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Abstract

In this paper we present a parallel formulation of a multilevelk-way graph partitioning algorithm, that is particu-

larly suited for message-passing libraries that have high latency. The multilevelk-way partitioning algorithm reduces

the size of the graph by successively collapsing vertices and edges (coarsening phase), finds ak-way partitioning

of the smaller graph, and then it constructs ak-way partitioning for the original graph by projecting and refining

the partition to successively finer graphs (uncoarsening phase). Our algorithm is able to achieve a high degree of

concurrency, while maintaining the high quality partitions produced by the serial algorithm.

1 Introduction

Graph partitioning is an important problem that has extensive applications in many areas, including scientific com-

puting, VLSI design, geographical information systems, operation research, and task scheduling. The problem is

to partition the vertices of a graph inp roughly equal partitions, such that the number of edges connecting vertices

in different partitions is minimized. The graph partitioning problem is NP-complete. However, many algorithms

have been developed that find a reasonably good partition. Recently, a number of researchers have investigated

a class of algorithms that are based on multilevel graph partitioning that have moderate computational complexity

[4, 5, 11, 12, 14, 7, 28, 17, 16]. In these schemes, the original graph is successively coarsened down until it has only a

small number of vertices, a partition of this coarsened graph is computed, and then this initial partition is successively
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refined by using a Kernighan-Lin type heuristic as it is being projected back to the original graph. Some of these

multilevel schemes [4, 14, 17, 16, 18] provide excellent partitions for a wide variety of graphs. These schemes provide

significantly better partitions than those provided by spectral partitioning techniques [29], and are generally at least an

order of magnitude faster than even the state-of-the art implementation of spectral techniques [3].

Developing parallel graph partitioning algorithms has received a lot of attention [13, 31, 6, 15, 2, 1, 19] due to its

extensive applications in many areas. However, most of this work was concentrated on algorithms based on geometric

graph partitioning [13, 6], or algorithms that have very high computational requirements, such as spectral bisection

[2, 1, 15]. Geometric graph partitioning algorithms tend to be inherently parallel, but often produce significantly worse

partitions compared with the multilevel algorithms. Due to the high computational complexity of the underlying serial

algorithm, parallel spectral bisection algorithms running even on 128 or 512 processors tend to be slower than a mul-

tilevel graph partitioning algorithm running on a single processor. Development of formulations of multilevel graph

partitioning schemes is quite challenging. Coarsening requires that nodes connected via edges be merged together.

Since the graph is distributed randomly across the processors, parallel coarsening schemes can require a lot of com-

munication [31, 1, 19]. The Kernighan-Lin refinement heuristic and its variant, that are used during the uncoarsening

phase, appear serial in nature [8], and previous attempts to parallelize them have had mixed success [8, 6, 19].

Recently, we developed [20] a parallel formulation for the multilevelk-way partitioning algorithm [18]. Our algo-

rithm is able to achieve high degree of concurrency while it maintains the high quality of the partitions produced by

the serial multilevel partitioning algorithm. Our parallel formulation on Cray T3D, using Cray’s lightweight SHMEM

library for communication, produces high quality 128-way partitions on 128 processors in small amount of time.

Graphs with under 250,000 vertices are partitioned in less than a second, while graphs with a million vertices require

a little over two seconds. Furthermore, the quality of the produced partitions are comparable (edge-cuts within 5%)

to those produced by the serial multilevelk-way algorithm, and are significantly better (edge-cuts up to 75% smaller)

than those produced by multilevel spectral bisection algorithm. However, this parallel formulation exploits fine grain

parallelism, and is not well suited for message passing libraries that have a high message startup overhead.

In this paper we present a coarse-grain parallel formulation of the multilevelk-way partitioning algorithm. This

new formulation performs far fewer communication steps, making it suitable for message-passing libraries (and ar-

chitectures) that have high message startup overhead. Our MPI-based implementation of the new parallel partitioning

algorithm is up to 50% faster than the MPI-based implementation of the algorithm presented in [20], while it produces

comparable quality partitionings.

2 Multilevel k-way Graph Partitioning

In [18] we presented ak-way graph partitioning algorithm that is based on the multilevel paradigm, whose complexity

is linear on the number of vertices in the graph. The basic structure of a multilevel algorithm is illustrated in Figure 1.

