Improved prediction of protein model quality

Kevin W. DeRonne*

Department of Computer Science & Engineering,
Digital Technology Center
University of Minnesota, Minneapolis, MN 55455

*Email: deronne@cs.umn.edu

George Karypis

Department of Computer Science & Engineering,
Digital Technology Center
University of Minnesota, Minneapolis, MN 55455

*Email: karypisQcs.umn.edu

Abstract

Methods that can automatically assess the quality of computationally predicted protein structures are
important, as they enable the selection of the most accurate structure from an ensemble of predictions.
Assessment methods that determine the quality of a protein’s structure by comparing it against the
various structures predicted by different servers have been shown to outperform approaches that rely on
the intrinsic characteristics of the structure itself. We developed an algorithm to estimate the quality of a
predicted protein structure using a consensus approach. Our method uses LGA to align the structure in
question to the structures for the same protein predicted by different servers and estimates the per-residue
error by averaging the distances across these alignments. On a dataset containing 892,299 positions from
4,969 CASP7 submissions, our method achieved a root mean squared error (RMSE) of 6.69A, which is
significantly better than the 8.21A achieved by the winning scheme in CASP7 for this problem (Pcons).
We further improved these results to 6.51A by developing a scheme that carefully selects which distances
to average based on the predicted quality of the overall structure. We also examined the use of machine
learning approaches to learn an appropriate aggregation scheme, which led to a simple weight learning
approach achieving a 2.61A RMSE on a reduced dataset. Our results show that the use of LGA alignments
and aggregation of raw distances is the primary reason for its performance advantage. In addition, our
results show that beyond a binary inclusion/exclusion decision, learning from the data a set of weights
by which the structures of the different servers can be aggregated can further improve performance.

1 Background

The problem of predicting protein structure from amino acid sequence has yet to be fully solved, and
experimentally determining protein structures requires extensive human input. Due to the relative ease
of determining amino acid sequences, and the utility of structural information, the problem has attracted
much attention. As the accuracy of protein structure prediction algorithms has greatly improved over the
last ten years [1,2], the ability to precisely determine the quality of protein structure predictions has gained
importance. In an attempt to motivate improvements in this area, the most recent session of CASP* included
a model quality assessment category [3]. Given a putative structure, competitors were asked to submit a

*Corresponding author.
Lhttp://predictioncenter.org/

quality score between 0.0 and 1.0, or to assign an error estimate (in A) to each residue of the structure.
Twenty-eight groups submitted full structure quality estimates, and nine of those submitted per-residue
error estimates.

Among the different methods proposed for solving the quality assessment problem, Pcons [4] has proved
to be the most successful approach in predicting both complete structure quality and errors for individual
residues. The underlying assumption of this approach is that, within the ensemble of predicted structures,
recurring structures and structural motifs have an increased probability of being high-quality (i.e. close
to the native state). Pcons determines the quality of a structure in two steps. First, it performs pairwise
LGscore alignments [7] between the query structure and all structures in the ensemble. Second, S-scores [8]
computed from these alignments are aggregated and used to produce a prediction.

In this paper we focus on improving the per-residue error estimates. We present an approach that is
based on the same idea as Pcons, but which shows increased performance in assigning error estimates to
residues in predicted models. This new technique alters both of the primary elements in the Pcons method.
In place of LGscore alignments, LGA alignments are used, and rather than S-scores, raw distances are
aggregated. We evaluate our methods on a dataset that contained 892,299 positions from 4,969 CASP7
submissions. Compared against the actual per-residue errors, our method achieves a root mean squared
error (RMSE) of 6.69A and a correlation coefficient of 0.81. This performance is significantly better than
that achieved by Pcons on the same dataset, which is 8.21A and 0.75, respectively (difference is statistically
significant at p < 0.0001). We also present a scheme that carefully selects which distances to aggregate based
on the predicted quality of the overall structure, which further reduces the per-residue errors to 6.51A. In
addition to this new method, we examine the use of a linear perceptron, standard regression, support vector
regression and a simple weight learning technique to learn an appropriate aggregation scheme. Our extensive
experimental evaluation demonstrates that the simple learning algorithm can be used to effectively improve
the performance when trained appropriately.

