - and 256 -way partitionings. Bars under the baseline indicate that the corresponding matching scheme is faster than RM.

Matrix Name	No. of Vertices	No. of Edges	Description
144	144649	1074393	3D Finite element mesh (Parafoil)
598A	110971	741934	3D Finite element mesh (Submarine I)
AUTO	448695	3314611	3D Finite element mesh (GM Saturn)
BRACK2	62631	366559	3D Finite element mesh (Bracket)
COPTER2	55476	352238	3D Finite element mesh (Helicopter blade)
FLAP	51537	479620	3D Finite element mesh
M14B	214765	3358036	3D Finite element mesh (Submarine II)
ROTOR	99617	662431	3D Finite element mesh
TORSO	201142	1479989	3D Finite element mesh (Human torso)
WAVE	156317	1059331	3D Finite element mesh
BCSSTK31	35588	572914	3D Stiffness matrix
BCSSTK32	44609	985046	3D Stiffness matrix
CANT	54195	1960797	3D Stiffness matrix
CYLINDER93	45594	1786726	3D Stiffness matrix
INPRO1	46949	1117809	3D Stiffness matrix
SHELL93	181200	2313765	3D Stiffness matrix
SHYY161	76480	152002	CFD/Navier-Stokes
TROLL	213453	5885829	3D Stiffness matrix
VENKAT25	62424	827684	2D Coefficient matrix
BBMAT	38744	993481	2D Stiffness matrix
MAP1	267241	334931	Highway network
MAP2	78489	98995	Highway network
FINAN512	74752	261120	Linear programming
KEN-11	14694	33880	Linear programming
S38584.1	22143	35608	Sequential circuit

Table 1: Various graphs used in evaluating the multilevel graph partitioning and sparse matrix ordering algorithm.

	64EC			256EC		
Graph	RM	HEM	HEM *	RM	HEM	HEM *
144	200855	142464	136949	292079	229401	223615
AUTO	525526	343154	334210	815578	575975	560929
FLAP	58034	42810	39394	119368	95452	92358
BCSSTK32	221234	155286	143176	342679	287300	265350
INPRO1	244035	159632	149373	405038	319496	301075
BBMAT	324794	154878	89305	584891	350850	196325
MAP2	1064	911	839	2382	2205	2173
KEN-11	16273	15677	15578	18697	18067	17813

Table 2: Quality of initial partitionings for the RM, HEM, and HEM* matching schemes.
edge-cut is better than that of RM by up to 35%. The reason for the poor performance of RM becomes clear from Table 2 that contains the size of the edge-cut of the initial k-way partitioning. For all graphs, the size of the initial edge-cut on the coarsest graph is significantly worse for RM compared with HEM and HEM*. Note that the difference in the size of the initial edge-cut on the coarsest graph is much greater for the three schemes than those shown in Figure 4. For example, for the first two groups of graphs, the overall quality of RM, HEM, and HEM* is similar, but the edge-cut of the k-way partitioning in the coarsest graph obtained by HEM and HEM^{*} are 30% to 65% smaller than the those obtained by RM (as shown in Table 2). (As a result, for RM, k-way refinement takes more time compared with HEM and HEM*.) As discussed in [13], the effectiveness of a coarsening scheme depends on how successful it is in removing a significant amount of edge-weight from the successive coarser graphs. According to this criterion, HEM and HEM* are strictly better coarsening schemes than RM because they remove more edge-weight from the graph.

Comparing HEM against HEM*, we see that for most graphs, their performance is comparable. The only notable exception is BBMAT for which HEM* does up to 10% better than HEM. BBMAT is the type of graph in which applying RM at the finest graph $\left(G_{0}\right)$ significantly increases the average degree of the first level coarser graph $\left(G_{1}\right)$. Note that HEM and RM compute the same first level coarse graph G_{1}, since the weights of all edges in G_{0} is the same. Hence, for BBMAT the average degree of G_{1} obtained by HEM is much higher than that obtained using HEM*. For
other type of graphs, particularly those that correspond to finite element meshes, RM increases the average degree only slightly in going from G_{0} to G_{1}, which in turn allows HEM to perform good coarsening. As a result, for BBMAT, the initial partitioning found by HEM is much worse than that found by HEM*. This can be seen in Table 2. Note that the initial edge-cut for HEM and HEM* are similar for all problems except BBMAT.

