
To Appear in theJournal of Parallel and Distributed Computing

The algorithms described in this paper are implemented by the

‘METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System’.

METIS is available on WWW at URL: http://www.cs.umn.edu/˜metis

Multilevel k-way Partitioning Scheme for Irregular
Graphs ∗

George Karypis and Vipin Kumar

University of Minnesota, Department of Computer Science / Army HPC Research Center

Minneapolis, MN 55455, Technical Report: 95-064

{karypis, kumar}@cs.umn.edu

Last updated on March 27, 1998 at 5:25pm

Abstract

In this paper we present and study a class of graph partitioning algorithms that reduce the size of the graph by

collapsing vertices and edges, find ak-way partitioning of the smaller graph, and then uncoarsen and refine it to

construct ak-way partitioning for the original graph. These algorithms compute ak-way partitioning of a graph

G = (V, E) in O(|E |) time which is faster by a factor ofO(logk) than previously proposed multilevel recursive

bisection algorithms. A key contribution of our work is in finding a high quality and computationally inexpensive

refinement algorithm that can improve upon an initialk-way partitioning. We also study the effectiveness of the

overall scheme for a variety of coarsening schemes.

We present experimental results on a large number of graphs arising in various domains including finite element

methods, linear programming, VLSI, and transportation. Our experiments show that this new scheme produces

partitions that are of comparable or better quality than those produced by the multilevel bisection algorithm, and

requires substantially smaller time. Graphs containing up to 450000 vertices and 3300000 edges, can be partitioned

in 256 domains in less than 40 seconds on a workstation, such as SGI’s Challenge. Compared with the widely used

∗This work was supported by NSF CCR-9423082, by the Army Research Office contract DA/DAAH04-95-1-0538, by the IBM Partenrship
Award, and by the Army High Performance Computing Research Center under the auspices of the Department of the Army, Army Research
Laboratory cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily
reflect the position or the policy of the government, and no official endorsement should be inferred. Access to computing facilities was provided by
AHPCRC, Minnesota Supercomputer Institute, Cray Research Inc, and by the Pittsburgh Supercomputing Center. Related papers are available via
WWW at URL:http://www.cs.umn.edu/˜karypis

1

multilevel spectral bisection algorithm, our new algorithm is usually two orders of magnitude faster, and produces

partitions with substantially smaller edge-cut.

Keywords: Graph Partitioning, Multilevel Partitioning Methods, Spectral Partitioning Methods, Kernighan-

Lin Heuristic, Parallel Sparse Matrix Algorithms.

2

1 Introduction

The graph partitioning problem is to partition the vertices of a graph inp roughly equal partitions, such that the

number of edges connecting vertices in different partitions is minimized. This problem finds applications in many areas

including parallel scientific computing, task scheduling, and VLSI design. Some examples are domain decomposition

for minimum communication mapping in the parallel execution of sparse linear system solvers, mapping of spatially

related data items in large geographical information systems on disk to minimize disk I/O requests, and mapping of

task graphs to parallel processors. The graph partitioning problem is NP-complete. However, many algorithms have

been developed that find reasonably good partitionings [23, 22, 9, 24, 19, 18, 20, 2, 3, 7, 8, 12, 5, 21, 16, 13].

The k-way partitioning problem is most frequently solved by recursive bisection. That is, we first obtain a 2-

way partitioning ofV , and then we recursively obtain a 2-way partitioning of each resulting partition. After logk

phases, graphG is partitioned intok partitions. Thus, the problem of performing ak-way partitioning is reduced to

that of performing a sequence of bisections. Recently [2, 12, 16] multilevel recursive bisection (MLRB) algorithm has

emerged as a highly effective method for computing ak-way partitioning of a graph. The basic structure of a multilevel

bisection algorithm is very simple. The graphG is first coarsened down to a few hundred vertices, a bisection of this

much smaller graph is computed, and then this partitioning is projected back towards the original graph (finer graph),

by periodically refining the partitioning. Since the finer graph has more degrees of freedom, such refinements decrease

the edge-cut. The experiments presented in [16] show that compared to the state-of-the-art implementation of the well

known spectral bisection [1], MLRB produces partitionings that are significantly better and is an order of magnitude

faster. The complexity of the MLRB for producing ak-way partitioning of a graphG = (V, E), is O(|E| logk) [16].

The multilevel paradigm can also be used to construct ak-way partitioning of the graph directly as illustrated in

Figure 1. The graph is coarsened successively as before. But the coarsest graph is now directly partitioned intok

parts, and thisk-partitioning is refined successively as the graph is uncoarsened back into the original graph. There

are a number of advantages of computing thek-way partitioning directly (rather than computing it successively via

recursive bisection). First, the entire graph now needs to be coarsened only once, reducing the complexity of this

phase toO(|E|) down fromO(|E| logk). Second, it is well known that recursive bisection can do arbitrarily worse

thank-way partitioning [27]. Thus, a method that obtains ak-way partitioning directly can potentially produce much

better partitionings. Note that the direct computation of a goodk-way partitioning is harder than the computation

of a good bisection (although both problems are NP-hard) in general. This is precisely whyk-way partitioning is

most commonly computed via recursive bisection. But in the context of multilevel schemes, we only need a roughk-

way partitioning of the coarsest graph, as this can be potentially refined successively as the graph is uncoarsened. For

example, a simple method for computing this initial partitioning in the multilevel context is simply to coarsen the graph

down tok vertices. However in the refinement phase, we need to refine ak-way partitioning, which is considerably

more complicated than refining a bisection. In fact, a direct generalization of the KL refinement algorithm tok-way

partitioning used in [10] is substantially more expensive than performing a KL refinement of a bisection [17]. Even

for 8-way refinement, the run time is quite high for these schemes [11]. Computingk-way refinement fork > 8 is

prohibitively expensive.

In this paper we present ak-way partitioning algorithm. The run time of thisk-way multilevel algorithm (MLkP)

is linear to the number of edgesi.e., O(|E|). A key contribution of our work is a simple and yet powerful scheme for

refining ak-way partitioning in the multilevel context. This scheme is substantially faster than the direct generalization

[11] of the KL bisection refinement algorithm, but is equally effective in the multilevel context. Furthermore, this

new k-way refinement algorithm is inherently parallel [14] (unlike the original KL refinement algorithm which is

3

known to be inherently sequential in nature [6]), making it possible to develop high-quality parallel graph partitioning

algorithms.

We test our scheme on a large number of graphs arising in various domains including finite element methods, linear

programming, VLSI, and transportation. Our experiments show that this new scheme produces partitionings that are

of comparable or better quality than those produced by the state-of-the-art implementation of the MLRB algorithm

[16], and requires substantially smaller time. Graphs containing up to 450000 vertices and 3300000 edges, can be

partitioned in 256 partitions in less than 40 seconds on a workstation, such as SGI’s Challenge. For many of these

graphs, the process of graph partitioning takes even less time than the time to read the graph from the disk into memory.

Compared with the widely used multilevel spectral bisection algorithm [23, 22, 12], our new algorithm is usually two

orders of magnitude faster, and produces partitionings with substantially smaller edge-cut. The run time of ourk-way

partitioning algorithm is comparable to the run time of a small number (2–4) runs of geometric recursive bisection

algorithms [9, 24, 19, 18, 20]. Note that geometric algorithms are applicable only if coordinates of the vertices are

available, and require tens of runs to produce cuts that are of similar quality to those produced by spectral bisection.

The remainder of the paper is organized as follows. Section 2 defines the graph partitioning problem and presents

the basic concepts of multilevelk-way graph partitioning. Some of the material presented in this section on coarsening

strategies is similar to that for multilevel recursive bisection [12, 16], but is included here to make this paper self

contained. Section 3 presents an experimental evaluation of the various parameters of the multilevel graph partitioning

algorithm and compares its performance with that of multilevel recursive bisection algorithm.