2 Results and Discussion

2.1 Error assessment via LGA distance averaging

In this section we describe our new method for predicting per-residue error. Let X be the amino acid
sequence of the query protein and let Sx be its predicted 3D structure. Let S% be the true 3D structure for
X and let {S%,5%,...,5%} be the structures of X predicted by k different structure prediction methods.
For each residue z; of X, let d;(x;) be the distance between the ith residue of Sx and the ith residue of Sg(
obtained after structurally superimposing Sy and Sg(using the LGA program [6]. We will refer to d;(x;)
as the z;’s distance between the query and the jth predictor. The predicted distance d(z;) between residue
z; in Sx and S% (the error estimate for position 4) is given by

k

d(w;) =Y wjlzi)d; (), (1)
j=1

where w;(z;) is a weight associated with the jth predictor for residue z;, and }_; w;(z;) = 1.0.

The key idea behind this per-residue error prediction approach is that each of the &k structures over which
it averages can be considered an expert’s prediction for X’s real structure. Thus, the per-residue error can
be determined by a weighted average over the per-residue distances to the structure of each expert. The
various w;(z;) parameters control how the distances between the query and the predictors are weighted. A
straightforward approach is to make all these weights equal (i.e., w;(z;) = 1/k), which corresponds to simple
averaging. We call this approach LGA-Distance.

The above method differs from Pcons in two important ways. First, it uses LGA alignments as opposed
to LGscore alignments. Second, it averages the raw distances as opposed to S-scores [7]. S-scores were
developed as part of an improvement over root mean square deviation calculations for global structural
comparison [8] (see the Methods section for how the S-score is calculated).

To understand the impact of these choices, we examine the performance obtained by four different
schemes as shown in Table 1. The first two schemes (LGA-Distance and LGA—S-score) use LGA to compute
alignments, and average either raw distances or S-scores, whereas the second two schemes (LGscore-Distance
and LGscore—S-score) use LGscore to compute alignments, again averaging either raw distances or S-scores.
Using LGscore alignments and averaging S-scores is identical to the Pcons approach, and so we equivalently
refer to Pcons as the LGscore—S-score scheme. Table 1 shows the results on three different datasets (FDS,
LDS, and LDS™), with LDS and LDS™ being subsets of the FDS dataset (for a complete description of how
these are constructed, see the Methods section).

As can be seen from this table, the LGA-Distance scheme outperforms the other three schemes on all three
datasets. For example, on the FDS dataset, LGA-Distance achieves an RMSE of 6.69A, which is significantly
lower than those achieved by the other schemes (11.32A for LGA-S-score, 7.73A for LGscore Distance, and
8.21A for Pcons). Similar performance trends are observed in terms of the correlation coefficient. Comparing
the performance of the schemes using distance-based averaging over those that average S-scores, we see that
in general, the former lead to better results. A possible explanation for this is that S-scores were developed in
the context of a global structural comparison rather than in the context of two residues. Finally, comparing
the impact to the overall quality of the alignment methods (LGA and LGscore) and averaging schemes
(distances and S-scores), we see that in general the former play a somewhat more important role. For
instance, the gains achieved by LGA-Distance over LGscore—Distance are higher than those achieved by
LGscore-Distance over LGscore—S-score.

Table 1: Performance of prediction using LGA-Distance, LGA—S-score, LGscore—S-
score (Pcons) and LGscore-Distance

Correlation Coefficient

Dataset LGA-Distance LGA-S-score LGscore—Distance LGscore—S-score (Pcons)

FDS 0.81 0.70 0.76 0.75

LDS 0.89 0.88 0.79 0.79

LDS™ 0.91 0.89 0.80 0.80
RMSE

Dataset LGA-Distance LGA-S-score LGscore-Distance LGscore—S-score (Pcons)

FDS 6.69 11.32 7.73 8.21
LDS 2.80 3.05 4.31 4.19
LDS™ 2.63 3.04 4.35 4.30

Values in this table represent the Pearson correlation and root mean squared error between
the predicted and true per-residue distances. Pcons results are taken from CASP use all
distances for the positions in these sets.

Motivated by the positive results obtained by LGA-Distance, we explore two possibilities for improving
this method. First, we examine if using a better subset of predictions can improve the results. Second, we
look at using learning algorithms to estimate the various w;(x;) parameters directly from the data.