The graphG = (V, E) is first coarsened down to a small number of vertices, ak-way partition of this much smaller

graph is computed (using multilevel recursive bisection [17]), and then this partition is projected back towards the

original graph (finer graph), by periodically refining the partition. Since the finer graph has more degrees of freedom,

such refinements improve the quality of the partitions. The experiments presented in [18] show that our algorithm

produces partitions that are of comparable or better quality than those produced by the multilevel recursive bisection

algorithm [17] and significantly better than those produced by the state-of-the art multilevel spectral bisection algo-

rithm [3]. Furthermore, ourk-way partitioning algorithm is up to 5 times faster than the multilevel recursive bisection,

and up to 150 times faster than multilevel spectral bisection. The run time of ourk-way partitioning algorithm is

comparable to the run time of geometric recursive bisection algorithms [13, 30, 26, 25, 27] while it produces partitions

that are generally 20% better [17]. Note that geometric methods are applicable only if coordinate information for the

graph is available.
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Figure 1: The various phases of the multilevel k-way partitioning algorithm. During the coarsening phase, the size of the graph
is successively decreased; during the initial partitioning phase, a k-way partition of the smaller graph is computed; and during the
uncoarsening phase, the partitioning is successively refined as it is projected to the larger graphs.

In the rest of this section we briefly describe the various phases of the multilevel algorithm. The reader should refer

to [18] for further details.

Coarsening Phase During the coarsening phase, a sequence of smaller graphsGi = (Vi , Ei ), is constructed from

the original graphG0 = (V0, E0) such that|Vi | > |Vi+1|. GraphGi+1 is constructed fromGi by finding a maximal

matchingMi ⊆ Ei of Gi and collapsing together the vertices that are incident on each edge of the matching. In this

process no more than two vertices are collapsed together because a matching of a graph is a set of edges, no two of

which are incident on the same vertex. Vertices that are not incident on any edge of the matching are simply copied

over toGi+1.

When verticesv, u ∈ Vi are collapsed to form vertexw ∈ Vi+1, the weight of vertexw is set equal to the sum of

the weights of verticesv andu, and the edges incident onw is set equal to the union of the edges incident onv and

u minus the edge(v, u). For each pair of edges(x, v) and(x, u) (i.e., x is adjacent to bothv andu) a single edge

(x, w) is created whose weight is set equal to the sum of the weights of these two edges. Thus, during successive

coarsening levels, the weight of both vertices and edges increases. The process of coarsening is illustrated in Figure 2.

Each vertex and edge in Figure 2(a) has a unit weight. Figure 2(b) shows the coarsened graph that results from the

contraction of shaded vertices in Figure 2(a). Numbers on the vertices and edges in Figure 2(b) show their resulting

weights.

Maximal matchings can be computed in different ways [17, 18]. The method used to compute the matching greatly

affects both the quality of the partition, and the time required during the uncoarsening phase. The matching scheme

that we use is calledheavy-edge matching(HEM), and computes a matchingMi , such that the weight of the edges in
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Figure 2: The process of finding a maximal matching and contracting the graph to obtain the next level coarser graph. Note that
the vertices and edges of the coarse graph have weights to reflect the number of vertices and edges that are collapsed together.

Mi is high. The heavy-edge matching is computed using a randomized algorithm as follows. The vertices are visited

in a random order. However, instead of randomly matching a vertex with one of its adjacent unmatched vertices, HEM

matches it with the unmatched vertex that is connected with the heavier edge. As a result, the HEM scheme quickly

reduces the sum of the weights of the edges in the coarser. The coarsening phase ends when the coarsest graphGm

has a small number of vertices.

Partitioning Phase The second phase of a multilevelk-way partition algorithm is to compute ak-way partition of

the coarse graphGm = (Vm, Em) such that each partition contains roughly|V0|/k vertex weight of the original graph.

Since during coarsening, the weights of the vertices and edges of the coarser graph were set to reflect the weights of the

vertices and edges of the finer graph,Gm contains sufficient information to intelligently enforce the balanced partition

and the minimum edge-cut requirements. In our partitioning algorithm, thek-way partition ofGm is computed using

our multilevel recursive bisection algorithm [17]. Our experiments have shown that it produces good initial partitions

in relatively small amount of time.