2 Graph Partitioning

Thek-waygraph partitioning problem is defined as follows: Given a graphG = (V, E) with |V | = n, partitionV into

k subsets,V1, V2, . . . , Vk such thatVi ∩ Vj = ∅ for i 6= j , |Vi | = n/k, and
⋃

i Vi = V , and the number of edges ofE

whose incident vertices belong to different subsets is minimized. Ak-way partitioning ofV is commonly represented

by a partitioning vectorP of lengthn, such that for every vertexv ∈ V , P[v] is an integer between 1 andk, indicating

the partition to which vertexv belongs. Given a partitioningP, the number of edges whose incident vertices belong

to different partitions is called theedge-cutof the partitioning.

The basic structure of a multilevelk-way partitioning algorithm is very simple. The graphG = (V, E) is first

coarsened down to a small number of vertices, ak-way partitioning of this much smaller graph is computed and then

this partitioning is projected back towards the original graph (finer graph), by successively refining the partitioning

at each intermediate level. This three stage processor of coarsening, initial partitioning, and refinement is graphically

illustrated in Figure 1.

Next we describe each of these phases in more detail.

2.1 Coarsening Phase

During the coarsening phase, a sequence of smaller graphsGi = (Vi , Ei), is constructed from the original graph

G0 = (V0, E0) such that|Vi | < |Vi−1|. In most coarsening schemes, a set of vertices ofGi is combined to form a

single vertex of the next level coarser graphGi+1. Let V v
i be the set of vertices ofGi combined to form vertexv of

Gi+1. In order for a partitioning of a coarser graph to be good with respect to the original graph, the weight of vertex

v is set equal to the sum of the weights of the vertices inV v
i . Also, in order to preserve the connectivity information

in the coarser graph, the edges ofv are the union of the edges of the vertices inV v
i . In the case where more than one

vertex ofV v
i contain edges to the same vertexu, the weight of the edge ofv is equal to the sum of the weights of these

4

G
G

O
C

o
ar

se
n

in
g

 P
h

as
e

U
n

co
arsen

in
g

 P
h

ase

Initial Partitioning Phase

Multilevel k-way partitioning

1G

2G

4G

O

G

1G

2G

3
3G

Figure 1: The various phases of the multilevel k-way partitioning algorithm. During the coarsening phase, the size of the graph
is successively decreased; during the initial partitioning phase, a k-way partitioning of the smaller graph is computed (a 6-way
partitioning in this example); and during the uncoarsening phase, the partitioning is successively refined as it is projected to the
larger graphs.

edges. This coarsening method ensures the following properties [12]: (i) the edge-cut of the partitioning in a coarser

graph is equal to the edge-cut of the same partition in the finer graph; (ii) a balanced partitioning of the coarser graphs

leads to a balanced partitioning of the finer graph.

This edge collapsing idea can be formally defined in terms of matchings [2, 12]. Amatchingof a graph is a set of

edges, no two of which are incident on the same vertex. Thus, the next level coarser graphGi+1 is constructed from

Gi by finding a matching ofGi and collapsing the vertices being matched into multinodes. The unmatched vertices

are simply copied over toGi+1. Since the goal of collapsing vertices using matchings is to decrease the size of the

graphGi , the matching should be maximal. A matching is calledmaximal matching, if it is not possible to add any

other edge to it without making two edges become incident on the same vertex. Note that depending on how matchings

are computed, the size of the maximal matching may be different.

The coarsening phase ends when the coarsest graphGm has a small number of vertices or if the reduction in the size

of successively coarser graphs becomes too small. In our experiments, for ak-way partition, we stop the coarsening

process when the number of vertices becomes less thanck, wherec = 15 in our experiments. The choice of this value

of c was to allow the initial partitioning algorithm to createk partitions of roughly the same size. We also end the

coarsening phase if the reduction in the size of successively graphs is less than a factor of 0.8.

In the remaining sections we describe three ways that we used to select maximal matchings for coarsening. Two of

these matchings, RM [2, 12] and HEM [16], have been previously investigated in the context of MLRB.

5

Random Matching (RM) A maximal matching can be generated efficiently using a randomized algorithm. In our

experiments we used a randomized algorithm similar to that described in [2, 12, 16]. The random maximal matching

algorithm works as follows. The vertices are visited in random order. If a vertexu has not been matched yet, then

we randomly select one of its unmatched adjacent vertices. If such a vertexv exists, we include the edge(u, v) in

the matching and mark verticesu andv as being matched. If there is no unmatched adjacent vertexv, then vertexu

remains unmatched in the random matching. The complexity of the above algorithm isO(|E|).

Heavy Edge Matching (HEM) Random matching is a simple and efficient method to compute a maximal match-

ing and minimizes the number of coarsening levels in a greedy fashion. However, our overall goal is to find a parti-

tioning that minimizes the edge-cut. Consider a graphGi = (Vi , Ei), a matchingMi that is used to coarsenGi , and

its coarser graphGi+1 = (Vi+1, Ei+1) induced byMi . If A is a set of edges, defineW (A) to be the sum of the weights

of the edges inA. It can be shown that

W (Ei+1) = W (Ei)−W (Mi). (1)

Thus, the total edge-weight of the coarser graph is reduced by the weight of the matching. Hence, by selecting a

maximal matchingMi whose edges have a large weight, we can decrease the edge-weight of the coarser graph by a

greater amount. As the analysis in [13] shows, since the coarser graph has smaller edge-weight, it also has a smaller

edge-cut.

Finding a maximal matching that contains edges with large weight is the idea behind theheavy-edge matching

originally introduced in [16]. A heavy-edge matching is computed using a randomized algorithm similar to that for

computing a random matching described earlier. The vertices are again visited in random order. However, instead of

randomly matching a vertexu with one of its adjacent unmatched vertices, we matchu with the vertexv such that the

weight of the edge(u, v) is maximum over all valid incident edges (heavier edge). Note that this algorithm does not

guarantee that the matching obtained has maximum weight (over all possible matchings), but our experiments have

shown that it works very well in practice. The complexity of computing a heavy-edge matching isO(|E|), which is

asymptotically similar to that for computing the random matching.

Modified Heavy Edge Matching (HEM*) The analysis of the multilevel bisection algorithm in [13] shows that

a good edge-cut of a coarser graph is closer to that of a good edge-cut of the original graph if the average degree of the

coarser graph is small. Themodified heavy edge matching(HEM*) is a modification of HEM that tries to decrease

the average degree of coarser graphs.

A HEM* is computed using a randomized algorithm similar to that for computing a HEM. The vertices are again

visited in random order. Letv be such a vertex, and letH be the set of unmatched adjacent vertices ofv that are

connected tov by an edge of maximum weight (H can contain more than one vertex if some edges connected tov

have identical weights). For each vertexu ∈ H , let Wv−u be the sum of the weights of the edges ofu that connectu to

vertices adjacent tov. In the HEM* scheme,v is matched with the vertexu ∈ H , such thatWv−u is maximized over

all vertices inH .

As illustrated in Figure 2, HEM* leads to fewer edges in the coarser graph and the average weight of edges in

coarser graphs tend to be higher. Hence, in subsequent coarsening levels, the weight of the edges included in the

matching increases, making HEM* to be more effective. HEM* is more effective than HEM in producing a good

coarsening of the original graphG0 when the edges ofG0 have identical weights. In fact, the first level coarser

6

2

1

33
2

2

1 1

2

2

2

1

1

1

1

1

3

3

1

1

12

Average Degree: 1.8

Visit Order: 16, 12, 2, 1, 3, 10, 4, 5, 9, 11, 13, 6, 15, 8, 14, 7

HEM*

Average Degree: 1.56

RM

3

1
2

1

21

1

1

2 2

1

2

2 2 2

2

2

2

8

1

2

2

2

1

1

2

12

2

Figure 2: Example of the matchings produced by RM and HEM*.

graphG1 produced by HEM is similar to that produced by RM, since there are no heavy edges inG0. In contrast,

G1 produced by HEM* will have smaller average degree because the vertices matched by HEM* will be adjacent to

many common vertices. The complexity of computing HEM* isO(|E|), which is asymptotically the same as that for

computing the random matching and heavy edge matching. But the constant for HEM* is somewhat higher than that

for HEM and RM.