2.2 Selecting predictions based on predictor quality

Given multiple predictions for a structure, some of the predictions will be better than others. If the quality
of each of the predictions is known, a consensus predictor can be built that averages only those predictions
above a certain quality. One measure of the quality of a predicted structure is its LGA score [6] to the true
structure. Table 2 shows how the performance of the LGA-Distance scheme is affected by only including
predictions whose quality is above a given threshold. The first column shows a minimum LGA_S required for

a prediction to be used. Comparing values within a specific row of this table we see that limiting the set of
predictions to only those with a score greater than a given threshold does help, provided that the threshold
is sufficiently large. Note how the second row of the second column does not fit the general trend. If the
distance between the query and the prediction is high, predictions with a low LGA score can still accurately
predict the distance between the query and the true structure.

Table 2: Using the LGA-Distance scheme with structures scoring above a given
minimum.

Selected Predictors All Predictors

LGA_S Minimum Corr. Coeff. RMSE Corr. Coeff. RMSE Positions Used

0 0.81 6.69 0.81 6.69 892299
10 0.76 7.83 0.81 6.68 891804
20 0.81 6.09 0.82 6.03 859232
30 0.83 5.28 0.83 5.40 782685
40 0.85 4.42 0.83 4.75 707801
50 0.86 3.85 0.86 3.91 619229
60 0.87 3.54 0.87 3.68 542344
70 0.92 2.62 0.90 3.00 356028
80 0.91 2.78 0.89 3.10 260007
90 0.92 2.57 0.90 2.94 166706

The numbers on the last column indicate the number of positions with at least one
prediction greater than or equal to the specified minimum.

However, as knowing the exact quality of a prediction requires knowing the true structure, an approxima-
tion for this quality must be used in a predictive algorithm. To estimate the quality of a predicted structure
in the absence of the true structure, ProQ [9] may be used. ProQ uses features such as atom-atom contacts
and secondary structure predictions to gauge structure quality. It has been shown to produce scores that
correlate well with the LGA score to the true structure. Table 3 is analogous to Table 2, with MaxSub scores
from ProQ substituted for LGA_S values 2. Selecting predictions based upon a ProQ threshold produces an
improvement over using all predictions, though the improvement is somewhat small, and the ProQ threshold
must be sufficiently large. Table 4 shows the relative performance of the LGA-Distance scheme on filtered
(selected predictions) and unfiltered (all predictions) data. Filtered datasets only include predictions with
a ProQ score greater than 0.5, and positions with fewer than four such predictions are eliminated. These
results show that using ProQ to select which predictors to average improves the per-residue prediction results
in terms of RMSE by about 4.3% for the LDS dataset, and by about 17% for the LDS™ dataset.

2.2.1 An improved prediction strategy

The results reported in Table 4 suggest that a hybrid predictor relying upon averaging—but carefully selecting
which predictors to include—can improve upon the LGA-Distance scheme. Our hybrid predictor splits the
FDS dataset into three subsets, and predicts each part in a different manner. The first subset includes all
positions from the LDS dataset. These positions are predicted using the LGA-Distance scheme with only
the filtered predictions. Restricting the set of predictions this way changes the weights used in Equation 1 on
a per-position basis (i.e., given n valid predictions for a position, each prediction will have a weight of 1/n).
The second set includes any remaining positions with at least 34 non-zero predictions. Averaging over the
top 34 predictions based on ProQ score generates the prediction for this set. If a position has more than 34
non-zero predictions, the extra predictions are not used. Our experiments (results not shown) indicate that

2In Table 3, a minimum of four predictions above the threshold are required for a reported average value. We found that
this requirement increases the reliability of the ProQ quality estimations.

Table 3: Using the LGA-Distance method with structures scoring above a
given ProQ score.

Selected Predictors All Predictors

ProQ Minimum Corr. Coeff. RMSE Corr. Coeff. RMSE Positions Used

0.10 0.80 6.74 0.81 6.69 892299
0.15 0.79 6.70 0.81 6.56 880232
0.20 0.80 6.07 0.81 5.85 830102
0.25 0.80 5.78 0.82 5.49 773544
0.30 0.85 4.56 0.84 4.83 703241
0.35 0.87 3.88 0.85 4.22 616047
0.40 0.89 3.36 0.87 3.72 558465
0.45 0.89 3.05 0.88 3.32 432303
0.50 0.89 2.79 0.89 2.93 346735
0.55 0.88 2.79 0.89 2.78 217862
0.60 0.86 3.10 0.87 3.01 117721
0.65 0.88 2.92 0.89 2.80 63898

The numbers on the last column indicate the number of positions with at least four
predictions greater than or equal to the specified minimum.