Uncoarsening Phase During the uncoarsening phase, the partitioning of the coarser graphGm is projected back

to the original graph by going through the graphsGm−1,Gm−2, . . . ,G1. Since each vertexu ∈ Vi+1 contains a

distinct subsetU of vertices ofVi , the projection of the partition fromGi+1 to Gi is constructed by simply assigning

the vertices inU to the same partition inGi that vertexu belongs inGi+1.

Even though the partition ofGi+1 is at a local minima, the projected partition ofGi may not. SinceGi is finer, it

has more degrees of freedom that can be used to improve the partition and thus decrease the edge-cut. Hence, it may

still be possible to improve the projected partition by local refinement heuristics. For this reason, after projecting a

partition, a partition refinement algorithm is used. The basic purpose of a partition refinement algorithm is to select

vertices such that when moved from one partition to another the resulting partition has smaller edge-cut and remains

balanced (i.e., each partition has the same weight).

The multilevelk-way partitioning algorithm is based on a simplified version of the Kernighan-Lin [22] algorithm,

extended to providek-way partition refinement. This algorithm, is calledgreedy refinement(GR). Its complexity is

largely independent of the number of partitions being refined. The GR algorithm consists of a number of iterations,

and in each iteration all the vertices are checked in a random order to see if they can be moved. Letv be such a

vertex. If v is a boundary vertex (i.e., it is connected with a vertex that belongs to an other partition), thenv is
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moved to the partition that leads to the largest reduction in the edge-cut, subject to partition weight constraints. These

weight constraints ensure that all partitions have roughly the same weight. If the movement ofv cannot achieve any

reduction in the edge-cut, it is then moved to the partition (if any) that improves the partition-weight balance but leads

to no increase in the edge-cut. The GR algorithm converges after a small number of iterations (within four to eight

iterations). If the GR algorithm is not able to enforce the partition balance constraints, an explicit balancing phase is

used that moves vertices between partitions even if this movement leads to an increase in the edge-cut.

3 Parallel Multilevel k-way Graph Partitioning

Even though the multilevel partitioning algorithms produce high quality partitions in a very small amount of time, the

ability to perform partitioning in parallel is important for many reasons. The amount of memory on serial computers

is not enough to allow the partitioning of graphs corresponding to large problems that can now be solved on massively

parallel computers and workstation clusters. By performing graph partitioning in parallel, the algorithm can take

advantage of the significantly higher amount of memory available in parallel computers. In the context of large-scale

finite element simulations, adaptive grid computations dynamically adjust the discretization of the physical domain.

Such dynamic adjustments to the grid lead to load imbalances, and thus require repartitioning of the graph for efficient

parallel computation. Being able to compute good partitions fast (in parallel) is essential for reducing the overall

run time of this type of applications. In some problems, the computational effort in each grid cell changes over time

[6]. For example, in many codes that advect particles through a grid, large temporal and spatial variations in particle

density can introduce substantial load imbalance. Dynamic repartition of the corresponding vertex-weighted graph

is crucial to balance the computation among processors. Furthermore, with recent development of highly parallel

formulations of sparse Cholesky factorization algorithms [10, 21, 9, 32], numeric factorization on parallel computers

can take much less time than the step for computing a fill-reducing ordering on a serial computer, making that the

new bottleneck. For example, on a 1024-processor Cray T3D, some matrices can be factored in less that two seconds

using our parallel sparse Cholesky factorization algorithm [21], but serial graph partitioning (needed for computing a

fill-reducing ordering) takes two orders of magnitude more time.

In [20] we presented a parallel formulation of the multilevelk-way graph partitioning algorithm described in Sec-

tion 2. This formulation relies extensively on computing a coloring of the vertices at each successive coarse graph

Gi = (Vi , Ei ). This coloring is computed using Luby’s [24] algorithm, adapted for distributed memory parallel

computers.

Consider the graphGi = (Vi , Ei ). Our parallel algorithm constructs the matching in an iterative fashion. During

thecth iteration, each processor scans the locally unmatched vertices, and for each vertex of colorc, it matches it with

one of its unmatched adjacent vertices (if any of them exist) using the heavy-edge heuristic. If this adjacent vertex is

stored locally, then the matching is granted right away; otherwise, a match request is sent to the processor that stores

this vertex. Next, all processors proceed to service the match requests that they received. They grant the requests that

involve vertices that are not matched by local vertices, and notify the appropriate processors. If there are any conflicts,

these are broken randomly; however, the use of coloring reduces the number of such conflicts.