2.2 Initial Partitioning Phase

The second phase of a multilevelk-way partitioning algorithm is to compute ak-way partitioningPm of the coarse

graphGm = (Vm, Em) such that each partition contains roughly|V0|/k vertex weight of the original graph. Since

during coarsening, the weights of the vertices and edges of the coarser graph were set to reflect the weights of the ver-

tices and edges of the finer graph,Gm contains sufficient information to intelligently enforce the balanced partitioning

and the minimum edge-cut requirements.

One way to produce the initialk-way partitioning is to keep coarsening the graph until it has onlyk vertices left.

These coarsek vertices can serve as the initialk-way partitioning of the original graph. There are two problems with

this approach. First, for many graphs, the reduction in the size of the graph in each coarsening step becomes very

small after some coarsening steps, making it very expensive to continue with the coarsening process. Second, even if

we are able to coarsen the graph down to onlyk vertices, the weights of these vertices are likely to be quite different,

making the initial partitioning highly unbalanced.

In our algorithm, thek-way partitioning ofGm is computed using our multilevel bisection algorithm [16]. Our

experience has shown that our multilevel recursive bisection algorithm produces good initial partitionings and requires

relatively small amount of time as long as the size of the original graph is sufficiently larger thank.

7

2.3 Uncoarsening Phase

During the uncoarsening phase, the partitioningPm of the coarser graphGm is projected back to the original graph,

by going through the graphsGm−1,Gm−2, . . . ,G1. Since each vertexv of Gi+1 contains a distinct subset of vertices

V v
i of Gi , Pi is obtained fromPi+1 by simply assigning the set of verticesV v

i to the partitioningPi+1[v]; i.e.,

Pi [u] = Pi+1[v], ∀u ∈ V v
i .

Note that, even if the partitioning ofGi is at a local minima1, the projected partitioning ofGi−1 may not be at a

local minima. SinceGi−1 is finer, it has more degrees of freedom that can be used to further improve the partitioning

and thus decrease the edge-cut. Hence, it may still be possible to improve the projected partitioning ofGi−1 by local

refinement heuristics.

A class of local refinement algorithms that tend to produce very good results are those that are based on the

Kernighan-Lin (KL) partitioning algorithm [17] and their variants [4, 12]. The KL algorithm incrementally swaps

vertices among partitions of a bisection to reduce the edge-cut of the partitioning, until the partitioning reaches a local

minima. One commonly used variation of the KL algorithm for bisection refinement is due to Fiduccia-Mattheyses [4].

In particular, for each vertexv, this variation of the KL algorithm computes thegain which is the reduction in the

edge-cut achieved by movingv to the other partition. These vertices are inserted into two priority queues, one for each

partition, according to their gains. Initially all vertices areunlocked, i.e., they are free to move to the other partition.

The algorithm iteratively selects an unlocked vertexv with the largest gain from one of the two priority queues and

moves it to the other partition. When a vertexv is moved, it islockedand the gain of the vertices adjacent tov are

updated. After each vertex movement, the algorithm also records the size of the cut achieved at this point. Note that

the algorithm does not allow locked vertices to be moved since this may result in thrashing (i.e., repeated movement

of the same vertex). A single pass of the algorithm ends when there are no more unlocked vertices (i.e., all the vertices

have been moved). Then, the recorded cut-sizes are checked, and the point where the minimum cut was achieved is

selected, and all vertices that were moved after that point are moved back to their original partition. Now, this be-

comes the initial partitioning for the next pass of the algorithm. In the case of multilevel recursive bisection algorithms

[2, 12, 16], KL refinement becomes very powerful, as the initial partitioning available at each successive uncoarsening

level is already a good partition.

However, refining ak-way partitioning is significantly more complicated because vertices can move from a partition

to many other partitions; thus, increasing the optimization space combinatorially. An extension of the KL refinement

algorithm in the case ofk-way refinement is described in [10]. This algorithm usesk(k − 1) priority queues, one for

each type of move. In each step of the algorithm, the moves with the highest gain are found from each of thesek(k−1)

queues, and the move with the highest gain that preserves or improves the balance, is performed. After the move, all

of the K (k − 1) priority queues are updated. The complexity ofk-way refinement is significantly higher than that of

2-way refinement, and for a graph withm edges, this complexity isO(k ∗m). This approach is only practical for small

values ofk. Due to this high complexity, the multilevel recursive octasection algorithm described in [10], requires the

same amount of time as multilevel recursive bisection, even though recursive octasection spends much less time for

coarsening.

We have developed simplek-way refinement algorithms that are simplified versions of thek-way Kernighan-Lin

refinement algorithm, and their complexity is independent of the number of partitions being refined. As the results in

Section 3 show, despite the simplicity of our refinement algorithms, they produce high quality partitionings in small

1A partitioning is at a local minima, if movement of any vertex from one part to the other does not improve the edge-cut.

8

9

Partition 1

Partition 0

Partition 2

5

1

2

3 4

6

7 8

N(5) = {0,2}
I D[5] = 2

E D[5]0 = 2

E D[5]2 = 3

Figure 3: Illustration of neighboring partitions, internal, and external vertex degrees.

amount of time. In the rest of this section we describe some key concepts and definitions that are used in the description

of our twok-way partitioning refinement algorithms, described in the next two sections.

Consider a graphGi = (Vi , Ei), and its partitioning vectorPi . For each vertexv ∈ Vi we define theneighborhood

N(v) of v to be the union of the partitions that the vertices adjacent tov (i.e., Ad j (v)) belong to. That is,N(v) =
∪u∈Ad j (v)Pi [u]. Note that ifv is an interior vertex of a partition, thenN(v) = ∅. On the other hand, the cardinality

of N(v) can be as high asAd j (v), for the case in which each vertex adjacent tov belongs to a different partition.

During refinement,v can move to any of the partitions inN(v). For each vertexv we compute the gains of moving

v to one of its neighbor partitions. In particular, for everyb ∈ N(v) we computeE D[v]b as the sum of the weights

of the edges(v, u) such thatPi [u] = b. Also we computeI D[v] as the sum of the weights of the edges(v, u) such

that Pi [u] = Pi [v]. The quantityE D[v]b is called theexternal degreeof v to partitionb, while the quantityI D[v]
is called theinternal degreeof v. Given these definitions, the gain of moving vertexv to partitionb ∈ N(v) is

g[v]b = E D[v]b − I D[v]. These definitions are illustrated in Figure 3. For example for vertex 5,N[5] = {0,2},
I D[5] = 2, E D[5]0 = 2, andE D[5]2 = 3.

However, in addition to decreasing the edge-cut, moving a vertex from one partition to another must not create

partitions whose size is unbalanced. In particular, our partitioning refinement algorithms move a vertex only if it

satisfies the followingBalancing Condition. Let Wi be a vector ofk elements, such thatWi [a] is the weight of

partitiona of graphGi , and letW min = 0.9|V0|/k andW max = C|V0|/k. A vertexv, whose weight isw(v) can be

moved from partitiona to partitionb only if

Wi [b] +w(v) ≤ W max , and (2)

Wi [a] −w(v) ≥ W min (3)

The first condition ensures that movement of a node into a partition does not make its weight higher thanW max . Note

that by adjusting the value ofC, we can vary the degree of imbalance among partitions. IfC = 1, then the refinement

algorithm tries to make each partition of equal weight. In our experiments we found that lettingC to be greater than

1.0, tends to improve the quality of the partitionings. However, in order to minimize the load imbalance, we used

C = 1.03; that puts an upper bound of 3% on load imbalance. Note that the second condition is not critical for load

balance, but it ensures that there is no partition with too few vertices.