Table 4: Performance of LGA-Distance on filtered versus unfiltered

datasets
Correlation Coeflicient RMSE
Dataset Filtered Unfiltered Filtered Unfiltered
LDS 0.90 0.90 2.51 2.62
LDS™ 0.72 0.70 2.12 2.48

Results are not included for the FDS dataset, as by definition this dataset
includes all values. Values in this table represent the Pearson correlation
coefficient and root mean squared error between the predicted and true per-
residue distances.

using this number yields the best balance between available positions and performance. The third subset
contains the remaining positions, and the prediction is just the average over all available predictions. For
the 892,299 positions available in this study, 40.16% are in the first set, 59.14% are in the second set, and
0.71% are in the third set. Predicting positions for each set separately as described above, and evaluating
all positions together achieves an RMSE of 6.51A. Using the LGA-Distance scheme for all values in all cases
has an RMSE of 6.69A. For comparison, over all predictions in this set for which Pcons made a CASP7
prediction, Pcons achieves an RMSE of 8.21A. Thus, the approach of carefully selecting positions to average
performs quite well.

2.3 Learning how to weight predictors

We investigate the extent to which the weights w, (x;) of Equation 1 can be learned from the data. Specifically,
we focus on the simpler problem for which w;(z;) depends only on the predictor j; that is, the prediction is
given by

k
d(z;) = ijdj(%)a (2)

where w; is a weight associated with predictor j.

We formulate the problem of learning the w; weights as the following supervised learning problem. Given
a set of training examples x;, each described by the tupple (d;(x;), {(d1(z;), da(x;), . .., dk(x;))), where dy(x;)
is the actual distance between the ith residue of Sx and the ith residue of X'’s true structure (obtained using
CASPT’s protocol), learn the set of w; values such that

Y (i) = d(w:))? (3)

T

is minimized.

We use four different schemes to learn these weights: support vector regression (SVR), standard least-
squares regression, a technique we call predictor boost, and a linear perceptron.

Table 5 compares the performance of these schemes on the LDS dataset. This table shows the results
of predicting examples in both the training and the testing sets in order to illustrate the generalization
ability of the different learning schemes (i.e., the extent to which a scheme does or does not over-fit the
training data). From these results we see that the predictor boost and linear perceptron achieve the best
results, outperforming the other two learning schemes. Moreover, the predictor boost and linear perceptron
techniques outperform LGA-Distance and Pcons, and the difference between each learning/non-learning pair
is statistically significant at p < 0.0001. Comparing the results obtained on the train and test datasets we
see that SVR over-fits the data as its RMSE on the training set is much smaller than on the testing set.

Table 5: Average correlation and RMSE for the LDS dataset. Positions
in the average must have four predictions with a ProQ score greater

than 0.5.
Train Test

Technique Corr. Coeff. RMSE Corr. Coeff. RMSE
Support Vector Regression 0.89 2.85 0.78 3.92
Standard Regression 0.84 3.48 0.85 3.31
Linear Perceptron 0.90 2.80 0.90 2.76
Predictor Boost 0.90 2.78 0.90 2.75
LGA-Distance 0.89 2.82 0.89 2.80
Pcons 0.80 4.18 0.79 4.19

With the exception of the linear perceptron and the predictor boost schemes, these results of Table 5 show
that the learning techniques do not outperform LGA-Distance. One explanation as to why the regression-
based schemes do not perform well is that filtering the datasets as described above removes a great deal
of information from the available data. In the FDS set (before filtering) there are about 42 million values
available, while in the LDS set (after filtering) only about 8 million remain. These missing values are assigned
to zero, which may confuse the learning algorithms, as a zero value can mean two different things depending
on its source. If the original d;(x;) value was filtered out, then a zero is uninformative. However, if the zero
represents a true d;(z;) value of zero then the distance between Sx and Sg(at position ¢ is zero. This means
that the two structures align perfectly at this position. In this case d;(z;) should be treated as a zero, but
in the former case d;(z;) should simply be ignored. The next sections describe two methods for adjusting
training data in order to compensate for the issue of d;(z;) values of zero.

