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Abstract

In this paper we present a parallel formulation of the multilevel graph partitioning and sparse matrix ordering

algorithm. A key feature of our parallel formulation (that distinguishes it from other proposed parallel formulations of

multilevel algorithms is that it partitions the vertices of the graph into
√

p parts while distributing the overall adjacency

matrix of the graph among allp processors. This mapping results in substantially smaller communication than one-

dimensional distribution for graphs with relatively high degree, especially if the graph is randomly distributed among

the processors. We also present a parallel algorithm for computing a minimal cover of a bipartite graph which is a

key operation for obtaining a small vertex separator that is useful for computing the fill reducing ordering of sparse

matrices. Our parallel algorithm achieves a speedup of up to 56 on 128 processors for moderate size problems,

further reducing the already moderate serial run time of multilevel schemes. Furthermore, the quality of the produced

partitions and orderings are comparable to those produced by the serial multilevel algorithm that has been shown to

outperform both spectral partitioning and multiple minimum degree.
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1 Introduction

Graph partitioning is an important problem that has extensive applications in many areas, including scientific com-

puting, VLSI design, task scheduling, geographical information systems, and operations research. The problem is to

partition the vertices of a graph top roughly equal parts, such that the number of edges connecting vertices in different

parts is minimized. For example, the solution of a sparse system of linear equationsAx = b via iterative methods

on a parallel computer gives rise to a graph partitioning problem. A key step in each iteration of these methods is the

multiplication of a sparse matrix and a (dense) vector. Partitioning the graph that corresponds to matrixA, is used to

significantly reduce the amount of communication [19]. If parallel direct methods are used to solve a sparse system of

equations, then a graph partitioning algorithm can be used to compute a fill reducing ordering that lead to high degree

of concurrency in the factorization phase [19, 8]. The multiple minimum degree ordering used almost exclusively

in serial direct methods is not suitable for parallel direct methods, as it provides limited concurrency in the parallel

factorization phase.

The graph partitioning problem is NP-complete. However, many algorithms have been developed that find a rea-

sonably good partition. Recently, a new class of multilevel graph partitioning techniques was introduced by Bui

& Jones [4] and Hendrickson & Leland [12], and further studied by Karypis & Kumar [16, 15, 13]. These multi-

level schemes provide excellent graph partitionings and have moderate computational complexity. Even though these

multilevel algorithms are quite fast compared with spectral methods, parallel formulations of multilevel partitioning

algorithms are needed for the following reasons. The amount of memory on serial computers is not enough to allow

the partitioning of graphs corresponding to large problems that can now be solved on massively parallel computers

and workstation clusters. A parallel graph partitioning algorithm can take advantage of the significantly higher amount

of memory available in parallel computers. Furthermore, with recent development of highly parallel formulations of

sparse Cholesky factorization algorithms [9, 17, 25], numeric factorization on parallel computers can take much less

time than the step for computing a fill-reducing ordering on a serial computer. For example, on a 1024-processor Cray

T3D, some matrices can be factored in a few seconds using our parallel sparse Cholesky factorization algorithm [17],

but serial graph partitioning (required for ordering) takes several minutes for these problems.

In this paper we present a parallel formulation of the multilevel graph partitioning and sparse matrix ordering al-

gorithm. A key feature of our parallel formulation (that distinguishes it from other proposed parallel formulations of

multilevel algorithms [2, 1, 24, 14]) is that it partitions the vertices of the graph into
√

p parts while distributing the

overall adjacency matrix of the graph among allp processors. This mapping results in substantially smaller commu-

nication than one-dimensional distribution for graphs with relatively high degree, especially if the graph is randomly

distributed among the processors. We also present a parallel algorithm for computing a minimal cover of a bipartite

graph which is a key operation for obtaining a small vertex separator that is useful for computing the fill reducing

ordering of sparse matrices. Our parallel algorithm achieves a speedup of up to 56 on 128 processors for moderate

size problems, further reducing the already moderate serial run time of multilevel schemes. Furthermore, the quality

of the produced partitions and orderings are comparable to those produced by the serial multilevel algorithm that has

been shown to outperform both spectral partitioning and multiple minimum degree [16]. The parallel formulation in

this paper is described in the context of the serial multilevel graph partitioning algorithm presented in [16]. However,

nearly all of the discussion in this paper is applicable to other multilevel graph partitioning algorithms [4, 12, 7, 22].

The rest of the paper is organized as follows. Section 2 surveys the different types of graph partitioning algorithms

that are widely used today. Section 2 briefly describes the serial multilevel algorithm that forms the basis for the parallel

algorithm described in Sections 3 and 4 for graph partitioning and sparse matrix ordering respectively. Section 5
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analyzes the complexity and scalability of the parallel algorithm. Section 6 presents the experimental evaluation of

the parallel multilevel graph partitioning and sparse matrix ordering algorithm. Section 7 provides some concluding

remarks.

2 The Graph Partitioning Problem and Multilevel Graph Partitioning

The p-waygraph partitioning problem is defined as follows: Given a graphG = (V, E) with |V | = n, partitionV into

p subsets,V1, V2, . . . , Vp such thatVi ∩Vj = ∅ for i 6= j , |Vi | = n/p, and
⋃

i Vi = V , and the number of edges ofE

whose incident vertices belong to different subsets is minimized. Ap-way partitioning ofV is commonly represented

by a partitioning vectorP of lengthn, such that for every vertexv ∈ V , P[v] is an integer between 1 andp, indicating

the partition to which vertexv belongs. Given a partitioningP, the number of edges whose incident vertices belong

to different partitions is called theedge-cutof the partition.

The p-way partitioning problem is most frequently solved by recursive bisection. That is, we first obtain a 2-

way partition ofV , and then we further subdivide each part using 2-way partitions. After logp phases, graphG is

partitioned intop parts. Thus, the problem of performing ap-way partition is reduced to that of performing a sequence

of 2-way partitions or bisections. Even though this scheme does not necessarily lead to optimal partition [27, 15], it is

used extensively due to its simplicity [8, 10].

The basic structure of the multilevel bisection algorithm is very simple. The graphG = (V, E) is first coarsened

down to a few thousand vertices (coarsening phase), a bisection of this much smaller graph is computed (initial

partitioning phase), and then this partition is projected back towards the original graph (uncoarsening phase), by

periodically refining the partition [4, 12, 16]. Since the finer graph has more degrees of freedom, such refinements

improve the quality of the partitions. This process, is graphically illustrated in Figure 1.