9

Greedy Refinement (GR) The lookahead in the KL algorithm serves a very important purpose. It allows move-

ment of an entire cluster of vertices across a partition boundary. Note that it is quite possible that as the cluster is

moved across the partition boundary, the edge-cut increases, but after the entire cluster of vertices moves across the

partition, then the overall edge-cut comes down. In the context of multilevel schemes, this lookahead becomes less

important. The reason is that these clusters of vertices are coarsened into a single vertex at successive coarsening

phases. Hence, movement of a vertex at a coarse level really corresponds to the movement of a group of vertices in

the original graph.

If the lookahead part of KL is eliminated (i.e., if vertices are moved only if they lead to positive gain), then it

becomes less useful to maintain a priority queue. In particular, vertices whose move results in a large positive gain

will be moved anyway even if they are not moved earlier (in the priority order. Hence, a variation of KL that simply

visits the boundary vertices in a random order and moves them if they result in a positive gain is likely to work well

in the multilevel context. Ourgreedy refinementalgorithm is based on this observation. It consists of a number of

iterations. In each iteration all the vertices are checked to see if they can be moved so that either the edge-cut of the

partitioning can be decreased (while preserving balance), or the balance is improved.

In particular, GR works as follows. Consider a graphGi = (Vi , Ei), and its partitioning vectorPi . The vertices

are checked in a random order. Letv be such a vertex, letPi [v] = a be the partition thatv belongs to. Ifv is a

node internal to partitiona thenN(v) = ∅, andv is not moved. Ifv is at the boundary of the partition, thenN(v) is

non-empty. LetN ′(v) be the subset ofN(v) that contains all partitionsb such that movement of vertexv to partition

b does not violate the Balancing Condition. Now vertexv is moved to one of the adjacent partitionsb, if either one of

the following conditions is satisfied:

1. E D[v]b > I D[v] andE D[v]b is maximum among allc ∈ N ′(v).

2. E D[v]b = I D(v) andWi [a] −Wi [b] > w(v).

That is, the GR algorithm movesv to a partition that leads to the largest reduction in the edge-cut without violating

the balance condition. If no reduction in the edge-cut is possible, by movingv, thenv is moved to the partition (if any)

that leads to no increase in the edge-cut but improves the balance. After moving vertexv, the algorithm updates the

internal and external degrees of the vertices adjacent tov to reflect the change in the partition.

The GR algorithm converges after a small number of iterations. In our experiments, we found that for most graphs,

and with the HEM (or HEM*) matching scheme in particular, GR converged within four to eight iterations.

Global Kernighan-Lin Refinement (GKLR) As discussed in the previous section, the GR algorithm lacks any

capabilities of climbing out of local minima. Our second refinement heuristic calledglobal Kernighan-Lin, is some-

what more powerful and is closer to the original KL algorithm in spirit. It adds some limited hill-climbing capabilities

to the GR algorithm and also uses a priority queue to determine the sequence of vertex moves.

The GKLR algorithm uses a global priority queue that stores the vertices according to their gains. Initially, all the

vertices are scanned, and those whose sum of external degrees2 is greater or equal to their internal degrees are inserted

into the priority queue. In particular, letv be such a vertex, letN(v) be the neighborhood ofv, andb ∈ N(v) such that

2We used this heuristic to select the vertices that are inserted in the priority queue as a compromise between inserting all the boundary vertices
and inserting only the vertices that lead to a reduction in the edge-cut when moved to one of their neighboring partitions. If all the boundary vertices
were inserted, then the cost would have been higher. On the other hand, if only the edge-cut reducing vertices were inserted, the hill-climbing
capabilities of the algorithm would have been reduced.

10

E D[v]b is maximum over the external degrees of partitions inN(v). We insertv into the priority queue with a gain

equal toE D[v]b − I D[v].
The algorithm then proceeds and selects the vertex from the priority queue with the highest gain. Having selected

such a vertexv, then the algorithm selects a partb ∈ N(v) to movev such thatE D[v]b is maximized while satisfying

the balance condition (Equations 2 and 3). Note that these swaps may lead to an increase in the edge-cut, since

vertices are moved even if they have a negative gain value. The GKLR algorithm continues moving vertices until it

has performedx vertex moves that have not decreased the overall edge-cut. In that case, the lastx moves are undone.

Once a vertex is moved, it is not considered for movement in the same iteration. This is repeated for a small number

of iterations or until convergence.

Note that in each step, the vertices selected for movement by the GKLR algorithm and by the generalized KL

of [11] may be quite different. GKLR selects a vertexv that has a move (among all possible moves to neighboring

partitionsN(v)) with the highest gaing[v]max . However, depending on the weight of the partitions, this move may

never take place, and insteadv can be moved to a partitiona ∈ N(v) that leads to a smaller gaing[a]v. However, there

may be another vertexu on the priority queue that has a move with the highest gaing[u]max that may be permissible.

Now if g[v]a < g[u]max < g[v]max , the generalization of the KL algorithm will select to move vertexu before

considering vertexv. Thus, in each step, GKLR does not necessarily selects the vertex with the largest realizable gain.

Furthermore, since the single priority queue contains only vertices whose sum of the external degrees is greater or

equal to the internal degree, GKLR has less powerful hill-climbing capabilities than the generalized KL [11] that uses

multiple priority queues and considers all the vertices.

3 Experimental Results

We evaluated the performance of the multilevel graph partitioning algorithm on a wide range of graphs arising in

different application domains. The characteristics of these graphs are described in Table 1. These graphs are classified

into six groups. The first group contains graphs that correspond to finite element meshes, the second group contains

graphs that correspond to coefficient matrices (i.e., assembled matrices) with multiple degrees of freedom and linear

basis functions, the third group corresponds to assembled matrices with non linear basis functions, the fourth group

corresponds to graphs that represent highway networks, the fifth group corresponds to graphs arising in linear pro-

gramming applications, and the sixth group corresponds to graphs that represent VLSI circuits. For each of the first

two groups, we have a large number of graphs, but for the last four groups, we have only a few graphs per group. So

observed trends for the first two groups are more reliable than those for the last four groups.

All the experiments were performed on an SGI Challenge with 1.2GBytes of memory and 200MHz MIPS R4400

processor. All times reported are in seconds. Since the nature of the multilevel algorithm discussed is randomized, we

performed all experiments with fixed seed.

3.1 Matching Schemes

We implemented the three matching schemes described in Section 2.1. These schemes are (a) random matching (RM),

(b) heavy edge matching (HEM), and (c) modified heavy edge matching (HEM*). For all the experiments, we used

the GR refinement policy during the uncoarsening phase. The results for 32-way and 256-way partitioning are shown

in Figures 4 and 5 for all the graphs in Table 1.

From Figure 4 we see that both HEM and HEM* consistently produce partitionings whose edge-cut is better than

that of the partitionings produced by RM. For some groups of graphs, HEM and HEM* produce partitionings whose

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

32-way HEM 32-way HEM* 256-way HEM 256-way HEM* RM Matching (baseline)

Figure 4: Quality of the partitionings of HEM and HEM* relative to RM matching. For each graph, the ratio of the edge-cut of the
HEM and HEM* matching schemes to that of the RM matching scheme is plotted for 32- and 256-way partitionings. Bars under the
baseline indicate that the corresponding matching scheme performs better than RM.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

32-way HEM 32-way HEM* 256-way HEM 256-way HEM* RM Matching (baseline)

Figure 5: Run time of partitioning using HEM and HEM* relative to RM matching. For each graph, the ratio of the time required by
the HEM and HEM* matching schemes to that of the RM matching scheme is plotted for 32- and 256-way partitionings. Bars under
the baseline indicate that the corresponding matching scheme is faster than RM.