From Figure 5 we see that for 32 -way partition, HEM is up to 20% faster than RM, while HEM* is up to 41% slower than RM. HEM is faster than RM because it requires much less refinement, and the coarsening step of HEM is only slightly slower than the coarsening step in RM. HEM* is slower than RM because coarsening using HEM* is much slower than coarsening using RM. For a 256-way partition, HEM is again faster than RM (quite consistently), but now for 7 graphs HEM* is faster than RM. This is because, RM requires substantially more refinement time and because the coarsest graph G_{m} produced by RM has many more edges than that produced by HEM*, that increases the initial partitioning time.

As the experiments show, for most of the graphs, HEM is an excellent matching scheme that produces good partitionings, and requires the smallest overall run time. However, for certain class of graphs HEM* does better than HEM.

3.2 Refinement Policies

As described in Section 2.3, there are different ways that a partitioning can be refined during the uncoarsening phase. We evaluated the performance of two refinement policies, both in terms of how good partitionings they produce and also how much time they require. The refinement policies that we evaluate are greedy refinement (GR), and global Kernighan-Lin refinement (GKLR).

The result of these refinement policies for computing a 32 -way and a 256 -way partition for the graphs in Table 1 is shown in Figures 6, 8, 7, and 9. Figures 6 and Figures 7 show the edge-cut of the partitionings produced by GKLR relative to those produced by GR for the three different coarsening schemes, while Figures 8 and Figures 9 shows the amount of time required by GKLR relative to GR for computing these partitionings.

A number of observations can be made from Figures 6 and Figures 7. GKLR is significantly better than GR only for BBMAT. For other problems the difference is minor. If RM coarsening is used, then GKLR does better than GR more consistently. If HEM or HEM* coarsening is used, then GKLR performs quite similar to GR for all problems. Even for BBMAT, the gap between the performance of GKLR and GR is narrower for HEM and HEM* compared with RM. If we combine the 32 - and 256-way partitionings as a set of 150 different runs, GKLR produces better partitionings for 31 out of these 150 runs. Out of these 31 runs, 14 were obtained using RM, 7 using HEM, and 10 using HEM*. Another interesting observation is that for most graphs the difference in the quality of the partitionings produced by GR and GKLR is very small. The difference in the quality is less than 2% for 139 out of the 150 different runs. The only notable exceptions are KEN-11 for which GR does up to 7% better than GKLR, and BBMAT for which GKLR does up to 21% better than GR. From these experimental results, it is clear that a simple refinement scheme such as GR is quite adequate, particularly if the initial partitioning for the coarsest graph is quite good. The additional power of GKLR is useful only when it is used in conjunction with the RM matching scheme which leads to poor initial partitionings.

From Figures 8 and Figures 9 we see that the amount of time required for a 32- and 256 -way partitioning using GKLR is significantly higher than the time required using GR. GKLR requires more time for each of the 150 different runs. In some cases, GKLR requires more than twice the time required by GR. Comparing the different matching schemes, we see that the relative increase in the run time is higher for RM than for HEM and HEM*. The is not

Figure 6: Quality of GKLR refinement scheme for 32 -way partitioning for RM, HEM, and HEM* coarsening schemes relative to GR refinement scheme. For each graph, the ratio of the edge-cut of the GKLR refinement algorithm to that of the GR algorithm scheme is plotted for RM, HEM and HEM* matching schemes. Bars under the baseline indicate that GKLR performs better than GR for the corresponding matching scheme.