During the coarsening phase, a sequence of smaller graphsGl = (Vl, El), is constructed from the original graph

G0 = (V0, E0) such that|Vl | > |Vl+1|. GraphGl+1 is constructed fromGl by finding a maximal matchingMl ⊆ El

of Gl and collapsing together the vertices that are incident on each edge of the matching. Maximal matchings can

be computed in different ways [4, 12, 16, 15]. The method used to compute the matching greatly affects both the

quality of the partitioning, and the time required during the uncoarsening phase. One simple scheme for computing a

matching is therandom matching(RM) scheme [4, 12]. In this scheme vertices are visited in random order, and for

each unmatched vertex we randomly match it with one of its unmatched neighbors. An alternative matching scheme

that we have found to be quite effective is calledheavy-edge matching(HEM) [16, 13]. The HEM matching scheme

computes a matchingMl , such that the weight of the edges inMl is high. The heavy-edge matching is computed using

a randomized algorithm as follows. The vertices are again visited in random order. However, instead of randomly

matching a vertex with one of its adjacent unmatched vertices, HEM matches it with the unmatched vertex that is

connected with the heavier edge. As a result, the HEM scheme quickly reduces the sum of the weights of the edges in

the coarser graph. The coarsening phase ends when the coarsest graphGm has a small number of vertices.

During the initial partitioning phase a bisection of the coarsest graph is computed. Since the size of the coarser

graphGk is small (often|Vk | is less than 100 vertices), this step takes relatively small amount of time.

During the uncoarsening phase, the partition of the coarser graphGm is projected back to the original graph, by

going through the graphsGm−1,Gm−2, . . . ,G1. Since each vertexu ∈ Vl+1 contains a distinct subsetU of vertices of

Vl , the projection of the partition fromGl+1 to Gl is constructed by simply assigning the vertices inU to the same part

in Gl to the same part that vertexu belongs inGl+1. After projecting a partition, a partitioning refinement algorithm

is used. The basic purpose of a partitioning refinement algorithm is to select vertices such that when moved from one

4



G
G

1

projected partition
refined partition

C
o

a
rs

e
ni

ng
 P

ha
se

U
nc

o
a

rse
ning

 Pha
se

Initial Partitioning Phase

Multilevel Graph Bisection

G

G3

G2

G1

O

G

2G

O

4

G3

Figure 1: The various phases of the multilevel graph bisection. During the coarsening phase, the size of the graph is successively
decreased; during the initial partitioning phase, a bisection of the smaller graph is computed; and during the uncoarsening phase,
the bisection is successively refined as it is projected to the larger graphs. During the uncoarsening phase the light lines indicate
projected partitions, and dark lines indicate partitions that were produced after refinement.

partition to another the resulting partitioning has smaller edge-cut and remains balanced (i.e., each part has the same

weight). A class of local refinement algorithms that tend to produce very good results are those that are based on the

Kernighan-Lin (KL) partitioning algorithm [18] and their variants (FM) [6, 12, 16].

3 Parallel Multilevel Graph Partitioning Algorithm

There are two types of parallelism that can be exploited in thep-way graph partitioning algorithm based on the

multilevel bisection described in Section 2. The first type of parallelism is due to the recursive nature of the algorithm.

Initially a single processor finds a bisection of the original graph. Then, two processors find bisections of the two

subgraphs just created and so on. However, this scheme by itself can use only up to logp processors, and reduces

the overall run time of the algorithm only by a factor ofO(log p). We will refer to this type of parallelism as the

parallelism associated with therecursive step.

The second type of parallelism that can be exploited is during thebisection step. In this case, instead of performing

the bisection of the graph on a single processor, we perform it in parallel. We will refer to this type of parallelism

as the parallelism associated with the bisection step. Note that if the bisection step is parallelized, then the speedup

obtained by the parallel graph partitioning algorithm can be significantly higher thanO(log p).

The parallel graph partitioning algorithm we describe in this section exploits both of these types of parallelism.

Initially all the processors cooperate to bisect the original graphG, into G0 andG1. Then, half of the processors
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bisectG0, while the other half of the processors bisectG1. This step creates four subgraphsG00, G01, G10, andG11.

Then each quarter of the processors bisect one of these subgraphs and so on. After logp steps, the graphG has been

partitioned intop parts.

In the next three sections we describe how we have parallelized the three phases of the multilevel bisection algo-

rithm.

3.1 Coarsening Phase

As described in Section 2, during the coarsening phase, a sequence of coarser graphs is constructed. A coarser graph

Gl+1 = (Vl+1, El+1) is constructed from the finer graphGl = (Vl , El) by finding a maximal matchingMl and

contracting the vertices and edges ofGl to form Gl+1. This is the most time consuming phase of the three phases;

hence, it needs be parallelized effectively. Furthermore, the amount of communication required during the contraction

of Gl to form Gl+1 depends on how the matching is computed.

The randomized algorithms described in Section 2 for computing a maximal matching on a serial computer are

simple and efficient. However, computing a maximal matching in parallel is hard, particularly on a distributed memory

parallel computer. A direct parallelization of the serial randomized algorithms or algorithms based on depth first graph

traversals require significant amount of communication. For instance, consider the following parallel implementation

of the randomized algorithms. Each processor contains a (random) subset of the graph. For each local vertexv,

processors select an edge(v, u) to be in the matching. Now, the decision of whether or not an edge(v, u) can be

included in the matching may result in communication between the processors that locally storev andu, to determine

if vertex u has been matched or not. In addition to that, care must be taken to avoid race conditions, since vertex

u may be checked due to another edge(w, u), and only one of the(v, u) and(w, u) edges must be included in the

matching. Similar problems arise when trying to parallelize algorithms based on depth-first traversal of the graph.

Another possibility is to adapt some of the algorithms that have been developed for the PRAM model. In particular

the algorithm of Luby [21] for computing the maximal independent set can be used to find a matching. However,

parallel formulations of this type of algorithms also have high communication overhead because each processorpi

needs to communicate with all other processors that contain neighbors of the nodes local atpi . Furthermore, having

computedMl using any one of the above algorithms, the construction of the next level coarser graph,Gl+1 requires

significant amount of communication. This is because each edge ofMl may connect vertices whose adjacent lists are

stored on different processors, and during the contraction at least one of these adjacency lists needs to be moved from

one processor to another. Communication overhead in any of the above algorithms can become small if the graph is

initially partitioned among processors in such a way so that the number of edges going across processor boundaries

are small. But this requires solving thep-way graph partitioning problem that we are trying to solve using these

algorithms.