12

Matrix Name No. of Vertices No. of Edges Description
144 144649 1074393 3D Finite element mesh (Parafoil)
598A 110971 741934 3D Finite element mesh (Submarine I)
AUTO 448695 3314611 3D Finite element mesh (GM Saturn)
BRACK2 62631 366559 3D Finite element mesh (Bracket)
COPTER2 55476 352238 3D Finite element mesh (Helicopter blade)
FLAP 51537 479620 3D Finite element mesh
M14B 214765 3358036 3D Finite element mesh (Submarine II)
ROTOR 99617 662431 3D Finite element mesh
TORSO 201142 1479989 3D Finite element mesh (Human torso)
WAVE 156317 1059331 3D Finite element mesh
BCSSTK31 35588 572914 3D Stiffness matrix
BCSSTK32 44609 985046 3D Stiffness matrix
CANT 54195 1960797 3D Stiffness matrix
CYLINDER93 45594 1786726 3D Stiffness matrix
INPRO1 46949 1117809 3D Stiffness matrix
SHELL93 181200 2313765 3D Stiffness matrix
SHYY161 76480 152002 CFD/Navier-Stokes
TROLL 213453 5885829 3D Stiffness matrix
VENKAT25 62424 827684 2D Coefficient matrix
BBMAT 38744 993481 2D Stiffness matrix
MAP1 267241 334931 Highway network
MAP2 78489 98995 Highway network
FINAN512 74752 261120 Linear programming
KEN-11 14694 33880 Linear programming
S38584.1 22143 35608 Sequential circuit

Table 1: Various graphs used in evaluating the multilevel graph partitioning and sparse matrix ordering algorithm.

64EC 256EC
Graph RM HEM HEM* RM HEM HEM*
144 200855 142464 136949 292079 229401 223615
AUTO 525526 343154 334210 815578 575975 560929
FLAP 58034 42810 39394 119368 95452 92358
BCSSTK32 221234 155286 143176 342679 287300 265350
INPRO1 244035 159632 149373 405038 319496 301075
BBMAT 324794 154878 89305 584891 350850 196325
MAP2 1064 911 839 2382 2205 2173
KEN-11 16273 15677 15578 18697 18067 17813

Table 2: Quality of initial partitionings for the RM, HEM, and HEM* matching schemes.

edge-cut is better than that of RM by up to 35%. The reason for the poor performance of RM becomes clear from

Table 2 that contains the size of the edge-cut of the initialk-way partitioning. For all graphs, the size of the initial

edge-cut on the coarsest graph is significantly worse for RM compared with HEM and HEM*. Note that the difference

in the size of the initial edge-cut on the coarsest graph is much greater for the three schemes than those shown in

Figure 4. For example, for the first two groups of graphs, the overall quality of RM, HEM, and HEM* is similar, but

the edge-cut of thek-way partitioning in the coarsest graph obtained by HEM and HEM* are 30% to 65% smaller than

the those obtained by RM (as shown in Table 2). (As a result, for RM,k-way refinement takes more time compared

with HEM and HEM*.) As discussed in [13], the effectiveness of a coarsening scheme depends on how successful it

is in removing a significant amount of edge-weight from the successive coarser graphs. According to this criterion,

HEM and HEM* are strictly better coarsening schemes than RM because they remove more edge-weight from the

graph.

Comparing HEM against HEM*, we see that for most graphs, their performance is comparable. The only notable

exception isBBMAT for which HEM* does up to 10% better than HEM.BBMAT is the type of graph in which

applying RM at the finest graph (G0) significantly increases the average degree of the first level coarser graph (G1).

Note that HEM and RM compute the same first level coarse graphG1, since the weights of all edges inG0 is the same.

Hence, forBBMAT the average degree ofG1 obtained by HEM is much higher than that obtained using HEM*. For

13

other type of graphs, particularly those that correspond to finite element meshes, RM increases the average degree only

slightly in going fromG0 to G1, which in turn allows HEM to perform good coarsening. As a result, forBBMAT, the

initial partitioning found by HEM is much worse than that found by HEM*. This can be seen in Table 2. Note that the

initial edge-cut for HEM and HEM* are similar for all problems exceptBBMAT.

From Figure 5 we see that for 32-way partition, HEM is up to 20% faster than RM, while HEM* is up to 41%

slower than RM. HEM is faster than RM because it requires much less refinement, and the coarsening step of HEM

is only slightly slower than the coarsening step in RM. HEM* is slower than RM because coarsening using HEM* is

much slower than coarsening using RM. For a 256-way partition, HEM is again faster than RM (quite consistently),

but now for 7 graphs HEM* is faster than RM. This is because, RM requires substantially more refinement time and

because the coarsest graphGm produced by RM has many more edges than that produced by HEM*, that increases

the initial partitioning time.

As the experiments show, for most of the graphs, HEM is an excellent matching scheme that produces good par-

titionings, and requires the smallest overall run time. However, for certain class of graphs HEM* does better than

HEM.

3.2 Refinement Policies

As described in Section 2.3, there are different ways that a partitioning can be refined during the uncoarsening phase.

We evaluated the performance of two refinement policies, both in terms of how good partitionings they produce and

also how much time they require. The refinement policies that we evaluate are greedy refinement (GR), and global

Kernighan-Lin refinement (GKLR).

The result of these refinement policies for computing a 32-way and a 256-way partition for the graphs in Table 1 is

shown in Figures 6, 8, 7, and 9. Figures 6 and Figures 7 show the edge-cut of the partitionings produced by GKLR

relative to those produced by GR for the three different coarsening schemes, while Figures 8 and Figures 9 shows the

amount of time required by GKLR relative to GR for computing these partitionings.

A number of observations can be made from Figures 6 and Figures 7. GKLR is significantly better than GR only for

BBMAT. For other problems the difference is minor. If RM coarsening is used, then GKLR does better than GR more

consistently. If HEM or HEM* coarsening is used, then GKLR performs quite similar to GR for all problems. Even

for BBMAT, the gap between the performance of GKLR and GR is narrower for HEM and HEM* compared with RM.

If we combine the 32- and 256-way partitionings as a set of 150 different runs, GKLR produces better partitionings

for 31 out of these 150 runs. Out of these 31 runs, 14 were obtained using RM, 7 using HEM, and 10 using HEM*.

Another interesting observation is that for most graphs the difference in the quality of the partitionings produced by

GR and GKLR is very small. The difference in the quality is less than 2% for 139 out of the 150 different runs. The

only notable exceptions areKEN-11 for which GR does up to 7% better than GKLR, andBBMAT for which GKLR

does up to 21% better than GR. From these experimental results, it is clear that a simple refinement scheme such as

GR is quite adequate, particularly if the initial partitioning for the coarsest graph is quite good. The additional power

of GKLR is useful only when it is used in conjunction with the RM matching scheme which leads to poor initial

partitionings.

From Figures 8 and Figures 9 we see that the amount of time required for a 32- and 256-way partitioning using

GKLR is significantly higher than the time required using GR. GKLR requires more time for each of the 150 different

runs. In some cases, GKLR requires more than twice the time required by GR. Comparing the different matching

schemes, we see that the relative increase in the run time is higher for RM than for HEM and HEM*. The is not

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

RM HEM HEM* GR Refinement (baseline)

Figure 6: Quality of GKLR refinement scheme for 32-way partitioning for RM, HEM, and HEM* coarsening schemes relative to
GR refinement scheme. For each graph, the ratio of the edge-cut of the GKLR refinement algorithm to that of the GR algorithm
scheme is plotted for RM, HEM and HEM* matching schemes. Bars under the baseline indicate that GKLR performs better than
GR for the corresponding matching scheme.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

RM HEM HEM* GR Refinement (baseline)

Figure 7: Quality of GKLR refinement scheme for 256-way partitioning for RM, HEM, and HEM* coarsening schemes relative to
GR refinement scheme. For each graph, the ratio of the edge-cut of the GKLR refinement algorithm to that of the GR algorithm
scheme is plotted for RM, HEM and HEM* matching schemes. Bars under the baseline indicate that GKLR performs better than
GR for the corresponding matching scheme.

