
A New Algorithm for Multi-objective Graph Partitioning �

Kirk Schloegel, George Karypis, Vipin Kumar

Department of Computer Science and Engineering,
University of Minnesota

Army HPC Research Center
Minneapolis, Minnesota

Department of Computer Science and Engineering,
University of Minnesota
Technical Report: 99-003

(kirk, karypis, kumar) @ cs.umn.edu

September 20, 1999

Abstract

Recently, a number of graph partitioning applications have emerged with additional requirements

that the traditional graph partitioning model alone cannot e�ectively handle. One such class of problems

is those in which multiple objectives, each of which can be modeled as a sum of weights of the edges of a

graph, must be simultaneously optimized. This class of problems can be solved utilizing a multi-objective

graph partitioning algorithm. We present a new formulation of the multi-objective graph partitioning

problem and describe an algorithm that computes partitionings with respect to this formulation. We

explain how this algorithm provides the user with a �ne-tuned control of the tradeo�s among the objec-

tives, results in predictable partitionings, and is able to handle both similar and dissimilar objectives.

We show that this algorithm is better able to �nd a good tradeo� among the objectives than partitioning

with respect to a single objective only. Finally, we show that by modifying the input preference vector,

the multi-objective graph partitioning algorithm is able to gracefully tradeo� decreases in one objective

for increases in the others.

1 Introduction

Graph partitioning is an important problem with extensive application to many areas. The graph partitioning
problem is de�ned as follow: Given a graph G = (V;E) in which V is a set of vertices and E is a set of edges,
partition V into k subsets, V1; V2; : : : ; Vk, such that Vi

T
Vj = ; for i 6= j,

S
i Vi = V , jV j = n=k, and the

number of edges of E whose incident vertices belong to di�erent subsets is minimized (referred to as the edge-

cut). Some examples of the applications for this problem are the parallelization of numerical simulations,
computation of �ll-reducing orderings of sparse matrices, the e�cient fragmentation of databases, and the
partitioning of VLSI circuits. The key characteristic of these applications is that they require the satisfaction
of a single balance constraint along with the optimization of a single objective (i. e., the edge-cut).

�This work was supported by DOE contract number LLNL B347881, by Army Research O�ce contracts DA/DAAG55-98-

1-0441 and DA/DAAH04-95-1-0244, by Army High Performance Computing Research Center cooperative agreement number

DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reect the position or

the policy of the government, and no o�cial endorsement should be inferred. Additional support was provided by the IBM

Partnership Award, and by the IBM SUR equipment grant. Access to computing facilities was provided by AHPCRC, Minnesota

Supercomputer Institute. Related papers are available via WWW at URL: http://www-users.cs.umn.edu/~karypis

1

A limitation of the graph partitioning formulation is that it is only able to e�ectively model problems
in which there is a single optimization objective. Recently, a number of applications have emerged with
additional requirements that the graph partitioning formulation alone cannot e�ectively handle. In many
emerging applications there is a need to produce partitionings that attempt to optimize multiple objectives
simultaneously. For example, a number of preconditioners have been developed that are focused on the
subdomains assigned to each processor and ignore any intra-subdomain interactions (eg., block diagonal pre-
conditioners and local ILU preconditioners). In these preconditioners, a block diagonal matrix is constructed
by ignoring any intra-domain interactions, a preconditioner of each block is constructed independently, and
then they are used to precondition the global linear system. The use of a graph partitioning algorithm
to obtain the initial domain decomposition ensures that the number of non-zeros that are ignored in the
preconditioning matrix is relatively small. However, the traditional partitioning problem does not allow us
to control both the number as well as the magnitude of these ignored non-zeros. A partial solution to this
problem can be obtained by assigning weights on the edges according to the magnitude of the corresponding
non-zeros. Now, using traditional graph partitioning algorithms, we will obtain a decomposition that min-
imizes the sum of the magnitude of the non-zero entries that are ignored by the preconditioner. However,
such an approach does not minimize the communication overhead incurred by parallel processing. This is
because, this approach will prefer to put together vertices whose corresponding matrix value is large, at
the expense of potentially cutting a large number of edges with small values. However, the communication
overhead depends on the overall cut, and not on the magnitude of the corresponding edges. Ideally, we would
like to obtain a decomposition that minimizes both the number of intra-domain interactions (reducing the
communication overhead) and the numerical magnitude of these interactions (potentially leading to a better
preconditioner).

Another example is the problem of minimizing the overall communications of parallel multi-phase compu-
tations. Multi-phase computations consist of m distinct computational phases, each separated by an explicit
synchronization step. In general, the amount of interaction required between the elements of the mesh is
di�erent for each phase. Therefore, it is necessary to take the communications requirements of each phase
into account in order to be able to accurately minimize the overall communications.

A third example is from the VLSI domain. Here we would often like to partition circuits so that multiple
objectives are optimized. For example, we might want to simultaneously minimize the number of wires that
are cut by the partitioning as well as the timing characteristics of the partitioned circuit. In the traditional
problem, we only attempt to minimize the number of edges that are cut by the partitioning. This will
minimize the number of wires that need to be run between circuits on di�erent chips. However, it will
not necessarily minimize the timing characteristics of the partitioned circuit. Since the propagation delay
between chips is much higher than the propagation delay within a chip, it is usually unfavorable to cut wires
on the critical path of the circuit. We would like a partitioning algorithm that is able to minimize both the
number of wires cut by the partitioning and selected timing characteristics of the circuit.