Another way of computing a maximal matching is to divide then vertices amongp processors and then compute

matchings between the vertices locally assigned within each processor. The advantages of this approach is that no

communication is required to compute the matching, and since each pair of vertices that gets matched belongs to the

same processor, no communication is required to move adjacency lists between processors. However, this approach

causes problems because each processor has very few nodes to match from. Also, even though there is no need to

exchange adjacency lists among processors, each processor needs to know matching information about all the vertices

that its local vertices are connected to in order to properly form the contracted graph. As a result significant amount

of communication is required. In fact this computation is very similar in nature to the multiplication of a randomly
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sparse matrix (corresponding to the graph) with a vector (corresponding to the matching vector).

In our parallel coarsening algorithm, we retain the advantages of the local matching scheme, but minimize its

drawbacks by computing the matchings between groups ofn/
√

p vertices. This increases the size of the computed

matchings, and also reduces the communication overhead for constructing the coarse graph. Specifically, our parallel

coarsening algorithm treats thep processors as a two-dimensional array of
√

p×√p processors (assume thatp = 22r ).

The vertices of the graphG0 = (V0, E0) are distributed among this processor grid using a cyclic mapping [19]. The

verticesV0 are partitioned into
√

p subsets,V 0
0 , V 1

0 , . . . , V
√

p−1
0 . ProcessorPi, j stores the edges ofE0 between

the subsets of verticesV i
0 andV j

0 . Having distributed the data in this fashion, the algorithm then proceeds to find

a matching. This matching is computed by the processors along the diagonal of the processor-grid. In particular,

each processorPi,i finds a heavy-edge matchingMi
0 using the set of edges it stores locally. The union of these

√
p

matchings is taken as the overall matchingM0. Since the vertices are split into
√

p parts, this scheme finds larger

matchings than the one that partitions vertices intop parts.

In order for the next level coarser graphG1 to be created, processorPi, j needs to know the parts of the matching

that were found by processorsPi,i andPj, j (i.e., Mi
0 andM j

0 , respectively). Once it has this information, then it can

proceed to create the edges ofG1 that are to be stored locally without any further communication. The appropriate

parts of the matching can be made available from the diagonal processors to the other processors that require them

by two single node broadcast operations [19]—one along the row and one along the columns of the processor grid.

These steps are illustrated in Figure 2. At this point, the next level coarser graphG1 = (V1, E1) has been created such

that the verticesV1 are again partitioned in
√

p subsets, and processorPi, j stores the edges ofE1 between subsets of

verticesV i
1 andV j

1 . The next level coarser graphs are created in a similar fashion.
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Figure 2: The various phases of a coarsening level. (a) The distribution of the vertices of the graph. (b) Diagonal processors
compute the matchings and broadcast them along the rows and the columns. (c) Each processor locally computes the next level
coarser graph assigned to it. (d) The distribution of the vertices for the next coarsening level.

The coarsening algorithm continues until the number of vertices between successive coarser graphs does not sub-

stantially decrease. Assume that this happens afterk coarsening levels. At this point, graphGk = (Vk, Ek) is folded

into the lower quadrant of the processor subgrid as shown in Figure 3. The coarsening algorithm then continues by

creating coarser graphs. Since the subgraph of the diagonal processors of this smaller processor grid contains more

vertices and edges, larger matchings can be found and thus the size of the graph is reduced further. This process of

coarsening followed by folding continues until the entire coarse graph has been folded down to a single processor, at

which point the sequential coarsening algorithm is employed to coarsen the graph.

Since, between successive coarsening levels, the size of the graph decreases, the coarsening scheme just described

utilizes more processors during the coarsening levels in which the graphs are large and fewer processors for the

smaller graphs. As our analysis in Section 5 shows, decreasing the size of the processor grid does not affect the overall
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performance of the algorithm as long as the graph size shrinks by a large enough factor between successive graph

foldings.

3.2 Initial Partitioning Phase

At the end of the coarsening phase, the coarsest graph resides on a single processor. We use the GGGP algorithm

described in [16] to partition the coarsest graph. We perform a small number of GGGP runs starting from different

random vertices and the one with the smaller edge-cut is selected as the partition. Instead of having a single processor

performing these different runs, the coarsest graph can be replicated to all (or a subset of) processors, and each of these

processors can perform its own GGGP partition. We did not implement it, since the run time of the initial partition

phase is only a very small fraction of the run time of the overall algorithm.

3.3 Uncoarsening Phase

During the uncoarsening phase, the partition of the coarsest graphGm is projected back to the original graph by going

through the intermediate graphsGm−1,Gm−2, · · · ,G1. After each step of projection, the resulting partition is further

refined by using vertex swap heuristics that decrease the edge-cut as described in Section 2. Further, recall that during

the coarsening phase, the graphs are successively folded to smaller processor grids just before certain coarsening

levels. This process is reversed during the parallel uncoarsening phase for the corresponding uncoarsening levels;

i.e., the partition (besides being projected to the next level finer graph) is unfolded to larger processor grids. The

step of projection and unfolding to larger processor grids are parallelized in a way similar to their counterparts in the

coarsening phase. Here we describe our parallel implementation of the refinement step.
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For refining the coarser graphs that reside on a single processor, we use the boundary Kernighan-Lin refinement

algorithm (BKLR) described in [16]. However, the BKLR algorithm is sequential in nature and it cannot be used in its

current form to efficiently refine a partition when the graph is distributed among a grid of processors. In this case we

use a different algorithm that tries to approximate the BKLR algorithm but is more amenable to parallel computations.

The key idea behind our parallel refinement algorithm is to select a group of vertices to swap from one part to the other

instead of selecting a single vertex. Refinement schemes that use similar ideas are described in [26, 5];. However, our

algorithm differs in two important ways from the other schemes: (i) it uses a different method for selecting vertices;

(ii) it uses a two-dimensional partition to minimize communication.

Consider a
√

p ×√p processor grid on which graphG = (V, E) is distributed. Furthermore each processorPi, j

computes the gain in the edge-cut obtained from moving vertexv ∈ V j , to the other part by considering only the

part of G (i.e., vertices and edges ofG) stored locally atPi, j . This locally computed gain is calledlgv. The gain

gv, of moving vertexv is computed by a sum-reduction of thelgv, along the columns of the processor grid. Let the

processors along the diagonal of the grid store thegv values for the subset ofV assigned locally.