15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

RM HEM HEM* GR Refinement (baseline)

Figure 8: Run time for the 32-way partitionings produced by the GR and GKLR refinement algorithms for RM, HEM, and HEM*
coarsening schemes. For each graph, the ratio of the time required for partitioning using the GKLR refinement algorithm to that of
the GR algorithm scheme is plotted for RM, HEM and HEM* matching schemes. Bars under the baseline indicate that GKLR is
faster than GR for the corresponding matching scheme.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

RM HEM HEM* GR Refinement (baseline)

Figure 9: Run time for the 256-way partitionings produced by the GR and GKLR refinement algorithms for RM, HEM, and HEM*
coarsening schemes. For each graph, the ratio of the time required for partitioning using the GKLR refinement algorithm to that of
the GR algorithm scheme is plotted for RM, HEM and HEM* matching schemes. Bars under the baseline indicate that GKLR is
faster than GR for the corresponding matching scheme.

16

surprising since RM requires more refinement and also, RM benefits the most from GKLR.

In summary, GR and GKLR tend to produce partitionings that have similar edge-cuts, but with GKLR requiring

significantly more time than GR.

3.3 Comparison with Other Partitioning Schemes

Figure 10 shows the relative quality of our multilevelk-way partitioning algorithm (MLkP) compared to the multilevel

recursive bisection algorithm (MLRB) described in [16] (implemented inMETIS [15]). METIS is a set of programs for

partitioning unstructured graphs and for ordering sparse matrices that implements various algorithms described in [16].

For each graph we plot the ratio of the edge-cut of the MLkP algorithm to the edge-cut of the MLRB algorithm. Ratios

that are less than one indicate that MLkP produces better partitionings than MLRB. For this comparison and for the

rest of the comparisons in this section, the MLkP algorithm uses HEM during coarsening and GR during refinement.

From this figure, we see that for almost all problems, MLkP and MLRB produce partitionings of similar quality.

In particular, for the two highway networks (MAP1 andMAP2), MLkP produces up to 19% smaller edge-cuts than

MLRB. For the graphs that correspond to finite element meshes (144, 598A, AUTO, BRACK2, COPTER2, M14B,

ROTOR, TORSO, andWAVE), MLkP does slightly (up to 5%) and consistently better than MLRB. For the graphs

that correspond to coefficient matrices of finite element applications with multiple degrees of freedom (BCSSTK31,

BCSSTK32, CANT, CYLINDER93, FLAP, INPRO1, SHELL93, SHYY161, TROLL, andVENKAT25), MLkP

and MLRB perform quite similarly (within 6% of each other). The only problem for which MLkP performs sig-

nificantly worse than MLRB isBBMAT, for which MLkP performs up to 20% worse than MLRB. As discussed in

Section 2.1, these graph correspond to assembled matrices with non-linear basis functions, and the HEM coarsening

scheme does not lead to good coarsenings. However, for this graph both HEM* coarsening and GKLR refinement

perform substantially better than HEM and GR, respectively. In particular, if we use HEM* for coarsening and GKLR

for refinement, then the edge-cut for 128-way partitioning produced by MLkP is better by 2% than that of MLRB.

In summary, for large class of graphs MLkP produces partitionings that are equally good or even better than those

produced by the MLRB algorithm. Furthermore, the combination of HEM and GR seems quite adequate for most

problems. However, for some problems HEM* and GKLR may be better choices for coarsening and refinement,

respectively.

Figure 11 shows the amount of time required by the MLRB algorithm relative to the time required by the MLkP

algorithm for 256-way partitionings. From this graph we see that MLkP is usually two to four times faster than MLRB.

In particular, for moderate size problems, MLkP is over three times faster while for the larger problems, MLkP is over

four times faster. The actual run times for a 256-way partitioning is shown in Table 4. From this table we see that even

the larger problem (448000 vertex mesh of GM’s Saturn car) is partitioned in under 40 seconds.

Figures 12 and 13 present the relative quality and run-time, respectively, of MLkP with respect to multilevel spectral

bisection (MSB) [1]. From these figures we see that for all the graphs, MLkP produces better partitionings than MSB.

In some cases MLkP produces partitionings that cut over 70% fewer edges than those cut by the MSB. Furthermore,

from Figure 13 we see that MLkP is up to two orders of magnitude faster the MSB.

The graph partitioning package Chaco 2.0 [11, 12] also implements multilevel quadrisection and octasection par-

titioning algorithms. Chaco uses random matching during coarsening, and spectral quadrisection and octasection

methods to directly divide the coarsest graph into four and eight pieces, respectively3 [10]. The key difference be-

tween our scheme and the one implemented in Chaco’s recursive octasection is that their Kernighan-Lin refinement

3Chaco also has recursive bisection scheme that is similar to MLRB.

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

Finite Element Meshes

Coefficient Matrices

Non-Linear Basis Functions

Transportation

LP

VLSI

64 parts 128 parts 256 parts Multilevel Recursive Bisection (baseline)

Figure 10: Quality of the partitionings produced by MLkP relative to MLRB. The multilevel k-way partitioning algorithm uses HEM
during coarsening and GR during refinement. For each graph, the ratio of the edge-cut of the k-way partitioning algorithm to that
of the recursive bisection algorithm is plotted for 32-, 64-, 128-, and 256-way partitionings. Bars under the baseline indicate that
k-way partitioning performs better than recursive bisection.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

Multilevel Recursive Bisection Multilevel k-way Partition (baseline)

Figure 11: Run time of MLkP relative to MLRB for 256-way partitioning. The multilevel k-way partitioning algorithm uses HEM
during coarsening and GR during refinement. For each graph, the ratio of the run time of recursive bisection algorithm to that of the
k-way partitioning algorithm is plotted for 256-way partitionings. Bars above the baseline indicate that k-way partitioning is faster
than recursive bisection.

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

64 parts 128 parts 256 parts Multilevel Spectral Bisection (baseline)

Figure 12: Quality of MLkP relative to multilevel spectral bisection. For each graph, the ratio of the edge-cut of the k-way
partitioning algorithm to that of the recursive bisection algorithm is plotted for 32-, 64-, 128-, and 256-way partitionings. Bars under
the baseline indicate that k-way partitioning performs better than multilevel spectral bisection.

0

10

20

30

40

50

60

70

80

90

100

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

Multilevel Spectral Bisection Multilevel k-way Partition (baseline)

Figure 13: Run time of MLkP relative to spectral bisection for 256-way partitioning. For each graph, the ratio of the run time of
multilevel spectral bisection algorithm to that of the k-way partitioning algorithm is plotted for 256-way partitionings. Bars above the
baseline indicate that k-way partitioning is faster than multilevel spectral bisection.

19

Multilevel Spectral Bisection Multilevel Recursive Bisection Multilevel k-way Partition
Matrix 64EC 128EC 256EC 64EC 128EC 256EC 64EC 128EC 256EC
144 96538 132761 184200 88806 120611 161563 87750 118112 156145
598A 68107 95220 128619 64443 89298 119699 63262 86909 114846
AUTO 208729 291638 390056 194436 269638 362858 193092 263228 349137
BRACK2 34464 49917 69243 29983 42625 60608 29742 42170 59847
COPTER2 47862 64601 84934 43721 58809 77155 42411 56100 73946
FLAP 35540 54407 80392 30741 49806 74628 30461 49203 73641
M14B 124749 172780 232949 111104 156417 214203 109013 150331 206129
ROTOR 63251 88048 120989 53228 75010 103895 52069 73841 101732
TORSO 413501 473397 522717 117997 160788 218155 112797 155087 209895
WAVE 106858 142060 187192 97978 129785 171101 94251 124377 164187
BCSSTK31 86244 123450 176074 65249 97819 140818 66039 100713 143749
BCSSTK32 130984 185977 259902 106440 152081 222789 106661 160651 223545
CANT 459412 598870 798866 442398 574853 778928 428754 567478 756061
CYLINDER93 290194 431551 594859 289639 416190 590065 284012 409445 582015
INPRO1 125285 185838 264049 116748 171974 250207 118176 172592 251628
SHELL93 178266 238098 318535 124836 185323 269539 123437 181203 261296
SHYY161 6641 9151 11969 4365 6317 9092 4607 6591 9251
TROLL 529158 706605 947564 453812 638074 864287 445215 630918 846822
VENKAT25 50184 77810 116211 47514 73735 110312 49137 74470 111249
BBMAT 179282 250535 348124 55753 92750 132387 62018 109495 158990
MAP1 3546 6314 8933 1388 2221 3389 1122 1892 3108
MAP2 1759 2454 3708 828 1328 2157 726 1213 1984
FINAN512 15360 27575 53387 11388 22136 40201 11853 23365 42589
KEN-11 20931 23308 25159 14257 16515 18101 12360 13563 15836
S38584.1 5381 7595 9609 2428 3996 5906 2362 3869 5715