2.3.1 Results of filling missing dimensions

In order to eliminate the confusion due to missing values we developed a scheme by which the missing values
were filled using estimates obtained from the other examples in the training set. Specifically, we use the

average values from each predictor to fill the empty predictions. (See the section entitled “Filling in missing
values” in the Methods section for a precise description of how this is done.) Table 6 shows the results
from learning models to predict the data that were filled in this manner. These results show that, when
applied to filled data, the regression techniques achieve better performance than when applied to the original
(unfilled) data. In particular, the RMSE obtained by SVR improves from 3.92A down to 2.93A. The overall
best results (RMSE of 2.76A) are obtained by the standard regression technique. These results are better
than those obtained by LGA-Distance and Pcons. Also, even though the absolute improvement achieved by
the standard regression over LGA—Distance is small, the difference between them is statistically significant
at p < 0.0001. Note that the values for LGA—Distance in Tables 5 and 6 are different because the former
represents averaging over unfilled data, and the latter represents averaging over filled data.

Table 6: Average correlation and RMSE for the LDS dataset with filled
values. Positions in the average must have four predictions with a ProQ
score greater than 0.5.

Train Test
Technique Corr. Coeff.: RMSE Corr. Coeff. RMSE
Support Vector Regression 0.91 2.56 0.88 2.93
Standard Regression 0.92 2.44 0.89 2.76
Linear Perceptron 0.89 2.81 0.89 2.79
Predictor Boost 0.89 2.81 0.89 2.79
LGA-Distance 0.89 2.81 0.89 2.79
Pcons 0.80 4.18 0.79 4.19

2.3.2 Tailored training sets

As an alternate approach to artificial filling-in of values, we developed a method in which a custom training
set is built for each test position encountered. Specifically, for a given test position, the training set contains
only those examples that have at least the same set of predictors present as those in the test position. Values
for w; are learned from the training set, and these weights are used to classify the query position ¢ according
to Equation 2.

Table 7 shows the results from testing models built using such tailored data sets. These results were
obtained on the LDS™ dataset and they are not directly comparable to those reported in Tables 5-6, which
were obtained on the LDS dataset. These results show that the predictor boost scheme achieves the best
results (RMSE of 2.61A), which is considerably smaller than the RMSE values achieved by the other three
weight-learning schemes as well as Pcons (RMSE of 4.30A), and slightly smaller than LGA-Distance (RMSE
of 2.63A). The performance improvement against LGA-Distance is statistically significant at p < 0.015,
and the improvement against the other schemes is statistically significant at p < 0.0001. Analyzing the
performance of the other three weight-learning schemes we see that, as was the case with most of the
previous results, they under-perform the LGA-Distance method (even though they do better than Pcons).

Within Table 7, we see that the errors on the testing sets are lower than those on the training sets. This
might seem counter-intuitive at first, but the correlation coefficients are worse on the test sets than the train
sets. Also, the standard deviations on the test sets are quite large, indicating that the performance is not
uniform across the test cases. These discrepancies probably result because the coverage of the positions is
different for the training and testing sets. For example, a position with few non-zero values may never be
selected for a training set, but positions with many non-zero values will be repeatedly selected for training
sets.

Table 7: Average correlation and RMSE for LDS™. Positions in the
average must have four predictions with a ProQ score greater than 0.5.

Train Test
Technique Corr. Coeff. RMSE Corr. Coeff. RMSE
Support Vector Regression 0.89 2.92 0.90 2.75
Standard Regression 0.89 2.87 0.88 3.14
Linear Perceptron 0.88 3.17 0.91 2.63
Predictor Boost 0.88 3.17 0.91 2.61
LGA-Distance 0.88 3.18 0.91 2.63
Pcons 0.81 4.31 0.80 4.30