The parallel refinement algorithm consists of a number of steps. During each step, at each diagonal processor a

group of vertices is selected from one of the two parts and is moved to the other part. The group of vertices selected

by each diagonal processor corresponds to the vertices that have positivegv values (i.e., lead to a decrease in the

edge-cut). Each diagonal processorPi,i then broadcasts the group of verticesUi it selected along the rows and the

columns of the processor grid. Now, each processorPi, j knows the group of verticesUi andU j from V i andV j

respectively that have been moved to the other part and updates thelgv values of the vertices inU j and of the vertices

that are adjacent to vertices inUi . The updated gain valuesgv are computed by a reduction along the columns of the

modifiedlgv values. This process continues by alternating the part from where vertices are moved, until either no

further improvement in the overall edge-cut can be made, or a maximum number of iterations has been reached. In

our experiments, the maximum number of iterations was set to six. Balance between partitions is maintained by (a)

always starting the sequence of vertex swaps from the heavier part of the partition, and (b) by employing an explicit

balancing iteration at the end of each refinement phase if there is more than 2% load imbalance between the parts of

the partition.

Our parallel refinement algorithm has a number of interesting properties that positively affect its performance and

its ability to refine the partition. First, the task of selecting the group of vertices to be moved from one part to the other

is distributed among the diagonal processors instead of being done serially. Secondly, the task of updating the internal

and external degrees of the affected vertices is distributed among all thep processors. Furthermore, we restrict the

moves in each step to be unidirectional (i.e., they go only from one partition to other) instead of being bidirectional

(i.e., allow both types of moves in each phase). This guarantees that each vertex in the group of verticesU = ⋃i Ui

being moved reduces the edge-cut. In particular, letgU =∑v∈U gv, be the sum of the gains of the vertices inU . Then

the reduction in the edge-cut obtained by moving the vertices ofU to the other part is at leastgU . To see that, consider

a vertexv ∈ U that has a positive gain (i.e. gv > 0); the gain will decrease if and only if some of the adjacent vertices

of v that belong to the other part move. However, since in each phase we do not allow vertices from the other part

to move, the gain of movingv is at leastgv irrespective of whatever other vertices on the same side asv have been

moved. It follows that the gain achieved by moving the vertices ofU can be higher thangU .

In the serial implementation of BKLR, it is possible to make vertex moves that initially lead to worse partition,

but eventually (when more vertices are moved) better partition is obtained. Thus, the serial implementation has the

ability to climb out of local minima. However, the parallel refinement algorithm lacks this capability, as it never moves

vertices if they increase the edge-cut. Also, the parallel refinement algorithm, is not as precise as the serial algorithm
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as it swaps groups of vertices rather than one vertex at a time. However, our experimental results show that it produces

results that are not much worse than those obtained by the serial algorithm. The reason is that the graph coarsening

process provides enough global view and the refinement phase only needs to provide minor local improvements.

4 Parallel Multilevel Sparse Matrix Ordering Algorithm

The parallel multilevel graph bisection algorithm can be used to generate a fill reducing ordering using nested dis-

section. To obtain a fill reducing ordering we need an algorithm that constructs a vertex-separator from the bisection

produced by the parallel graph bisection algorithm.

Let A andB be the sets of vertices along the boundary of the bisection, each belonging to one of the two different

parts. A boundary induced separator can be easily constructed by simply choosing the smaller ofA andB. However, a

different separator can be constructed using a minimum cover algorithm for bipartite graphs [23] that contains subsets

of vertices from bothA andB. In many cases, this new separatorS may have 20% to 40% fewer vertices than either

A or B. Since, the size of the vertex separator directly affects the fill and thus, the time required to factor the matrix,

small separators are extremely important.

The worst-case complexity of the minimum cover algorithm isO(|A ∪ B|2) [23]. However,A ∪ B can be fairly

large (O(|V |2/3)) for three-dimensional finite element graphs; hence, this step needs to be performed in parallel. The

minimum cover algorithm is based on bipartite matching which uses depth-first traversal of the bipartite graph, making

it hard to obtain an efficient parallel formulation. For this reason our parallel formulation implements a relaxed version

of the minimum cover algorithm.

Parallel Vertex Cover Algorithm Recall from Section 3.1 that the vertices of a graphG = (V, E) are distributed

on a two-dimensional processor grid so that each processorPi, j contains the edges between verticesV i andV j . Let

Ai = A ∩ V i and B j = B ∩ V j that is, Ai andB j are the subsets of boundary vertices stored locally at processor

Pi, j . Figure 4(a) illustrates this notation by an example. In this figure we represent the connections between setsA

andB by a matrix whose rows correspond to the vertices in setA and the columns correspond to the vertices in setB.

This matrix is distributed among the processor grid, which in the example is of size 3× 3. Using this representation

of the bipartite graph, a vertex cover ofA andB corresponds to a selection of rows and columns that includes all of

the non-zeros in the matrix.

Each processorPi, j finds locally the minimum cover of edges betweenAi andB j . Let Ai, j
c ⊆ Ai andBi, j

c ⊆ B j

such thatAi, j
c ∪ Bi, j

c is this minimum cover. Figure 4(b) shows the minimum covers computed by each processor. For

example, the minimum cover computed by processorP0,0 contains the vertices{a0, a1, b1}, that is A0,0
c = {a0, a1}

andB0,0
c = {b1}. Note that the union ofAi, j

c andBi, j
c over all the processors is a cover for all the edges betweenA

andB. This cover can be potentially smaller than eitherA or B. However, this cover is necessarily minimal, as it may

contain vertices fromA (or B) such that the edges covered by them are also covered by other vertices in the cover.

This can happen because the minimum cover for the edge-set at each processorPi, j is computed independently of the

other processors. For example, the union of the local covers computed by all the processors in Figure 4(b) is

{a0, a2, a3, a6, a7, a9, a11, a12, a13, a15, b1, b3, b4, b7, b8, b10, b14, b15}

which is not minimal, since for example we can removea3 and still have a vertex cover. The size of this cover can be

potentially reduced as follows.

Let B j
c = ∪i Bi, j

c . That isB j
c is the union ofBi, j

c along the columns of the processor grid. This union is computed
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(f) After removing column covers

(a) Original bipartitie graph (b) After local covers have been found (c) Union of the column covers

(d) After locally removing some of the row cover (e) Union of the row covers
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Figure 4: An example of the computations performed while computing a minimal vertex cover in parallel.

via a reduction along the columns and is broadcasted to all the processors along the corresponding grid column. For

the set of edges at each processorPi, j , the setAi, j
c ∪ B j

c is also a cover, which may not be minimum sinceB j
c ⊇ Bi, j

c .

Now each processor removes vertices fromAi, j
c such that every edge covered by these vertices is also covered by some

vertex inB j
c . More precisely, a vertexv ∈ Ai, j

c is removed if for all edges(v, u) at processorPi, j , u ∈ B j
c . Figure 4(c)

shows vertex covers at each processor after the union ofBi, j
c has been computed along the columns. Figure 4(d) shows

the covers after some vertices of setA have been removed. For example, processorP0,0 can remove vertexa0 from

the cover of the locally stored edges, because it now has verticesb3 andb4 in the vertex cover.