Table 3: The edge-cuts produced by the multilevel recursive bisection, multilevel recursive bisection, and multilevel k-way partition.

algorithm is direct generalization of the 2-way refinement algorithm to handle both 4-way and 8-way refinement. For

example, in the case of 8-way refinement, their algorithm uses 8∗7 priority queues for all the different types of moves.

This algorithm is significantly slower than either the greedy or global Kernighan-Lin refinement algorithms used by

our multilevelk-way partition. In fact, Chaco’s recursive octasection is not any faster than its recursive bisection.

Furthermore, Chaco’s recursive octasection is even more expensive to generalize beyond 8-way refinement.

Figure 14 shows the relative performance of our MLkP algorithm compared to Chaco’s multilevel recursive octa-

section, for an 8- and 64-way partitionings. Note that for an 8-way partition, no recursive partitioning is performed

by Chaco, while for 64-way partition, only one level of recursion is performed. From this figure we can see that for

both 8-way and 64-way partitioning, MLkP produces partitionings that are in general better than those produced by

Chaco’s recursive octasection. For some graphs, MLkP cuts up to 70% fewer edges than Chaco does. The differ-

ence in quality is due to the following two reasons. First, Chaco’s recursive octasection algorithm uses RM matching

during coarsening, which leads to successive coarser graphs with higher edge-weight. Second, the initial partitioning

obtained by spectral octasection is worse (cuts more edges) than the initial partitioning obtained by MLRB. Thus,

even-though Chaco’s recursive octasection algorithm uses the generalized KL refinement algorithm, it does not seem

to be able to gain the losses due to coarsening and initial partitioning. Figure 15 shows the relative run time of Chaco’s

multilevel recursive octasection compared to our multilevelk-way partitioning algorithm. From this figure we see that

our algorithm is considerably faster. MLkP computes an 8-way partitioning about two to six times faster than Chaco,

and a 64-way partitioning about four to fourteen times faster. In summary, for most graphs, MLkP produces better

or comparable partitionings than Chaco’s multilevel recursive octasection in significantly less time. This indicates

that for most graphs, greedy refinement coupled with the HEM coarsening and a good initialk-way partition, is much

better choice than the computationally expensive 8-way Kernighan-Lin refinement.

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

8 parts Chaco’s Multilevel Recursive Octasection (baseline)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

64 parts Chaco’s Multilevel Recursive Octasection (baseline)

Figure 14: Quality of the partitionings produced by MLkP relative to Chaco’s multilevel recursive octasection algorithm. The MLkP
algorithm uses HEM during coarsening and GR during refinement. For each graph, the ratio of the edge-cut of the MLkP algorithm
to that of Chaco’s recursive octasection algorithm is plotted for 8- and 64-way partitionings. Bars under the baseline indicate that
MLkP performs better than Chaco’s recursive octasection.

21

0

2

4

6

8

10

12

14

14
4

59
8A

AUTO

BRACK2

COPTER2
FLA

P
M

14
B

ROTOR

TORSO

W
AVE

BCSSTK31

BCSSTK32

CANT

CYLL
IN

DER93

IN
PRO1

SHELL
93

SHYY16
1

TROLL

VENKAT25

BBM
AT

M
AP1

M
AP2

FIN
AN51

2

KEN-1
1

S38
58

4.
1

8 parts 64 parts Multilevel k-way Partition (baseline)

Figure 15: Run time of MLkP relative to Chaco’s multilevel recursive octasection algorithm. The MLkP algorithm uses HEM during
coarsening and GR during refinement. For each graph, the ratio of the run time of Chaco’s recursive octasection to that of the
MLkP algorithm is plotted for 256-way partitionings. Bars above the baseline indicate that MLkP is faster than Chaco’s recursive
octasection.

3.4 Conclusion and Direction for Future Research

Our experiments have shown that the multilevelk-way partitioning algorithm is significantly faster than recursive

bisection basedk-way partitioning scheme. The complexity of the coarsening and refinement phases of ourk-way

partition algorithm isO(|E|), assuming that in each coarsening step the number of vertices is reduced by a factor

larger than 1+ ε, whereε is a constant greater than zero. The complexity of obtaining the initialk-way partitioning of

the coarsest graph using MLRB isO(k logk). Since,O(k logk) is often smaller thanO(|E|), the overall complexity

of the algorithm isO(|E|). For instance, forTORSO the run time for a 2-way partitioning is 10.42 seconds while the

run time for a 256-way partitioning is only 1.64 times higher (i.e., 17.13 seconds). As the problem size increases, this

factor decreases. For example, forAUTO the runtime for a 2-way partitioning is 31.03 seconds while the run time for

a 256-way partitioning is only 1.29 times higher (i.e., 40 seconds).

The quality of the partitionings produced by thek-way partitioning algorithm is comparable or better than that

produced by the multilevel recursive bisection algorithm for a wide range of graphs. The scheme works well for

a number of reasons. For coarsening heuristics such as HEM and HEM*, the edge-cut of thek-way partitioning

produced by MLRB on the coarsest graph is usually within a factor of 1.3 of the final edge-cut. This happens because

the coarsening process creates an excellent smaller replica of the original graph, and MLRB finds a very goodk-way

partitioning on this small graph. A simplek-way refinement scheme such as GR is able to further improve the initial

k-way edge-cut because the refinements needed are fairly local in nature. Hence, the extra power of generalized KL

schemes (in terms of its capability of look-ahead) is often unnecessary because the refinement needed are fairly local

in nature. (In our experiments, the look-ahead capability of GKLR refinement was found useful only for one type

of graphs.) Furthermore, even a simple refinement scheme such as GR is quite capable of moving large portions of

graphs across the initialk-way partitioning because the refinement is done in a multi-level context. For coarse graphs,

even a movement of a single vertex at the partition boundary is equivalent to moving a large number of vertices in the

22

Matrix Multilevel Spectral Bisection Multilevel Recursive Bisection Multilevel k-way Partition
144 607.27 48.14 13.40
598A 420.12 35.05 9.92
AUTO 2214.24 179.15 39.67
BRACK2 218.36 16.52 5.65
COPTER2 185.39 16.11 5.71
FLAP 279.67 16.50 5.21
M14B 970.58 74.04 18.30
ROTOR 550.35 29.46 8.71
TORSO 1053.37 63.93 17.13
WAVE 658.13 44.55 12.94
BCSSTK31 309.06 15.21 5.53
BCSSTK32 474.64 22.50 7.39
CANT 978.48 47.70 17.44
CYLINDER93 671.33 39.10 13.07
INPRO1 341.88 24.60 7.88
SHELL93 1111.96 71.59 17.40
SHYY161 129.99 10.13 3.42
TROLL 3063.28 132.08 29.08
VENKAT25 254.52 20.81 5.54
BBMAT 474.23 25.51 10.37
MAP1 850.16 44.80 8.12
MAP2 195.09 11.76 3.07
FINAN512 311.01 17.98 6.49
KEN-11 121.94 4.09 3.13
S38584.1 178.11 4.72 2.55

Table 4: The time required to find a 256-way partitioning by the multilevel spectral bisection, multilevel recursive bisection, and
multilevel k-way partition. All times are in seconds.

original graph. In fact, as discussed in [16] even for MLRB, many simpler variations of the KL refinement algorithm,

results in equally effective refinement scheme due to the same reason.