During the greedy refinement performed in the uncoarsening phase, the coloring ofVi is used to select the groups

of vertices to be moved among partitions in order to improve the quality of the partitioning. In particular, the single

phase of the refinement algorithm is broken up intoc sub-phases, wherec is the number of colors of the graph to be

refined. During thei th phase, all the vertices of colori are considered for movement, and the subset of these vertices

that lead to a reduction in the edge-cut are moved. Since, the vertices with the same color form an independent set,

the total reduction in the edge-cut achieved by moving all vertices at the same time is equal to the sum of the edge-

cut reductions achieved by moving these vertices one after the other. After performing thisgroup movement, the

partitioning information of the vertices adjacent to this group are updated, and the next color is considered.
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During the initial partitioning phase, ap-way partition of the graph is computed using a multilevel recursive bisec-

tion algorithm. In our algorithm we parallelize this phase by using a parallel algorithm that parallelizes the recursive

nature of the algorithm. This is done as follows: The various pieces of the coarse graph are gathered to all the proces-

sors using an all-to-all broadcast operation [23]. At this point the processors perform multilevel recursive bisection.

However, each processor explores only a single path of the recursive bisection tree. At the end each processor stores

the vertices that correspond to its partition of thep-way partition.

In [20] we presented results of the implementation of our parallel partitioning algorithm on Cray T3D. This im-

plementation was done using the one-sided communication primitives available on Cray T3D as part of the SHMEM

communication library. Our algorithm is able to achieve high degree of concurrency while it maintains the high qual-

ity of the partitions produced by the serial multilevel partitioning algorithm. On 128 processors, graphs with under

250,000 vertices are partitioned in 128 parts in less than a second, while graphs with a million vertices require a lit-

tle over two seconds. Furthermore, the quality of the produced partitions are comparable (edge-cuts within 5%) to

those produced by the serial multilevelk-way algorithm, and are significantly better (edge-cuts up to 75% smaller)

than those produced by multilevel spectral bisection algorithm. However, this parallel formulation exploits fine grain

parallelism, and is not well suited for message passing libraries that have a high message startup overhead.

3.1 Communication Pattern of the Algorithm

The parallel formulation of the multilevelk-way partitioning algorithm described in Section 3 is made of five different

parallel algorithms, namely coloring, matching, contraction, initial partitioning, and refinement. Out of these five

algorithms, three of them (coloring, matching, and refinement) have similar communication requirements. The amount

of communication performed by each one of these four algorithms depends on the number of interface vertices. For

example, during coloring, each processor needs to know the random numbers of the vertices adjacent to the locally

stored vertices. Similarly, during refinement, every time a vertex is moved, the adjacent vertices need to be notified

to update their partitioning information. Initially, each processor storesn/p vertices andnd/p edges, whered is

the average degree of the graph. Thus, the number of interface vertices is at mostO(n/p). Since the vertices are

initially distributed randomly, these interface vertices are equally distributed among thep processors. Hence, each

processor needs to exchange data withO(n/p2) vertices of each processor. Alternatively, each processor needs to send

information for aboutO(n/p2) locally stored vertices to each other processor. This can be accomplished by using the

all-to-all personalized communication operation [23]. As the size of the coarser graphs successively decreases, the

amount of data that needs to be exchanged also decreases. However, each processor still needs to send and receive

data from almost all other processors. Ifts is the message startup overhead, then each of these all-to-all personalized

communication operations requirespts time just due to startup overhead.

The number of all-to-all personalized operations performed for each coarse graphGi depends on the number of

colorsc of Gi . In particular, we performc operations during coloring (one for each color that we compute), 2c during

matching (two for each color), and 4c during refinement (we perform two passes of the refinement algorithm, each

consisting ofc sub-phases and we need to communicate twice during each sub-phase). Thus, for each graphGi we

perform 7c all-to-all personalized operations.

Consider now a graph with a million vertices, that is partitioned on 128 processors, and that the coarsest graph

consists of about one thousand vertices. This level of contraction can be achieved by going through about ten coars-

ening levels. Also, assume that the average number of colors of each coarse graph is around ten (quite reasonable for

graphs that correspond to the dual of 3D finite element meshes with tetrahedron elements). Given these parameters,

the parallel multilevelk-way partitioning algorithm will perform a total of 700 all-to-all personalized communication

operations. On 128 processors, these operations will incur a total of 89600ts overhead due to message startup time.