Figure 7: Quality of GKLR refinement scheme for 256 -way partitioning for RM, HEM, and HEM* coarsening schemes relative to GR refinement scheme. For each graph, the ratio of the edge-cut of the GKLR refinement algorithm to that of the GR algorithm scheme is plotted for RM, HEM and HEM* matching schemes. Bars under the baseline indicate that GKLR performs better than GR for the corresponding matching scheme.

Figure 8: Run time for the 32-way partitionings produced by the GR and GKLR refinement algorithms for RM, HEM, and HEM* coarsening schemes. For each graph, the ratio of the time required for partitioning using the GKLR refinement algorithm to that of the GR algorithm scheme is plotted for RM, HEM and HEM* matching schemes. Bars under the baseline indicate that GKLR is faster than GR for the corresponding matching scheme.

Figure 9: Run time for the 256 -way partitionings produced by the GR and GKLR refinement algorithms for RM, HEM, and HEM* coarsening schemes. For each graph, the ratio of the time required for partitioning using the GKLR refinement algorithm to that of the GR algorithm scheme is plotted for RM, HEM and HEM* matching schemes. Bars under the baseline indicate that GKLR is faster than GR for the corresponding matching scheme.
surprising since RM requires more refinement and also, RM benefits the most from GKLR.
In summary, GR and GKLR tend to produce partitionings that have similar edge-cuts, but with GKLR requiring significantly more time than GR.

3.3 Comparison with Other Partitioning Schemes

Figure 10 shows the relative quality of our multilevel k-way partitioning algorithm (MLkP) compared to the multilevel recursive bisection algorithm (MLRB) described in [16] (implemented in METIS [15]). METIS is a set of programs for partitioning unstructured graphs and for ordering sparse matrices that implements various algorithms described in [16]. For each graph we plot the ratio of the edge-cut of the MLkP algorithm to the edge-cut of the MLRB algorithm. Ratios that are less than one indicate that MLkP produces better partitionings than MLRB. For this comparison and for the rest of the comparisons in this section, the MLkP algorithm uses HEM during coarsening and GR during refinement.

From this figure, we see that for almost all problems, MLkP and MLRB produce partitionings of similar quality. In particular, for the two highway networks (MAP1 and MAP2), MLkP produces up to 19% smaller edge-cuts than MLRB. For the graphs that correspond to finite element meshes (144, 598A, AUTO, BRACK2, COPTER2, M14B, ROTOR, TORSO, and WAVE), MLkP does slightly (up to 5\%) and consistently better than MLRB. For the graphs that correspond to coefficient matrices of finite element applications with multiple degrees of freedom (BCSSTK31, BCSSTK32, CANT, CYLINDER93, FLAP, INPRO1, SHELL93, SHYY161, TROLL, and VENKAT25), MLkP and MLRB perform quite similarly (within 6% of each other). The only problem for which MLkP performs significantly worse than MLRB is BBMAT, for which MLkP performs up to 20% worse than MLRB. As discussed in Section 2.1, these graph correspond to assembled matrices with non-linear basis functions, and the HEM coarsening scheme does not lead to good coarsenings. However, for this graph both HEM* coarsening and GKLR refinement perform substantially better than HEM and GR, respectively. In particular, if we use HEM* for coarsening and GKLR for refinement, then the edge-cut for 128-way partitioning produced by MLkP is better by 2% than that of MLRB. In summary, for large class of graphs MLkP produces partitionings that are equally good or even better than those produced by the MLRB algorithm. Furthermore, the combination of HEM and GR seems quite adequate for most problems. However, for some problems HEM* and GKLR may be better choices for coarsening and refinement, respectively.

Figure 11 shows the amount of time required by the MLRB algorithm relative to the time required by the MLkP algorithm for 256-way partitionings. From this graph we see that MLkP is usually two to four times faster than MLRB. In particular, for moderate size problems, MLkP is over three times faster while for the larger problems, MLkP is over four times faster. The actual run times for a 256-way partitioning is shown in Table 4. From this table we see that even the larger problem (448000 vertex mesh of GM's Saturn car) is partitioned in under 40 seconds.