Absence of a priority queue in our GR refinement algorithm makes it naturally suited for parallel implementations.

In contrast, the original KL refinement algorithm (and its generalization in thek-way partitioning context) are inher-

ently sequential [6]. In [14] we have developed a highly parallel formulation of our multilevelk-way partitioning

algorithm that uses the vertex-coloring of the successively coarser graph to effectively parallelize both the coarsening

as well as thek-way refinement algorithms. Our experiments on the Cray T3D show that graphs with over a million

vertices can be partitioned in 128 partitions in about two seconds on 128 processors.

An additional advantage of the MLkP algorithm over MLRB is that MLkP is much more suited in the context of

parallel execution of adaptive computations [26, 25]. For example, in adaptive finite element computation, the mesh

that models the physical domain changes dynamically as the simulation progresses. In particular, some parts of the

mesh become finer and other parts get coarser. Such dynamic adjustments to the mesh require repartitioning of the

mesh to improve load balance. This re-partitioning also results in movement of data structures associated with graph

vertices. Hence, a good re-partitioning algorithm should minimize the movement of vertices (in addition to balancing

the load and minimizing the cut of the resulting new partition). If started with the multilevel representation of the

current partitioning of the graph, ourk-way partitioning refinement algorithm makes only minor adjustments to the

previous partitioning, and reduces the overall movement of vertices and associated data structures.

In all of our experiments, we tried to minimize the edge-cut. However, for many applications, minimizing other

quantities, such as the number of vertices at the boundary of the partitions, the number of adjacent partitions, or the

shape of the partitions, may be desirable. This can be accomplished by modifying the refinement algorithm to take

into account a different objective function. Even though recursive bisection algorithms can also be modified to use

objective functions other than minimization of edge-cut, the multilevelk-way partitioning algorithm provides a much

better framework for this task. This is because multilevelk-way makes it possible to incorporate “global” objective

functions that cannot be achieved by recursive bisection schemes. For example, the overall communication overhead

23

of a processor in parallel sparse matrix-vector multiplication is not proportional to the number of edges that connect

non-local vertices. Actually it is proportional to the number of vertex-values it has to communicate to neighboring

processors. If a vertex on processorPi is connected to many vertex on processorPj , then the vertex-value has to

be sent to processorPj only once (rather than once for each edge). Hence, the overall communication volume for

a processor is equal to
∑
v Nv , wherev are the boundary vertices in a processor, andNv is the number of other

processors that the vertexv is connected to. Note that this metric can easily be used as the objective function in the

k-way partitioning algorithm. But this cannot be used in recursive bisection-based schemes, because
∑
v Nv for each

processor can be computed only in the context of ak-way partition.

Thek-way partitioning algorithms described in this paper are available in theMETIS 3.0 graph partitioning package

that is publicly available on WWW athttp://www.cs.umn.edu/˜metis.

References

[1] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning

unstructured problems. InProceedings of the sixth SIAM conference on Parallel Processing for Scientific Computing, pages

711–718, 1993.

[2] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization. In6th SIAM Conf. Parallel Processing for

Scientific Computing, pages 445–452, 1993.

[3] Chung-Kuan Cheng and Yen-Chuen A. Wei. An improved two-way partitioning algorithm with stable performance.IEEE

Transactions on Computer Aided Design, 10(12):1502–1511, December 1991.

[4] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network partitions. InIn Proc. 19th IEEE Design

Automation Conference, pages 175–181, 1982.

[5] J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI circuits. InProceedings of IEEE International Conference

on Computer Aided Design, pages 520–523, 1990.

[6] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-passing multiprocessor.International

Journal of Parallel Programming, (16):498–513, 1987.

[7] Lars Hagen and Andrew Kahng. Fast spectral methods for ratio cut partitioning and clustering. InProceedings of IEEE

International Conference on Computer Aided Design, pages 10–13, 1991.

[8] Lars Hagen and Andrew Kahng. A new approach to effective circuit clustering. InProceedings of IEEE International

Conference on Computer Aided Design, pages 422–427, 1992.

[9] M. T. Heath and Padma Raghavan. A Cartesian parallel nested dissection algorithm.SIAM Journal of Matrix Analysis and

Applications, 16(1):235–253, 1995.

[10] Bruce Hendrickson and Robert Leland. An improved spectral graph partitioning algorithm for mapping parallel computations.

Technical Report SAND92-1460, Sandia National Laboratories, 1992.

[11] Bruce Hendrickson and Robert Leland. The chaco user’s guide, version 1.0. Technical Report SAND93-2339, Sandia National

Laboratories, 1993.

[12] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. Technical Report SAND93-1301,

Sandia National Laboratories, 1993.

[13] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. Technical Report TR 95-037, Department of Computer

Science, University of Minnesota, 1995. Also available on WWW at URL http://www.cs.umn.edu/˜karypis. A short version

appears in Supercomputing 95.

[14] G. Karypis and V. Kumar. Parallel multilevelk-way partitioning scheme for irregular graphs. Technical Report

TR 96-036, Department of Computer Science, University of Minnesota, 1996. Also available on WWW at URL

http://www.cs.umn.edu/˜karypis. A short version appears in Supercomputing 96.

24

[15] G. Karypis and V. Kumar. METIS 3.0: Unstructured graph partitioning and sparse matrix ordering system. Techni-

cal Report 97-061, Department of Computer Science, University of Minnesota, 1997. Available on the WWW at URL

http://www.cs.umn.edu/˜metis.

[16] G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular graphs.SIAM Journal on

Scientific Computing, 1998 (to appear). Also available on WWW at URL http://www.cs.umn.edu/˜karypis. A short version

appears in Intl. Conf. on Parallel Processing 1995.

[17] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.The Bell System Technical Journal,

49(2):291–307, 1970.

[18] Gary L. Miller, Shang-Hua Teng, W. Thurston, and Stephen A. Vavasis. Automatic mesh partitioning. In A. George, John R.

Gilbert, and J. W.-H. Liu, editors,Sparse Matrix Computations: Graph Theory Issues and Algorithms. (An IMA Workshop

Volume). Springer-Verlag, New York, NY, 1993.

[19] Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric approach to graph separators. InProceedings

of 31st Annual Symposium on Foundations of Computer Science, pages 538–547, 1991.

[20] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element equations on concurrent computers. In A. K. Noor, editor,

American Soc. Mech. Eng, pages 291–307, 1986.

[21] R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox. Graph contraction and physical optimization methods: a quality-

cost tradeoff for mapping data on parallel computers. InInternational Conference of Supercomputing, 1993.

[22] Alex Pothen, H. D. Simon, Lie Wang, and Stephen T. Bernard. Towards a fast implementation of spectral nested dissection.

In Supercomputing ’92 Proceedings, pages 42–51, 1992.

[23] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors of graphs.SIAM Journal of

Matrix Analysis and Applications, 11(3):430–452, 1990.

[24] P. Raghavan. Line and plane separators. Technical Report UIUCDCS-R-93-1794, Department of Computer Science, Univer-

sity of Illinois, Urbana, IL 61801, February 1993.

[25] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion algorithms for repartitioning of adaptive meshes.

Journal of Parallel and Distributed Computing, Accepted for publication, 1997. Also available on WWW at URL

http://www.cs.umn.edu/˜karypis.

[26] Kirk Schloegel, George Karypis, and Vipin Kumar. Repartitioning of adaptive meshes: Experiments with multilevel diffusion.

In Proceedings of the Third International Euro-Par Conference, pages 945–949, August 1997.

[27] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? Technical Report RNR-93-012, NAS Systems

Division, NASA, Moffet Field, CA, 1993.

25