Our implementation of the multilevel partitioning algorithm on Cray T3D, used the SHMEM communication li-

brary. This library has a very small message startup overhead of about 2 microseconds. Thus, for our million node
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graph on 128 processors, the message startup overhead is a total of about 0.1792 seconds, which is not very signifi-

cant. In fact, our parallel partitioning algorithm is able to partition a million node graph on 128 processors in around

two seconds. However, if instead of using SHMEM, we use Cray’s MPI library, then the startup overhead is about

57 microseconds, which brings the amount of time due to message startup overhead to about 5.11 seconds, which is

quite significant. In the next section we present our modifications to the algorithm presented in Section 3 such that it

reduces the number of all-to-all personalized communication operations; thus, leading to a fast partitioning algorithm

even when the message startup time is quite high.

4 A Coarse-Grain Parallel Multilevel k-way Graph Partitioning

Because of the high message startup overhead of current MPI implementations1 we need to modify the parallel multi-

levelk-way partitioning algorithm presented in Section 3 so that it performs fewer all-to-all personalized communica-

tion operations. From the discussion in Section 3.1, it is clear that one way of doing this is to develop matching and

refinement algorithms that do not depend on the number of colors of the graph.

We can easily modify the matching algorithm presented in Section 3 so that it does not require coloring. In fact, the

motivation in using a coloring-based matching algorithm was to minimize the number of conflicts; thus, we can use a

non-coloring based algorithm at the expense of a higher number of matching conflicts. The new matching algorithms

consists of a number of phases. During phasei , each processor scans its local unmatched vertices. For each such vertex

v, it matches it with another unmatched vertexu (if such a vertex exists) using the heavy-edge heuristic. Ifu is stored

locally, then the matching is granted right away, otherwise a matching request is issued to the processor that stores

u, depending on the ordering ofv andu. In particular, ifi is odd, a match request is issued only ifv < u, whereas

if i is even, a match request is issued only ifv > u. This ordering is done to ensure that conflicts can be resolved

with a single communication step. Next, every processor processes the matching requests that it received, grants some

of these requests by breaking conflicts arbitrarily, and notifies the corresponding processors. The matching algorithm

terminates when a large fraction of the vertices has been matched. Our experiments show that for most graphs, very

large matchings can be obtained with only four phases. Thus, the number of all-to-all personalized communications

are reduced from two times the number of colors to only eight.

However, performing refinement without using coloring is somewhat more difficult. Recall from Section 3 (and

from [20]) that by moving a group of vertices of a single color at a time, we were able to ensure that no thrashing

occurs during refinement. For example, consider the situation illustrated in Figure 3(a), in which two verticesv andu

are connected via an edge and belong to partitionsi and j , respectively. Note that if we move vertexv to partition j

we reduce the edge-cut by two, and if we move vertexu to partitioni we reduce the edge-cut by three. However, as

illustrated in Figure 3(b), if we move both vertexv to partition j and vertexu to partitioni , then the edge-cut actually

increases by five.

The coloring-based refinement algorithm is able to prevent such moves since it only allows concurrent movement

of vertices that are not connected (i.e., independent). However, by looking closer at this example we see that an

alternate way of preventing such type of movements is to devise a refinement algorithm that does not concurrently

move vertices between the same partitions. That is, during each refinement step, for any pair of partitionsi and j ,

it should only move vertices in one direction,i.e., it should move vertices only from partitioni ( j ) to partition j (i ).

In particular, each phase of the new refinement algorithm consists of only two sub-phases. In the first sub-phase, the

group of vertices to be moved is selected so that vertices move from lower- to higher-numbered partitions, and during

the second sub-phase, vertices move in the opposite direction. Thus, the new refinement algorithm reduces the number

of all-to-all personalized communication operations that are required in each refinement phase from two times the

1As MPI becomes more wide-spread the message startup overhead of future MPI implementations will decrease and becomes closer to that of
the underlying hardware.
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Figure 3: Moves that can be performed concurrently and their properties.