Figures 12 and 13 present the relative quality and run-time, respectively, of MLkP with respect to multilevel spectral bisection (MSB) [1]. From these figures we see that for all the graphs, MLkP produces better partitionings than MSB. In some cases MLkP produces partitionings that cut over 70% fewer edges than those cut by the MSB. Furthermore, from Figure 13 we see that MLkP is up to two orders of magnitude faster the MSB.

The graph partitioning package Chaco 2.0 [11, 12] also implements multilevel quadrisection and octasection partitioning algorithms. Chaco uses random matching during coarsening, and spectral quadrisection and octasection methods to directly divide the coarsest graph into four and eight pieces, respectively ${ }^{3}$ [10]. The key difference between our scheme and the one implemented in Chaco's recursive octasection is that their Kernighan-Lin refinement

[^3]

Figure 10: Quality of the partitionings produced by MLkP relative to MLRB. The multilevel k-way partitioning algorithm uses HEM during coarsening and GR during refinement. For each graph, the ratio of the edge-cut of the k-way partitioning algorithm to that of the recursive bisection algorithm is plotted for $32-64-, 128$-, and 256 -way partitionings. Bars under the baseline indicate that k-way partitioning performs better than recursive bisection.

Figure 11: Run time of MLkP relative to MLRB for 256 -way partitioning. The multilevel k-way partitioning algorithm uses HEM during coarsening and GR during refinement. For each graph, the ratio of the run time of recursive bisection algorithm to that of the k-way partitioning algorithm is plotted for 256 -way partitionings. Bars above the baseline indicate that k-way partitioning is faster than recursive bisection.

Figure 12: Quality of MLkP relative to multilevel spectral bisection. For each graph, the ratio of the edge-cut of the k-way partitioning algorithm to that of the recursive bisection algorithm is plotted for 32-, 64-, 128-, and 256-way partitionings. Bars under the baseline indicate that k-way partitioning performs better than multilevel spectral bisection.

Figure 13: Run time of MLkP relative to spectral bisection for 256-way partitioning. For each graph, the ratio of the run time of multilevel spectral bisection algorithm to that of the k-way partitioning algorithm is plotted for 256 -way partitionings. Bars above the baseline indicate that k-way partitioning is faster than multilevel spectral bisection.

	Multilevel Spectral Bisection		Multilevel Recursive Bisection		Multilevel k-way Partition				
Matrix	64 EC	128 EC	256 EC	64 EC	128 EC	256 EC	64 EC	128 EC	256 EC
144	96538	132761	184200	88806	120611	161563	87750	118112	156145
598 A	68107	95220	128619	64443	89298	119699	63262	86909	114846
AUTO	208729	291638	390056	194436	269638	362858	193092	263228	349137
BRACK2	34464	49917	69243	29983	42625	60608	29742	42170	59847
COPTER2	47862	64601	84934	43721	58809	77155	42411	56100	73946
FLAP	35540	54407	80392	30741	49806	74628	30461	49203	73641
M14B	124749	172780	232949	111104	156417	214203	109013	150331	206129
ROTOR	63251	88048	120989	53228	75010	103895	52069	73841	101732
TORSO	413501	473397	522717	117997	160788	218155	112797	155087	209895
WAVE	106858	142060	187192	97978	129785	171101	94251	124377	164187
BCSSTK31	86244	123450	176074	65249	97819	140818	66039	100713	143749
BCSSTK32	130984	185977	259902	106440	152081	222789	106661	160651	223545
CANT	459412	598870	798866	442398	574853	778928	428754	567478	756061
CYLINDER93	290194	431551	594859	289639	416190	590065	284012	409445	582015
INPRO1	125285	185838	264049	116748	171974	250207	118176	172592	251628
SHELL93	178266	238098	318535	124836	185323	269539	123437	181203	261296
SHYY161	6641	9151	11969	4365	6317	9092	4607	6591	9251
TROLL	529158	706605	947564	453812	638074	864287	445215	630918	846822
VENKAT25	50184	77810	116211	47514	73735	110312	49137	74470	111249
BBMAT	179282	250535	348124	55753	92750	132387	62018	109495	158990
MAP1	3546	6314	8933	1388	2221	3389	1122	1892	3108
MAP2	1759	2454	3708	828	1328	2157	726	1213	1984
FINAN512	15360	27575	53387	11388	22136	40201	11853	23365	42589
KEN-11	20931	23308	25159	14257	16515	18101	12360	13563	15836
S38584.1	5381	7595	9609	2428	3996	5906	2362	3869	5715