Let Ai, j
c′ be the reduced version ofAi, j

c . Note that the union ofAi, j
c′ andBi, j

c over all the processors is also a cover

of all the edges betweenA andB. This cover is potentially smaller than the cover obtained as the union ofAi, j
c and

Bi, j
c . However, we can still may able to further reduce the size of this cover as follows. LetAi

c′ = ∪ j Ai, j
c′ . That

is Ai
c′ is the union ofAi, j

c′ along the rows of the processor grid. See Figure 4(e) for an illustration. This union is

computed via a reduction along the rows and is broadcasted to all the processors along the corresponding rows. For

each processorPi, j the setAi
c′ ∪ B j

c is also a cover. However, sinceAi
c′ ⊇ Ai, j

c′ , some of the vertices ofB j
c may not

be needed in the cover that keepsAi
c′ fixed, and thus they can be removed. The removal of the vertices inB j

c is shown

in Figures 4(e) and 4(f), respectively. Note that verticesb3 andb10 can now be removed from the vertex cover.

Let Bi, j
c′ be the reduced version ofB j

c . Let B j
c′ be the union of the reducedBi, j

c′ ’s along the columns. The separator
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S is then constructed as

S =
√p−1⋃

i=0

Ai
c′

⋃√p−1⋃
j=0

B j
c′

 .
Note thatAi, j

c′ andBi, j
c′ cannot be further reduced, even if the entireS is made available at each processor. The reason

is that at this time, eachbi ∈ Bi, j
c′ covers at least one edge that is not covered by anyai ∈ Ai, j

c′ , and eachai ∈ Ai, j
c′

covers at least one edge that is not covered bybi ∈ Bi, j
c′ . Hence, the setS is at a local minimum.

In Figure 5 we plotted the reduction in the size of the top level vertex separator obtained by using our parallel

minimum cover algorithm over the boundary induced vertex separator for 16, 32, and 64 processors for some matrices.

For most matrices, the approximate minimum cover algorithm reduces the size of the vertex separator by at least 10%,

and for some other it decreases by as much as 25%. Furthermore, our experiments (not reported here) show that their

sizes are usually close to those obtained using the minimum cover algorithm running on a serial computer.
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Figure 5: The size of the approximate minimum cover vertex separator relative to the boundary induced vertex separator.

5 Performance and Scalability Analysis

A complete analysis of our parallel multilevel algorithm has to account for the communication overhead in each

coarsening step and the idling overhead that results from folding the graph onto smaller processor grids. The analysis

presented in this section is for hypercube-connected parallel computers, but it is applicable to a much broader class of

architectures for which the bisection bandwidth isO(p) (e.g., fat trees, crossbar, and multistage networks).

Consider a hypercube-connected parallel computer withp = 22r processors arranged as a
√

p × √p grid. Let

G0 = (V0, E0) be the graph that is partitioned intop parts, and letn = |V0| andm = |E0|. During the first coarsening

level, the diagonal processors determine the matching, they broadcast it to the processors along the rows and columns

of the processor grid, and all the processors construct the local part of the next level coarser graph. The time required

to find the matching, and to create the next level coarser graph is of the order of the number of edges stored in each

processori.e., O(m/p). Each diagonal processor finds a matching of theO(n/
√

p) vertices it stores locally, and

broadcasts it along the rows and columns of the processor grid. Since the size of these vectors are much larger than√
p, this broadcast can be performed in time linear to the message size, by performing a one-to-all personalized

broadcast followed by an all-to-all broadcast (Problem 3.24 in [19]). Thus, the time required by the broadcast is

O(n/
√

p).

If we assume (see the discussion in Section 6.3) that in each successive coarsening level the number of vertices
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decreases by a factor greater than one, and that the size of the graphs between successive foldings decreases by a

factor greater than four, then the amount of time required to compute a bisection is dominated by the time required to

create the first level coarse graph. Thus, the time required to compute a bisection of graphG0 is:

T bissect ion = O

(
m

p

)
+ O

(
n√
p

)
. (1)

After finding a bisection, the graph is split and the task of finding a bisection for each of these subgraphs is

assigned to a different half of the processors. The amount of communication required during this graph splitting is

proportional to the number of edges stored in each processor; thus, this time isO(m/p), which is of the same order as

the communication time required during the bisection step. This processes of bisection and graph splitting continues

for a total of logp times. At this time a subgraph is stored locally on a single processor and thep-way partition of the

graph has been found. The time required to compute the bisection of a subgraph at leveli is

T bissect ion
i = O

(
m/2i

p/2i

)
+ O

(
n/2i√
p/2i

)
= O

(
m

p

)
+ O

(
n√
p

)
,

the same for all levels. Thus, the overall run time of the parallelp-way partitioning algorithm is

T part it ion =
(

O

(
m

p

)
+ O

(
n√
p

))
log p = O

(
n log p√

p

)
(2)

Equation 2 shows that asymptotically, only a speedup ofO(
√

p) can be achieved in the algorithm. However, as

our experiments in Section 6 show, higher speedup can be obtained. This is because the constant hidden in front

of O(m/p) is often much higher than that hidden in front ofO(n/
√

p) particularly for 3D finite element graphs.

Nevertheless, from Equation 2 we have that the partitioning algorithm is asymptotically unscalable. That is, it is not

possible to obtain constant efficiency on increasingly large number of processors even if the problem size (O(n)) is

increased arbitrarily.

However, a linear system solver that uses this parallel multilevel partitioning algorithm to obtain a fill reducing

ordering prior to Cholesky factorization is not unscalable. This is because, the time spent in ordering is considerably

smaller than the time spent in Cholesky factorization. The sequential complexity of Cholesky factorization of matrices

arising in 2D and 3D finite elements applications isO(n1.5) andO(n2), respectively. The communication overhead of

parallel ordering over allp processors isO(n
√

p log p), which can be subsumed by the serial complexity of Cholesky

factorization providedn is large enough relative top. In particular, the isoefficiency [19] for 2D finite element graphs

is O(p1.5 log3 p), and for 3D finite element graphs isO(p log2 p). We have recently developed a highly parallel sparse

direct factorization algorithm [17, 9]. the isoefficiency of this algorithm isO(p1.5) for both 2D and 3D finite element

graphs. Thus, for 3D problems, the parallel ordering does not affect the overall scalability of the ordering-factorization

algorithm.

6 Experimental Results

We evaluated the performance of the parallel multilevel graph partitioning and sparse matrix ordering algorithm on

a wide range of matrices arising in finite element applications. The characteristics of these matrices are described in

Table 1.