Note that this new refinement scheme allows vertices that are connected and belong to the same partition to be

moved concurrently. For example, consider the example illustrated in Figure 3(c), in which verticesv andu, both

of them belonging to partitioni , are moved concurrently to partitionj , since each such move individually leads to

a reduction in the edge-cut. However, this type of moves will never lead to thrashing. In fact, the reduction in the

edge-cut obtained by concurrently moving connected vertices from the same partition, is at least as high as the sum

of the edge-cut reductions of each individual move. This is illustrated by the example in Figure 3(d) [19]. Thus, the

coloring-based refinement algorithm was in essence too restrictive while selecting vertices for movement. However,

by using the new refinement scheme, there are certain type of moves that may potentially lead to thrashing. Consider

the example shown in Figure 3(e), in which vertexu is connected to verticesv andw each belonging to a different

partition. If vertexv is moved to partitionj the edge-cut reduces by one, and if vertexu moves to partitionk the edge-

cut reduces by one. However, as illustrated in Figure 3(f), if both moves take place concurrently, then the edge-cut

actually increases by one. Fortunately, there are not many vertices that can lead to this type of movement. This is

because, this type of moves can only happen among a sequence of vertices that are connected via path and they are

interface vertices to multiple domains.

The number of all-to-all personalized communication operations required for each graphGi by the new matching

and refinement algorithms is now only 16 (eight for matching and eight for refinement, assuming we perform two
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passes of the refinement algorithm). Thus, the total message startup overhead for our one million node graph (described

in Section 3.1) on 128 processors, is now only 20480ts which translates to 1.17 seconds, better than one fourth of the

overhead incurred by the coloring-based algorithm.

The coarse-grained parallel multilevelk-way partitioning algorithm has a number of enhancements over the parallel

algorithm presented in [20] that both improve its performance as well as extend its functionality.

As the the size of the successively coarser graphs decreases, the amount of time required to generate the next level

coarser graphs is dominated by the communication overheads. This is because, the graphs become too small and

the message startup overheads dominate the communication time. At this point, the overall amount of time required

to generate the remaining coarse graphs as well as the amount of time spent in refining them, will decrease if the

work associated with that is assigned to fewer processors. The coarse-grain parallel algorithm performs such type of

graph foldings. In particular, as the coarsening progresses, the size of the coarse graph is monitored, and if it falls

bellow a certain threshold, it is then folded to only half the processors. Now these processors perform any subsequent

coarsening (and refinement during the uncoarsening phase). This folding of the graph to fewer processors is repeated

again if necessary. Our experiments have shown that this successive folding of the graphs to fewer processors improves

the overall run-time of the partitioning algorithm. The size of the graph after which folding is triggered depends on the

characteristics of the underlying interconnection network. If the message startup overhead is very small, then smaller

graphs will trigger a folding, whereas, if the message startup time is high, a larger graph will be required.

Our implementation of this coarse-grain algorithm is memory efficient. In particular, each processor requires

memory proportional to the size of the locally stored portion of the graph,i.e., O(n/p), wheren is the number of

vertices in the graph. This is achieved by performing a relabeling of the locally stored graph.

Partition Refinement The coarse-grain parallel graph partitioner can also be used to refine existing partitions or

to repartition graphs that have been adaptively refined. In either case, since the initial graph distribution cuts relatively

few edges, a local matching algorithm is used during the coarsening phase. This matching algorithm, only matches

vertices that already belong to the same processor. Thus, successively coarser graphs are generated with very little

communication (communication is still required to label the interface vertices). Also, during the uncoarsening phase,

the refinement algorithm incurs very small communication overheads, since there are few interface vertices.

5 Experimental Results

We have tested our coarse-grain parallel multilevelk-way partitioning algorithm on a Cray T3D with 128 processors.

Each processor on the T3D is a 150Mhz Dec Alpha (EV4). The processors are interconnected via a three dimensional

torus network that has a peak unidirectional bandwidth of 150Bytes per second, and a small latency. We used Cray’s

MPI library for communication. Cray’s MPI achieves a peak bandwidth of 45MBytes and an effective startup time of

57 microseconds.

We evaluated the performance of our parallel multilevelk-way graph partitioning algorithm on three small to

medium size graphs arising in finite element computations. The characteristics of these graphs are described in Table 1.

Graph Name No. of Vertices No. of Edges Description
AUTO 448695 3314611 3D Finite element mesh
MDUAL 258569 513132 Dual of a 3D Finite element mesh
MDUAL2 988605 1947069 Dual of a 3D Finite element mesh

Table 1: Various graphs used in evaluating the parallel multilevel k-way graph partitioning algorithm.