Table 3: The edge-cuts produced by the multilevel recursive bisection, multilevel recursive bisection, and multilevel k-way partition.
algorithm is direct generalization of the 2-way refinement algorithm to handle both 4 -way and 8 -way refinement. For example, in the case of 8 -way refinement, their algorithm uses $8 * 7$ priority queues for all the different types of moves. This algorithm is significantly slower than either the greedy or global Kernighan-Lin refinement algorithms used by our multilevel k-way partition. In fact, Chaco's recursive octasection is not any faster than its recursive bisection. Furthermore, Chaco's recursive octasection is even more expensive to generalize beyond 8-way refinement.

Figure 14 shows the relative performance of our MLkP algorithm compared to Chaco's multilevel recursive octasection, for an 8 - and 64 -way partitionings. Note that for an 8 -way partition, no recursive partitioning is performed by Chaco, while for 64-way partition, only one level of recursion is performed. From this figure we can see that for both 8 -way and 64 -way partitioning, MLkP produces partitionings that are in general better than those produced by Chaco's recursive octasection. For some graphs, MLkP cuts up to 70% fewer edges than Chaco does. The difference in quality is due to the following two reasons. First, Chaco's recursive octasection algorithm uses RM matching during coarsening, which leads to successive coarser graphs with higher edge-weight. Second, the initial partitioning obtained by spectral octasection is worse (cuts more edges) than the initial partitioning obtained by MLRB. Thus, even-though Chaco's recursive octasection algorithm uses the generalized KL refinement algorithm, it does not seem to be able to gain the losses due to coarsening and initial partitioning. Figure 15 shows the relative run time of Chaco's multilevel recursive octasection compared to our multilevel k-way partitioning algorithm. From this figure we see that our algorithm is considerably faster. MLkP computes an 8-way partitioning about two to six times faster than Chaco, and a 64-way partitioning about four to fourteen times faster. In summary, for most graphs, MLkP produces better or comparable partitionings than Chaco's multilevel recursive octasection in significantly less time. This indicates that for most graphs, greedy refinement coupled with the HEM coarsening and a good initial k-way partition, is much better choice than the computationally expensive 8 -way Kernighan-Lin refinement.

Figure 14: Quality of the partitionings produced by MLKP relative to Chaco's multilevel recursive octasection algorithm. The MLKP algorithm uses HEM during coarsening and GR during refinement. For each graph, the ratio of the edge-cut of the MLkP algorithm to that of Chaco's recursive octasection algorithm is plotted for 8 - and 64 -way partitionings. Bars under the baseline indicate that MLkP performs better than Chaco's recursive octasection.

Figure 15: Run time of MLkP relative to Chaco's multilevel recursive octasection algorithm. The MLkP algorithm uses HEM during coarsening and GR during refinement. For each graph, the ratio of the run time of Chaco's recursive octasection to that of the MLkP algorithm is plotted for 256 -way partitionings. Bars above the baseline indicate that MLkP is faster than Chaco's recursive octasection.