3 Conclusions

The results presented in this study reveal several interesting trends. First, using LGA alignments to obtain
d;(z;) values outperforms using LGscore alignments to obtain S-scores (the method employed by Pcons).
This is most evident in the test results for the FDS dataset (Table 1) for which Pcons achieves an RMSE
of 8.21A with a correlation coefficient of 0.75, while the LGA-Distance scheme has an error of 6.69A with
a correlation of 0.81. Second, in terms of correlation coefficient, averaging raw distances tends to outper-
form averaging S-scores. For example, for the FDS dataset (Table 1), LGA-Distance and LGscore-Distance
achieve correlation coefficients of 0.81 and 0.76, respectively, which are higher than the 0.70 and 0.75 correla-
tion coeflicients achieved by the corresponding LGA—S-score and LGscore—S-score schemes. Third, a hybrid
predictor using intelligent averaging shows improved performance over all simple averaging techniques (Ta-
ble 4). Fourth, supervised learning approaches based on a linear perceptron and predictor boost can be used
to learn how to best weight the different predictors in order to improve the accuracy of the predictions. The
gains achieved by these approaches depend on the specific formulation of the learning problem. Learning
formulations that select training sets and build models tailored to the specific positions being predicted
achieve the best performance over equal-weighting approaches.

4 Methods

4.1 Dataset

The complete set of data used in this study, referred to as the full dataset (FDS), consists of the positions
from 4,969 first submissions (labeled TS1) from all groups in CASP7, for a total of 892,299 positions. This
dataset is derived from the original 5,198 first submissions to CASP7 by (i) eliminating 229 submissions
for which ProQ was unable to produce a quality score and (ii) discarding the positions in which the LGA
alignment of a submission against its true structure resulted in a distance greater than 50A for that position.
ProQ version 1.2 is used to produce MaxSub scores for these structures. PSI-PRED [10] predicted secondary
structure is obtained using NCBI’s nr database as of April of 2006, which contained 3,584,739 sequences.
These predictions are used in ProQ calculations. The LGA program [6] is used to align each pair of structures
with the options -3 -ie -d:4.0 -00 -sda. These are the same options used by the CASP7 assessors.

To evaluate the various weight-learning algorithms, a subset of the FDS dataset is selected that contained
the submissions for those proteins that had at least four submissions with a ProQ score above 0.5. This
results in a set of 31 proteins, containing 600 submissions, and 304,686 positions. We will refer to this
dataset as the learning dataset (LDS). These submissions are obtained from a total of 51 different CASP7
servers. The entire LDS dataset can be viewed as a 304, 686 x 51 matrix, referred to as the LDS matriz. The
rows of this matrix are obtained by concatenating the residues of the 600 submissions, while the columns

correspond to the different servers from which these submissions were obtained. An (7, j) entry in the matrix
represents the distance between a residue of the row submission to the corresponding residue in the column
submission. These distances are derived after super-imposing the structures of the two submissions using
LGA. If a particular server j did not submit a prediction for a protein X (or its submission had a ProQ score
that was bellow 0.5), the (7, j) entries for all rows ¢ corresponding to protein X will be empty. Also, even if
a server provided a high-quality submission for protein X, some of its (4, j) entries can be missing because
(i) the server did not provide predictions for these positions, or (ii) the positions are removed because their
distance to the true structure was greater than 50A.

4.2 Evaluating weight learning algorithms

We evaluate the three data-based approaches for learning the weights described in this paper (unfilled, filled,
and tailored training sets) using the LDS dataset as follows.

The unfilled and filled approaches are evaluated using a leave-one-protein-out framework. A protein is
selected, and all positions from this protein are assigned to the test set. All remaining examples are used
as the training set. The whole process is repeated for each available protein. The difference between the
unfilled and the filled approaches is that in the latter, the empty entries of the LDS matrix are filled using
the method described in the next section.

The tailored training set approach is evaluated under a leave-one-position-out framework. A single
position x; serves as the test set and all positions from proteins other than X are searched to find the
training set. The training set for position x; corresponds to those rows of the LDS matrix whose non-empty
columns are a superset of the non-empty columns of z;’s row. Only the values from the set of non-empty
columns in z; are used when training. This creates a training set with no missing values (i.e., the sub-matrix
formed by the rows corresponding to the training set and the set of columns in the test position is completely
filled). Note that it would seem that this approach will require learning 304,686 different models (one for
each row of the LDS matrix). However, since the non-empty positions of the rows of the same protein will
usually be the same (leading to the same training sets), the number of models that actually need to be
learned is much smaller. Occasionally, rows from the same protein will differ, due to incomplete CASP7
predictions, but these cases are rare. To further reduce the number of models that need to be learned, we
did not test those positions whose training sets could not be used for at least nine other positions (i.e., each
model that we learned had to be used to test at least ten positions). This reduced the total number of
models learned to only 485 and allowed us to test 200,696 positions. As the set of positions tested by the
tailored training set approach is a subset of the LDS dataset, we will refer to it as the LDS™ dataset.