Table 2 shows the performance of various implementations of the multilevelk-way partitioning algorithm. The first

two subtables show the performance of the coarse-grain and SHMEM-based parallel partitioning algorithms, respec-
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Coarse-Grain Parallel Partitioner
16-way 32-way 64-way 128-way

Graph Name EdgeCut Time EdgeCut Time EdgeCut Time EdgeCut Time
AUTO 91640 12.203 138983 7.929 196997 5.422 265573 4.545
MDUAL 13584 4.045 19624 2.897 25780 2.578 35130 3.055
MDUAL2 24449 14.497 36220 8.572 50816 5.725 70128 4.604

SHMEM-Based Parallel Partitioner
16-way 32-way 64-way 128-way

Graph Name EdgeCut Time EdgeCut Time EdgeCut Time EdgeCut Time
AUTO 91540 8.384 139760 5.071 197166 3.255 264662 2.215
MDUAL 13144 2.637 20004 1.600 25575 1.058 35457 0.795
MDUAL2 24800 10.241 36227 5.778 50114 3.442 71355 2.250

Coarse-Grain Parallel Multilevel Refinement
16-way 32-way 64-way 128-way

Graph Name EdgeCut Time EdgeCut Time EdgeCut Time EdgeCut Time
AUTO 90073 2.843 134524 1.770 189638 1.045 247458 0.750
MDUAL 13271 0.931 18322 0.630 24184 0.487 33374 0.417
MDUAL2 22816 2.819 33074 1.682 46058 1.023 64941 0.753

Serial run-times on an SGI workstation, R4400 @150MHZ
16-way 32-way 64-way 128-way

Graph Name EdgeCut Time EdgeCut Time EdgeCut Time EdgeCut Time
AUTO 88125 48.490 135629 49.880 190508 51.640 259948 54.610
MDUAL 13688 14.840 20715 15.890 25946 16.560 34235 18.790
MDUAL2 23891 74.050 34144 76.800 47628 76.910 67364 79.380

Table 2: The performance of different implementations of multilevel k-way partitioning algorithm. This table shows the performance
of the MPI- and SHMEM-based parallel algorithm, of the coarse-grain parallel multilevel refinement algorithm, and of the serial
algorithm on an SGI workstation. In the case of the results of the parallel algorithms, for each graph, the performance is shown for
16-, 32-, 64-, and 128-way partitions on 16, 32, 64, and 128 processors, respectively. All times are in seconds.

tively. Comparing the two subtables we see that both implementations are able to produce partitions of comparable

quality. However, as expected, the coarse-grain implementation is somewhat slower. In particular, on 16 proces-

sors, the coarse-grain algorithm requires 40% to 50% more time than the SHMEM-based algorithm. This relative

difference slowly increases with the number of processors, and on 128 processors the coarse-grain algorithm is about

two times slower than the SHMEM-based algorithm for the two larger graphs. Note that forMDUAL the coarse-

grain algorithm is about four times slower. This is because the graph is too small for 128 processors, and the overall

runtime is dominated by communication overhead, particularly due to message startup overheads (as discussed in Sec-

tion 3.1). However, considering the significantly higher message startup overhead and the smaller peak bandwidth of

the MPI implementation, the performance achieved by the coarse-grain algorithm is quite reasonable. Also, because

the coarse-grain implementation is memory efficient, this increases the amount of time spent in the algorithm to set-up

the appropriate data structures.

The third subtable in Table 2 shows the performance achieved by the coarse-grain parallel multilevel refinement

algorithm. These results were obtained by using as the initial graph distribution, the partitioning obtained by the

parallel multilevelk-way partitioning algorithm. We then performed local coarsening and refinement as discussed in

Section 4. Note that in this case, we did not perform initial partitioning, as we simply inherited the original partitioning

of the graph. Comparing the first and the third subtables we see that the solution quality improves by about 5% to 10%;

indicating that this parallel multilevel refinement algorithm can be used effectively to further refine existing partitions.

For each case, the run-times in the third subtable are much smaller than those in the first subtable. This shows that

repartitioning of adaptive grids can be done quite quickly. Also note that the relative speedups (with respect to 16

processors) are consistently better for the coarse-grain parallel multilevel refinement algorithm than for the SHMEM-

based parallel partitioner. This shows that the coarse-grain parallel multilevel refinement algorithm is highly scalable

especially in the context of adaptive grid computations.
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