3.4 Conclusion and Direction for Future Research

Our experiments have shown that the multilevel k-way partitioning algorithm is significantly faster than recursive bisection based k-way partitioning scheme. The complexity of the coarsening and refinement phases of our k-way partition algorithm is $O(|E|)$, assuming that in each coarsening step the number of vertices is reduced by a factor larger than $1+\epsilon$, where ϵ is a constant greater than zero. The complexity of obtaining the initial k-way partitioning of the coarsest graph using MLRB is $O(k \log k)$. Since, $O(k \log k)$ is often smaller than $O(|E|)$, the overall complexity of the algorithm is $O(|E|)$. For instance, for TORSO the run time for a 2-way partitioning is 10.42 seconds while the run time for a 256 -way partitioning is only 1.64 times higher (i.e., 17.13 seconds). As the problem size increases, this factor decreases. For example, for AUTO the runtime for a 2 -way partitioning is 31.03 seconds while the run time for a 256 -way partitioning is only 1.29 times higher (i.e., 40 seconds).

The quality of the partitionings produced by the k-way partitioning algorithm is comparable or better than that produced by the multilevel recursive bisection algorithm for a wide range of graphs. The scheme works well for a number of reasons. For coarsening heuristics such as HEM and HEM*, the edge-cut of the k-way partitioning produced by MLRB on the coarsest graph is usually within a factor of 1.3 of the final edge-cut. This happens because the coarsening process creates an excellent smaller replica of the original graph, and MLRB finds a very good k-way partitioning on this small graph. A simple k-way refinement scheme such as GR is able to further improve the initial k-way edge-cut because the refinements needed are fairly local in nature. Hence, the extra power of generalized KL schemes (in terms of its capability of look-ahead) is often unnecessary because the refinement needed are fairly local in nature. (In our experiments, the look-ahead capability of GKLR refinement was found useful only for one type of graphs.) Furthermore, even a simple refinement scheme such as GR is quite capable of moving large portions of graphs across the initial k-way partitioning because the refinement is done in a multi-level context. For coarse graphs, even a movement of a single vertex at the partition boundary is equivalent to moving a large number of vertices in the

Matrix	Multilevel Spectral Bisection	Multilevel Recursive Bisection	Multilevel k-way Partition
144	607.27	48.14	13.40
598A	420.12	35.05	9.92
AUTO	2214.24	179.15	39.67
BRACK2	218.36	16.52	5.65
COPTER2	185.39	16.1	5.71
FLAP	279.67	16.50	5.21
M14B	970.58	74.04	18.30
ROTOR	550.35	29.46	8.71
TORSO	1053.37	63.93	17.13
WAVE	658.13	44.55	12.94
BCSSTK31	309.06	15.21	5.53
BCSSTK32	474.64	22.50	7.39
CANT	978.48	47.70	17.44
CYLINDER93	671.33	39.10	13.07
INPRO1	341.88	24.60	7.88
SHELL93	1111.96	71.59	17.40
SHYY161	129.99	10.13	3.42
TROLL	3063.28	132.08	29.08
VENKAT25	254.52	20.81	5.54
BBMAT	474.23	25.51	10.37
MAP1	850.16	44.80	8.12
MAP2	195.09	11.76	3.07
FINAN512	311.01	17.98	6.49
KEN-11	121.94	4.09	3.13
S38584.1	178.11	4.72	2.55

Table 4: The time required to find a 256-way partitioning by the multilevel spectral bisection, multilevel recursive bisection, and multilevel k-way partition. All times are in seconds.
original graph. In fact, as discussed in [16] even for MLRB, many simpler variations of the KL refinement algorithm, results in equally effective refinement scheme due to the same reason.

Absence of a priority queue in our GR refinement algorithm makes it naturally suited for parallel implementations. In contrast, the original KL refinement algorithm (and its generalization in the k-way partitioning context) are inherently sequential [6]. In [14] we have developed a highly parallel formulation of our multilevel k-way partitioning algorithm that uses the vertex-coloring of the successively coarser graph to effectively parallelize both the coarsening as well as the k-way refinement algorithms. Our experiments on the Cray T3D show that graphs with over a million vertices can be partitioned in 128 partitions in about two seconds on 128 processors.