We implemented our parallel multilevel algorithm on a 128-processor Cray T3D parallel computer. Each processor
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Matrix Name No. of Vertices No. of Edges Description
4ELT 15606 45878 2D Finite element mesh
BCSSTK31 35588 572914 3D Stiffness matrix
BCSSTK32 44609 985046 3D Stiffness matrix
BRACK2 62631 366559 3D Finite element mesh
CANT 54195 1960797 3D Stiffness matrix
COPTER2 55476 352238 3D Finite element mesh
CYLINDER93 45594 1786726 3D Stiffness matrix
ROTOR 99617 662431 3D Finite element mesh
SHELL93 181200 2313765 3D Stiffness matrix
WAVE 156317 1059331 3D Finite element mesh

Table 1: Various matrices used in evaluating the multilevel graph partitioning and sparse matrix ordering algorithm.

on the T3D is a 150Mhz Dec Alpha chip. The processors are interconnected via a three dimensional torus network that

has a peak unidirectional bandwidth of 150Bytes per second, and a small latency. We used SHMEM message passing

library for communication. In our experimental setup, we obtained a peak bandwidth of 90MBytes and an effective

startup time of 4 microseconds.

Since, each processor on the T3D has only 64MBytes of memory, some of the larger matrices could not be parti-

tioned on a single processor. For this reason, we compare the parallel run time on the T3D with the run time of the

serial multilevel algorithm running on a SGI Challenge with 1.2GBytes of memory and 150MHz Mips R4400. Even

though the R4400 has a peak integer performance that is 10% lower than the Alpha, due to the significantly higher

amount of secondary cache available on the SGI machine (1 Mbyte on SGI versus 0 Mbytes on T3D processors), the

code running on a single processor T3D is about 15% slower than that running on the SGI. The computed speedups

in the rest of this section are scaled to take this into account1. All times reported are in seconds. Since our multilevel

algorithm uses randomization in the coarsening step, we performed all experiments with a fixed seed.

6.1 Graph Partitioning

The performance of the parallel multilevel algorithm for the matrices in Table 1 is shown in Table 2 for ap-way

partition onp processors, wherep is 16, 32, 64, and 128. The performance of the serial multilevel algorithm for the

same set of matrices running on an SGI is shown in Table 3. For both the parallel and the serial multilevel algorithm,

the edge-cut and the run time are shown in the corresponding tables. In the rest of this section we will first compare the

quality of the partitions produced by the parallel multilevel algorithm, and then the speedup obtained by the parallel

algorithm.

Figure 6 shows the size of the edge-cut of the parallel multilevel algorithm compared to the serial multilevel algo-

rithm. Any bars above the baseline indicate that the parallel algorithm produces partitions with higher edge-cut than

the serial algorithm. From this graph we can see that for most matrices, the edge-cut of the parallel algorithm is worse

than that of the serial algorithm. This is due to the fact that the coarsening and refinement performed by the parallel

algorithm are less powerful. But in most cases, the difference in edge-cut is quite small. For nine out of the ten ma-

trices, the edge-cut of the parallel algorithm is within 10% of that of the serial algorithm. Furthermore, the difference

in quality decreases as the number of partitions increases. The only exception is4ELT, for which the edge-cut of

the parallel 16-way partition is about 27% worse than the serial one. However, even for this problem, when larger

partitions are considered, the relative difference in the edge-cut decreases; and for the of 128-way partition, parallel

1The speedup is computed as 1.15∗ TSG I /TT 3D , whereTSG I andTT 3D are the run times on SGI and T3D, respectively.
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p = 16 p = 32 p = 64 p = 128
Matrix Tp EC16 S Tp EC32 S Tp EC64 S Tp EC128 S
4ELT 0.48 1443 6.0 0.48 1995 7.0 0.48 3210 8.5 0.48 4734 11.1
BCSSTK31 1.28 27215 10.7 1.02 43832 17.0 0.87 67134 23.6 0.78 98675 31.6
BCSSTK32 1.69 43987 12.0 1.33 71378 19.2 1.05 104532 28.4 0.92 155321 37.9
BRACK2 2.14 14987 8.6 1.83 21545 12.2 1.56 32134 16.8 1.35 45345 21.9
CANT 3.20 199567 13.4 2.29 322498 23.7 1.71 441459 38.0 1.47 575231 49.7
COPTER2 2.05 22498 7.4 1.78 32765 11.1 1.59 45230 14.0 1.42 60543 18.2
CYLINDER93 2.35 131534 14.3 1.71 198675 24.5 1.34 288340 39.2 1.05 415632 56.3
ROTOR 3.16 26532 11.0 2.89 39785 14.4 2.40 57540 20.0 2.10 77450 26.4
SHELL93 5.80 54765 13.9 4.40 86320 22.5 3.25 130856 35.3 2.67 200057 49.9
WAVE 5.10 57543 10.3 4.70 76785 13.3 3.73 101210 19.9 3.09 138245 26.8

Table 2: The performance of the parallel multilevel graph partitioning algorithm. For each matrix, the performance is shown for 16,
32, 64, and 128 processors. Tp is the parallel run time for a p-way partition on p processors, ECp is the edge-cut of the p-way
partition, and S is the speedup over the serial multilevel algorithm.

Matrix T16 EC16 T32 EC32 T64 EC64 T128 EC128
4ELT 2.49 1141 2.91 1836 3.55 2965 4.62 4600
BCSSTK31 11.96 25831 15.08 42305 17.82 65249 21.40 97819
BCSSTK32 17.62 43740 22.21 70454 25.92 106440 30.29 152081
BRACK2 16.02 14679 19.48 21065 22.78 29983 25.72 42625
CANT 37.32 199395 47.22 319186 56.53 442398 63.50 574853
COPTER2 13.22 21992 17.14 31364 19.30 43721 22.50 58809
CYLINDER93 29.21 126232 36.48 195532 45.68 289639 51.39 416190
ROTOR 30.13 24515 36.09 37100 41.83 53228 48.13 75010
SHELL93 69.97 51687 86.23 81384 99.65 124836 115.86 185323
WAVE 45.75 51300 54.37 71339 64.44 97978 71.98 129785

Table 3: The performance of the serial multilevel graph partitioning algorithm on an SGI, for 16-, 32-, 64-, and 128-way partition.
Tp is the run time for a p-way partition, and ECp is the edge-cut of the p-way partition.

multilevel does slightly better than the serial multilevel.

Figure 7 shows the size of the edge-cut of the parallel algorithm compared to the Multilevel Spectral Bisection

algorithm (MSB) [3]. The MSB algorithm is a widely used algorithm that has been found to generate high quality

partitions with small edge-cuts. We used the Chaco [11] graph partitioning package to produce the MSB partitions.