4.3 Filling in missing values

The scheme that we used to fill in the missing values in the LDS matrix is based on similar techniques that
were developed in the field of collaborative filtering [11-13]. An empty (4,) position is filled by assigning
to it a value that is obtained by averaging over the non-empty positions of column j, while taking into
account the values along the rows in which these non-empty positions occur. Specifically, let D be the
LDS matrix, let p; = (32; D(4,5))/m; be the mean value of the m; non-zero entries of row i in D, let
D’ be the matrix obtained from D by subtracting from each non-empty (i, ;) position its row average (i.e,
D'(i,j) = D(i,j) — pi), and let p; = (3, D'(i,5))/m; be the mean value of the m; non-zero entries of
column j in D’. Then, an empty position (i,5) is assigned the value D(3,j) = p; + p;. Note that, in the
case of filling a testing set, the values for ;1; from the training set are used to fill any missing values.

The advantage of this method is that it accounts for differences in the underlying structural alignments,
which is important because each of the alignments between a row prediction and a column prediction provides
its own context. Subtracting u; from each row places all of the rows into a generalized context, and allows for
the accurate computation of p; values. By subsequently adding f; to pt;, the method provides an estimate
of what the p; value should be in the context of the original row i.

Algorithm 1 Learning Weight Vectors with the linear perceptron algorithm

Input: S: Number of Predictors.
m: Number of Training Samples.
N: Number of Training Iterations.
Output: w: Weight Vector.
10w« 1/k
2: forn=1to N do
3: forxz=1tomdo
ej — |d;j(x) — d(x)] V;
05— 1/(ej+22;¢€/9)V;
¢ — /|9l
a — |d(x) = dy(x)|/m
w — w~+ ap
w — w/|wll;
10: end for
11: end for
12: Return w

© ® NPTk

4.4 Pcons

Pcons values are taken from the CASP7 website ® with the exception of some incorrect values resulting
from the bug noted in [3]. Corrected values were obtained from the Pcons authors and the reported perfor-
mance here reflects the new numbers. Pcons uses LGscore-based structural alignments in place of the LGA
minimization employed in this paper. Let LG;(z;) be the distance between the ith residue of Sx and the
ith residue of Sg(obtained after structurally superimposing Sx and Sg(using the LGscore algorithm [7].
Let pe(x;) be the Pcons prediction corresponding to d(z;) in Equation 1. Pcons uses the following three
equations to produce a prediction.

1
Si(xi) = W (4)
5

k
Sw) = 08 o)

pe(z;) = Vb

Note that equation 4 corresponds to the S-score for a position in an LGscore alignment.

4.5 Weight learning algorithms

4.5.1 Linear perceptron

One way of learning values for w; in Equation 2 is to use Rosenblatt’s linear perceptron classifier [17]. This is
an online learning algorithm that iteratively updates a weight vector w for each training example x based on
the difference between its actual and predicted values. Pseudo-code for our implementation of this algorithm
is shown in Algorithm 1. For each position, the linear perceptron determines the error of each predictor
(line 4). Each predictor is then assigned a weight that is inversely related to its error and the vector of

Shttp://www.predictioncenter.org/casp7/Casp7.html

10

these weights (¢) is scaled to sum to one (lines 5 and 6). Note that in line 5, the }°; e;/S factor is used to
reduce the difference between lower and higher weights. We found that using this smoothing factor improves
results. The learning rate « is updated based on the error of the prediction for each example (d(z)), as
determined using Equation 2. In the case of the unfilled LDS dataset, we use d(z)/>_ ; wj as the prediction.
This prevents the sparsity of the set from skewing the values learned for w. The vector ¢ becomes the
update to w (line 8), and w is scaled to sum to one after processing each training example (line 9). The final
weights are the values of w after five iterations over the training data, as a test (results not shown) showed
a small difference between the weights from the fourth and fifth iterations. Note that this is a variation on
a traditional linear perceptron, in which w is updated according to w «— w + a(real — predicted)d. We use
the variation shown in Algorithm 1 because it performs better for our problem (results not shown).