An additional advantage of the MLkP algorithm over MLRB is that MLkP is much more suited in the context of parallel execution of adaptive computations [26, 25]. For example, in adaptive finite element computation, the mesh that models the physical domain changes dynamically as the simulation progresses. In particular, some parts of the mesh become finer and other parts get coarser. Such dynamic adjustments to the mesh require repartitioning of the mesh to improve load balance. This re-partitioning also results in movement of data structures associated with graph vertices. Hence, a good re-partitioning algorithm should minimize the movement of vertices (in addition to balancing the load and minimizing the cut of the resulting new partition). If started with the multilevel representation of the current partitioning of the graph, our k-way partitioning refinement algorithm makes only minor adjustments to the previous partitioning, and reduces the overall movement of vertices and associated data structures.

In all of our experiments, we tried to minimize the edge-cut. However, for many applications, minimizing other quantities, such as the number of vertices at the boundary of the partitions, the number of adjacent partitions, or the shape of the partitions, may be desirable. This can be accomplished by modifying the refinement algorithm to take into account a different objective function. Even though recursive bisection algorithms can also be modified to use objective functions other than minimization of edge-cut, the multilevel k-way partitioning algorithm provides a much better framework for this task. This is because multilevel k-way makes it possible to incorporate "global" objective functions that cannot be achieved by recursive bisection schemes. For example, the overall communication overhead
of a processor in parallel sparse matrix-vector multiplication is not proportional to the number of edges that connect non-local vertices. Actually it is proportional to the number of vertex-values it has to communicate to neighboring processors. If a vertex on processor P_{i} is connected to many vertex on processor P_{j}, then the vertex-value has to be sent to processor P_{j} only once (rather than once for each edge). Hence, the overall communication volume for a processor is equal to $\sum_{v} N_{v}$, where v are the boundary vertices in a processor, and N_{v} is the number of other processors that the vertex v is connected to. Note that this metric can easily be used as the objective function in the k-way partitioning algorithm. But this cannot be used in recursive bisection-based schemes, because $\sum_{v} N_{v}$ for each processor can be computed only in the context of a k-way partition.

The k-way partitioning algorithms described in this paper are available in the METIS 3.0 graph partitioning package that is publicly available on WWW at http://www.cs.umn.edu//metis.