As before, any bars above the baseline indicate that the parallel algorithm generates partitions with higher edge-cuts.

From this figure we see that the quality of the parallel algorithm is almost never worse than that of the MSB algorithm.

For eight out of the ten matrices, the parallel algorithm generated partitions with fewer edge-cuts, up to 50% better

in some cases. On the other hand, for the matrices that the parallel algorithm performed worse, it is only by a small

factor (less than 6%). This figure (along with Figure 6) also indicates that our serial multilevel algorithm outperforms

the MSB algorithm. An extensive comparison between our serial multilevel algorithm and MSB, can be found in [16].

Tables 2 and 3 also show the run time of the parallel algorithm and the serial algorithm, respectively. A number

of conclusions can be drawn from these results. First, asp increases, the time required for thep-way partition on

p-processors decreases. Depending on the size and characteristics of the matrix this decrease is quite substantial. The

decrease in the parallel run time is not linear to the increase inp but somewhat smaller for the following reasons: (a)

As p increases, the time required to perform thep-way partition also increases; (there are more partitions to perform).

(b) The parallel multilevel algorithm incurs communication and idling overhead that limits the asymptotic speedup to

O(
√

p) unless a good partition of the graph is available even before the partitioning process starts (Section 5).

To compare the decrease in the parallel run time against various ideal situations, we constructed Figure 8. In this
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Figure 6: Quality (size of the edge-cut) of our parallel multilevel algorithm relative to the serial multilevel algorithm.
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Figure 7: Quality (size of the edge-cut) of our parallel multilevel algorithm relative to the multilevel spectral bisection algorithm.

figure we plotted the decrease in the run time forp equal to 32, 64, and 128, relative to the run time ofp = 16 for

some representative matrices from Table 1. On the same graph, we also plotted the decrease in the run time if the

speedup had beenO(p), O(
√

p), andO(log p), respectively. From Section 5, we know that the asymptotic speedup

obtained by the parallel multilevel algorithm is bounded byO(
√

p). Also, from Section 3, we know that if only the

parallelism due to the recursive step is exploited, then the speedup of the parallel algorithm is bounded byO(log p).

From this figure, we see that for the larger problems, the decrease in the run time is much larger than that predicted by

the O(
√

p) speedup curve. This is because (as discussed in Section 5) the constants in Equation 2, for theO(m/p)

term are much smaller than those of theO(n/
√

p) term for graphs with relatively high average degree.

Thus, for problems with relatively high degree, (such as coefficient matrices for 3D finite element problems), our

parallel algorithm performs fairly well. This can also be seen by looking at the speedup achieved by the parallel

algorithm shown in Table 2. We see that for most such problems, speedup in the range of 14 to 25 was achieved on 32

processors, and in the range of 22 to 56 on 128 processors. Since, the serial multilevel algorithm is quite fast (much

faster than MSB), these speedups lead to a significant reduction in the time required to perform the partition. For most

problems in our test set, it takes no more than two seconds to obtain an 128-partition on 128 processors. However, for

the problems with small average degrees, the decrease is very close toO(
√

p) as predicted by our analysis. The only

exception is4ELT, for which the speedup is close toO(log p). We suspect it is because the problem is too small, as
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Figure 8: The decrease in the parallel run time for 32, 64, and 128 processors relative to the run time on 16 processors.

even on a serial computer 128-way partition takes less than 5 seconds.

6.2 Sparse Matrix Ordering

We used the parallel multilevel graph partitioning algorithm to find a fill reducing ordering via nested dissection. The

performance of the parallel multilevel nested dissection algorithm (MLND) for various matrices is shown in Table 4.

For each matrix, the table shows the parallel run time and the number of nonzeros in the Cholesky factorL of the

resulting matrix for 16, 32, and 64 processors. Onp processors, the ordering is computed by using nested dissection

for the first logp levels, and then multiple minimum degree [20] (MMD) is used to order the submatrices stored locally

on each processor.

Matrix T16 |L| T32 |L| T64 |L|
BCSSTK31 1.7 5588914 1.3 5788587 1.0 6229749
BCSSTK32 2.2 7007711 1.7 7269703 1.3 7430756
BRACK2 2.9 7788096 2.5 7690143 1.8 7687988
CANT 4.4 29818759 2.8 28854330 2.2 28358362
COPTER2 2.6 12905725 2.1 12835682 1.6 12694031
CYLINDER93 3.5 15581849 2.2 15662010 1.7 15656651
ROTOR 6.1 23193761 4.0 24196647 3.0 24624924
SHELL93 8.5 40968330 5.7 40089031 4.5 35174130
WAVE 8.7 87657783 6.3 85317972 4.8 87243325

Table 4: The performance of the parallel MLND algorithm on 16, 32, and 64 processors for computing a fill reducing ordering of a
sparse matrix. Tp is the run time in seconds and |L| is the number of nonzeros in the Cholesky factor of the matrix.

Figure 9 shows the relative quality of both serial and parallel MLND versus the MMD algorithm. These graphs
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were obtained by dividing the number of operations required to factor the matrix using MLND by that required by

MMD. Any bars above the baseline indicate that the MLND algorithm requires more operations than the MMD

algorithm. From this graph, we see that in most cases, the serial MLND algorithm produces orderings that require

fewer operations than MMD. The only exception is BCSSTK32, for which the serial MLND requires twice as many

operations.

Comparing the parallel MLND algorithm against the serial MLND, we see that the orderings produced by the

parallel algorithm requires more operations (see Figure 9). This is mainly due to the following three reasons:

a. The bisections produced by the parallel multilevel algorithm are somewhat worse than those produced by the

serial algorithm.

b. The parallel algorithm uses an approximate minimum cover algorithm (Section 4). Even though, this approx-

imate algorithm finds a small separator, its size is somewhat larger than that obtained by the minimum cover

algorithm used in serial MLND. From some matrices, the true minimum cover separator may be up to 15%

smaller than the approximate one. As a result, the orderings produced by the parallel MLND require more

operations than the serial MLND.

c. The parallel algorithm performs multilevel nested dissection ordering only for the first logp levels. After that

it switches over to MMD. The serial MLND algorithm performsO(logn) levels of nested dissection and only

switches to MMD when the submatrix is very small (fewer than 100 vertices). On the other hand, depending

on p, the parallel MLND algorithm switches to MMD much earlier. Since, MLND tends to perform better than

MMD for larger matrices arising in 3D finite element problems (Figure 9), the overall quality of the ordering

produced by parallel MLND can be slightly worse. This effect becomes less pronounced asp increases, because

MMD is used on smaller and smaller submatrices. Indeed on some problems (such as CANT and SHELL93),

parallel MLND performs better as the number of processors increases.