4.5.2 Support vector regression (SVR)

We used the SVMLight implementation [18] for support vector regression. Default values were used for the
tube width and regularization parameters. The details of this regression technique have been described in
detail elsewhere [19] and will not be covered here.

4.5.3 Predictor Boost

The predictor boost technique learns weights that are proportional to the number of times a predictor
achieves the best performance. If two predictors tie for a given example, the weight is split between them.
More formally, we build a frequency vector f, where f; stores the number of times predictor j achieved the
closest prediction to the true value. After updating f for all training examples, f/|f|| becomes the weight
vector.

4.5.4 Standard regression

We use Matlab for standard regression. We also experimented with a constrained regression formulation.
In this formulation, the weights w; of the predictors must be positive and sum to one. This regression
formulation could not learn an appropriate set of weights in the majority of cases, so the results are not
included here.

5 Awuthor’s contributions

KWD and GK designed the methods, and experimental setup. KWD carried out the implementation of
the various methods, and computational experiments. KWD wrote the manuscript under GK’s technical
supervision and mentoring. Both authors read and approved the final manuscript.

6 Acknowledgements

This work was supported by NSF ACI-0133464, 11S-0431135, NIH RLMO008713A, and by the Digital Tech-
nology Center at the University of Minnesota.

References

[1] Kryshtafovych A, C Venclovas, Fidelis K, Moult J: Progress over the first decade of CASP experiments.
Proteins: Structure, Function, and Bioinformatics 2005, 61(S7):225-236.

[2] A Kryshtafovych KF, Moult J: Progress from CASP6 to CASP7. Proteins: Structure, Function, and
Bioinformatics 2007, 69:194—-207.

11

Cozzetto D, Kryshtafovych A, Ceriani M, Tramontano A: Assessment of predictions in the model quality
assessment category. Proteins: Structure, Function and Bioinformatics 2007, 69(Suppl 8):175-183.

Wallner B, Elofsson A: Prediction of global and local model quality in CASP7 using Pcons and ProQ.
Proteins: Structure, Function, and Bioinformatics 2007, 69(S8):184-193.

Wallner B, Elofsson A: Identification of correct regions in protein models using structural, alignment,
and consensus information. Protein Science 2006, 4:900-913.

Zemla A: LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Research
2003, 31(13):3370-3374.

Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofsson A: A study of quality measured for protein
threading models. BMC Bioinformatics 2001, 2(5).

Levitt M, Gerstein M: A unified statistical framework for sequence comparison and structure com-
parison. Proceedings of National Academy of Science, USA 1998, 95:5913-5920.

Wallner B, Elofsson A: Can correct protein models be identified?. Protein Science 2003, 12:1073-1086.

Jones DT: Protein Secondary Structure Prediction Based on Position-specific Scoring Matricies. J.
Mol. Biol. 1999, 292:195-202.

Sarwar B, Karypis G, Konstan J, Riedl J: Analysis of Recommendation Algorithms for E-Commerce.
In Proceedings of ACM E-Commerce 2000.

Sarwar B, Karypis G, Konstan J, Riedl J: Item-based Collaborative Filtering Recommendation Algo-
rithms. In WIWW10 2001.

Deshpande M, Karypis G: Item-Based Top-N Recommendation Algorithms. ACM Transactions on In-
formation Systems 2004, 22:143-177.

Heger A, Holm L: Picasso: generating a covering set of protein family profiles. Bioinformatics 2001,
17(3):272-279.

Mittelman D, Sadreyev R, Grishin N: Probabilistic scoring measures for profile-profile comparison
yield more accurate short seed alignments. Bioinformatics 2003, 19(12):1531-1539.

Rangwala H, Karypis G: Profile Based Direct Kernels for Remote Homology Detection and Fold
Recognition. Bioinformatics 2005, (in press).

Rosenblatt F: The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review 1958, 65:386-407.

Joachims T: Advances in Kernel Methods: Support Vector Learning, MIT-Press 1999 chap. Making large-Scale
SVM Learning Practical.

Vapnik V: The Nature of Statistical Learning Theory. New York: Springer Verlag 1995.

12