References

[1] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. In Proceedings of the sixth SIAM conference on Parallel Processing for Scientific Computing, pages 711-718, 1993.
[2] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization. In 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445-452, 1993.
[3] Chung-Kuan Cheng and Yen-Chuen A. Wei. An improved two-way partitioning algorithm with stable performance. IEEE Transactions on Computer Aided Design, 10(12):1502-1511, December 1991.
[4] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network partitions. In In Proc. 19th IEEE Design Automation Conference, pages 175-181, 1982.
[5] J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI circuits. In Proceedings of IEEE International Conference on Computer Aided Design, pages 520-523, 1990.
[6] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-passing multiprocessor. International Journal of Parallel Programming, (16):498-513, 1987.
[7] Lars Hagen and Andrew Kahng. Fast spectral methods for ratio cut partitioning and clustering. In Proceedings of IEEE International Conference on Computer Aided Design, pages 10-13, 1991.
[8] Lars Hagen and Andrew Kahng. A new approach to effective circuit clustering. In Proceedings of IEEE International Conference on Computer Aided Design, pages 422-427, 1992.
[9] M. T. Heath and Padma Raghavan. A Cartesian parallel nested dissection algorithm. SIAM Journal of Matrix Analysis and Applications, 16(1):235-253, 1995.
[10] Bruce Hendrickson and Robert Leland. An improved spectral graph partitioning algorithm for mapping parallel computations. Technical Report SAND92-1460, Sandia National Laboratories, 1992.
[11] Bruce Hendrickson and Robert Leland. The chaco user's guide, version 1.0. Technical Report SAND93-2339, Sandia National Laboratories, 1993.
[12] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. Technical Report SAND93-1301, Sandia National Laboratories, 1993.
[13] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. Technical Report TR 95-037, Department of Computer Science, University of Minnesota, 1995. Also available on WWW at URL http://www.cs.umn.edu//karypis. A short version appears in Supercomputing 95.
[14] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs. Technical Report TR 96-036, Department of Computer Science, University of Minnesota, 1996. Also available on WWW at URL http://www.cs.umn.edu/ karypis. A short version appears in Supercomputing 96.
[15] G. Karypis and V. Kumar. METIS 3.0: Unstructured graph partitioning and sparse matrix ordering system. Technical Report 97-061, Department of Computer Science, University of Minnesota, 1997. Available on the WWW at URL http://www.cs.umn.edu/metis.
[16] G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 1998 (to appear). Also available on WWW at URL http://www.cs.umn.edu/ k karypis. A short version appears in Intl. Conf. on Parallel Processing 1995.
[17] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(2):291-307, 1970.
[18] Gary L. Miller, Shang-Hua Teng, W. Thurston, and Stephen A. Vavasis. Automatic mesh partitioning. In A. George, John R. Gilbert, and J. W.-H. Liu, editors, Sparse Matrix Computations: Graph Theory Issues and Algorithms. (An IMA Workshop Volume). Springer-Verlag, New York, NY, 1993.
[19] Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric approach to graph separators. In Proceedings of 31st Annual Symposium on Foundations of Computer Science, pages 538-547, 1991.
[20] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element equations on concurrent computers. In A. K. Noor, editor, American Soc. Mech. Eng, pages 291-307, 1986.
[21] R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox. Graph contraction and physical optimization methods: a qualitycost tradeoff for mapping data on parallel computers. In International Conference of Supercomputing, 1993.
[22] Alex Pothen, H. D. Simon, Lie Wang, and Stephen T. Bernard. Towards a fast implementation of spectral nested dissection. In Supercomputing '92 Proceedings, pages 42-51, 1992.
[23] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications, 11(3):430-452, 1990.
[24] P. Raghavan. Line and plane separators. Technical Report UIUCDCS-R-93-1794, Department of Computer Science, University of Illinois, Urbana, IL 61801, February 1993.
[25] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion algorithms for repartitioning of adaptive meshes. Journal of Parallel and Distributed Computing, Accepted for publication, 1997. Also available on WWW at URL http://www.cs.umn.edu//karypis.
[26] Kirk Schloegel, George Karypis, and Vipin Kumar. Repartitioning of adaptive meshes: Experiments with multilevel diffusion. In Proceedings of the Third International Euro-Par Conference, pages 945-949, August 1997.
[27] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? Technical Report RNR-93-012, NAS Systems Division, NASA, Moffet Field, CA, 1993.

[^0]: *This work was supported by NSF CCR-9423082, by the Army Research Office contract DA/DAAH04-95-1-0538, by the IBM Partenrship Award, and by the Army High Performance Computing Research Center under the auspices of the Department of the Army, Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. Access to computing facilities was provided by AHPCRC, Minnesota Supercomputer Institute, Cray Research Inc, and by the Pittsburgh Supercomputing Center. Related papers are available via WWW at URL: http://www.cs.umn.edu/karypis

[^1]: ${ }^{1}$ A partitioning is at a local minima, if movement of any vertex from one part to the other does not improve the edge-cut.

[^2]: ${ }^{2}$ We used this heuristic to select the vertices that are inserted in the priority queue as a compromise between inserting all the boundary vertices and inserting only the vertices that lead to a reduction in the edge-cut when moved to one of their neighboring partitions. If all the boundary vertices were inserted, then the cost would have been higher. On the other hand, if only the edge-cut reducing vertices were inserted, the hill-climbing capabilities of the algorithm would have been reduced.

[^3]: ${ }^{3}$ Chaco also has recursive bisection scheme that is similar to MLRB.