However, as seen in Figure 9, the overall quality of the parallel MLND algorithm is usually within 20% of the serial

MLND algorithm. The only exception in Figure 9 isSHELL93. Also, the relative quality changes slightly as the

number of processors used to find the ordering increases.
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Figure 9: Quality of our parallel MLND algorithm relative to the multiple minimum degree algorithm and the serial MLND algorithm.

Comparing the run time of the parallel MLND algorithm (Table 4) with that of the parallel multilevel partitioning

algorithm (Table 2) we see that the time required by ordering is somewhat higher than the corresponding partitioning
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Graph p 4× 4 2× 2 1× 1
V E V E V E

CANT 16 74.34 241.95 1.72 2.26
d = 72 64 16.71 39.09 2.63 3.51 1.78 2.20
BCSSTK31 16 49.23 118.57 1.90 2.50
d = 44 64 8.67 29.06 2.67 2.99 2.60 3.20
BCSSTK32 16 16.04 32.55 2.67 3.73
d = 32 64 4.99 7.43 2.94 3.40 1.98 2.33
BRACK2 16 7.43 7.06 2.48 3.14
d = 12 64 6.84 6.41 1.83 1.93 1.82 2.06
ROTOR 16 12.31 12.60 1.90 2.06
d = 12 64 5.07 4.77 2.47 2.70 1.85 1.99
COPTER2 16 7.61 7.64 1.89 2.04
d = 12 64 2.77 2.59 1.96 1.92 2.62 3.02
4ELT 16 2.01 2.04 4.48 5.76
d = 6 64 1.30 1.31 1.72 1.76 4.19 5.50

Table 5: The reduction in the number of vertices and edges between successive graph foldings. For each graph, the columns
labeled with V (E ) gives the factor by which the number of vertices (edges) is reduced between successive foldings. These results
are shown for three processor grids 4× 4, 2× 2 and 1× 1 that corresponds to the quadrant of the grid to which the graph was
folded. For example, for BCSSTK32, when 64 processors are used, the number of vertices was reduced by a factor of 4.99 before
being folded to 16 processors (4× 4 grid). For the same graph, the number of vertices was reduced further by a factor of 2.94
before being folded to 4 processors, and by another 1.98 factor before being folded down to a single processor. Thus, the graph
that a single processor receives has 4.99×2.94×1.98= 16.65 times fewer vertices than the original graph. Under each graph,
the average degree d of the graph is shown.

time. This is due to the extra time taken by the approximate minimum cover algorithm and the MMD algorithm used

during ordering. But the relative speedup between 16 and 64 processors for both cases are quite similar.

6.3 How Good Is the Diagonal Coarsening

The analysis presented in Section 5 assumed that the size of the graph (i.e., the number of edges) decreases by

a factor greater than four before successive foldings. The amount of coarsening that can take place depends on the

number of edges stored locally on each diagonal processor. If this number is very small, then maximal independent

subsets found by each diagonal processor will be very small. Furthermore, the next level coarser graph will have even

a smaller number of edges, since (a) edges in the matching are removed, and (b) some of the edges of the matched

vertices are common and thus are collapsed together. On the other hand, if the average degree of a vertex is fairly high,

then significant coarsening can be performed before folding. To illustrate the relation between the average degree

of a graph and the amount of coarsening that can be performed for the first bisection, we performed a number of

experiments on 16 and 64 processors. In Table 5 we show the reduction in the number of vertices and edges between

foldings.

A number of interesting conclusions can be drawn out of this table. For graphs with relatively high average degree

(e.g., CANT, BCSSTK31, BCSSTK32), most of the coarsening is performed on the entire processor grid. For

instance, on 64 processors, forCANT, the average degree of a vertex on the diagonal processors is 72/8 = 9. As

a result significant coarsening can be performed before the edges of the diagonal processors get depleted. By the

time the parallel multilevel algorithm is forced to perform a folding, both the number of vertices and the number of

edges have decreased by a large factor. In many cases, this factor is substantially higher than that required by the

analysis. For most of these graphs, over 90% of the overall computation of coarsening is performed using all the

processors, and only a small fraction is performed by smaller processor grids. This type of graphs correspond to the

coefficient matrices of 3D finite element problems with multiple degrees of freedom that are widely used in scientific
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and engineering applications. From this we can see that the diagonal coarsening can easily be scaled up to 256 or even

1024 processors for graphs with average degree higher than 25 or 40 respectively.

For low degree graphs (e.g. BRACK2, COPTER2, andROTOR) with average degree of 12 or less, the number

of vertices decreases by a smaller factor than the high degree graphs. ForBRACK2, for each vertex, each diagonal

processor has on the average 12/8 = 1.5 vertices; thus, only limited amount of coarsening can be performed. Note

that for4ELT, the number of vertices and the number of edges decrease only by a small factor, which explains the

poor speedup obtained for this problem.

7 Conclusion

In this paper we presented a parallel formulation of multilevel recursive bisection algorithm for partitioning a graph

and for producing a fill reducing order via nested dissection. Our experiments show that our parallel algorithms are

able to produce good partitions and orderings for a wide range of problems. Furthermore, our algorithms achieve a

speedup of up to 56 on 128-processor Cray T3D.

Due to the two-dimensional mapping scheme used in the parallel formulation, its asymptotic speedup is limited to

O(
√

p) because the matching operation is performed only on the diagonal processors. In contrast, for one-dimensional

mapping scheme used in [24, 1, 14], the asymptotic speedup can beO(p) for large enough graphs. However, this two-

dimensional mapping has the following advantages. First, the actual speedup on graphs with large average degrees

is quite good as shown in Figure 8. The reason is that for these graphs, the formation of the next level coarser graph

(which is completely parallel with two-dimensional mapping) dominates the computation of the matching. Second, the

two-dimensional mapping requires fewer communication operations (only broadcast and reduction operations along

the rows and columns of the processor grid) in each coarsening step compared with one-dimensional mapping. Hence

on machines with slow communication network (high message startup-time and/or small communication bandwidth),

the two-dimensional mapping can provide better performance even for graphs with small degree. Third, the two-

dimensional mapping is central to the parallelization of the minimal vertex cover computation presented in Section 4.

It is unclear if the algorithm for computing minimal vertex cover of a bipartite graph can be efficiently parallelized

with one-dimensional mapping.

The parallel graph partitioning and sparse matrix reordering algorithms described in this paper are available in the

PARMETIS graph partitioning library that is publicly available on WWW athttp://www.cs.umn.edu/˜metis.
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