All of the above problems can be solved by modeling them as graphs in which every edge has an associated
weight vector we of size m, every vertex has a scalar weight, and for which we �nd a partitioning such that
each subdomain has a roughly equal amount of vertex weight and the edge-cut with respect to each of
the m weights is optimized. Karypis and Kumar refer to this formulation as the multi-objective graph

partitioning problem in [5]. In this paper, we present a new formulation for the multi-objective graph
partitioning problem, as well as an algorithm for computing multi-objective partitionings with respect to
this formulation. We explain how this scheme is able to be tuned by a user-supplied preference vector in
order to control the tradeo�s among the di�erent objectives in the computed partitionings, how this scheme
results in predictable partitionings based on these inputs, and how this scheme is able to handle both similar
and dissimilar objectives. We show that this multi-objective graph partitioner is better able to balance
the tradeo�s of di�erent objectives than partitioning with respect to a single objective only. We also show
that by modifying the input preference vector, the multi-objective graph partitioning algorithm is able to
gracefully tradeo� decreases in one objective for increases in the others.

2

Partitioning 1st Objective 2nd Objective

1st 1.00 100.0
2nd 1.01 2.00
3rd 500.0 1.00

Table 1: Example edge-cut results of three two-objective partitionings.

2 Formulation of the Multi-objective Graph Partitioning Problem

One of the real di�culties in performing multi-objective optimization is that no single optimal solution exists.
Instead, an optimal solution exists for each objective in the solution space. Furthermore, �nding an optimal
solution for one objective may require accepting a poor solution for the other objectives [7]. The result is
that the de�nition of a good solution becomes ambiguous. This being the case, before a multi-objective
graph partitioning algorithm can be developed, it is �rst necessary to develop a formulation that allows the
user to disambiguate the de�nition of a good solution. This formulation should satisfy the following criteria.

(a) It should allow �ne-tuned control of the tradeo�s among the objectives. That is, the user should be
able to precisely control the amount that one or more objectives may be increased in order to decrease
the other objectives when these objectives are in conict with one another.

(b) The produced partitionings should be predictable and intuitive based on the user's inputs. That is, the
output partitioning should correspond to the user's notion of how the tradeo�s should interact with
each other.

(c) The formulation should be able to handle objectives that correspond to quantities that are both of
similar as well as of di�erent types. Consider the example of minimizing the overall communications of a
multi-phase computation. Here, all of the objectives represent similar quantities (i. e., communications
overhead). However, other applications exist whose objectives are quite dissimilar in nature. The
preconditioner application is an example. Here, both the number and the magnitude of the ignored
non-zero entries are to be minimized. Minimizing the number of ignored non-zeros will reduce the
communications required per iteration of the computation, while minimizing the magnitude of these
entries will improve its convergence rate. These are quite dissimilar in nature.

Two straightforward means of disambiguating the de�nition of a good multi-objective solution are (i) to
prioritize the objectives, and (ii) to combine the objectives into a single objective. We next discuss each of
these in the context of the above formulation criteria.

Priority-based Formulation. The de�nition of a good multi-objective solution is ambiguous when the
relationship between the objectives is unclear. One of the most straightforward means of de�ning this
relationship is to list the objectives in order of priority [2, 9]. Therefore, one possible formulation of the
multi-objective graph partitioning problem is to allow the user to assign a priority ranging from one to m to
each of the objectives. Now, the multi-objective partitioning problem becomes that of computing a k-way
partitioning such that it simultaneously optimizes all m objectives, giving preference to the objectives with
higher priorities.

This formulation is able to handle objectives of di�erent types as the relationship between the objectives
is well-described and the objectives are handled separately. It will also result in predictable partitionings, in
that the highest priority objective will be minimized with the rest of the objectives minimized to the amount
possible without increasing higher priority objectives. However, this formulation provides the user with only
a coarse-grain control of the tradeo�s among the objectives. For example, consider a two-objective graph
from which three partitionings are computed. The �rst has an edge-cut vector of (1:0; 100:0), the second
has an edge-cut vector of (1:01; 2:0), and the third has an edge-cut vector of (500:0; 1:0). (See Table 1.)
Typically, the second of these would be preferred, since compared to the �rst partitioning, a 1% increase in
the edge-cut of the �rst objective will result in a 98% decrease in the edge-cut of the second objective. Also,

3

compared to the third partitioning, a 100% increase in the second objective will yield a 99.8% decrease in
the �rst objective. However, under the priority-based formulation, the user is unable to supply a priority
list that will produce the second partitioning. This is because partitionings exists with better edge-cuts for
each of the two objectives. From this example, we see that the priority-based formulation is unable to allow
the user �ne-tuned control of the tradeo�s between the objectives.

Combination-based Formulation. While prioritizing the objectives describes their relationship well
enough to disambiguate the de�nition of a good solution, it is not powerful enough to allow the user �ne-
tuned control over the tradeo�s among the objectives. One simple approach that has been used in other
domains is to combine the multiple objectives into a single objective and then to use a single objective
optimization technique [1, 6, 9]. In the context of multi-objective graph partitioning this is done as follows.
For each edge e a scalar weight of

wc =

mX
i=1

we
i pi: (1)

is assigned where pi is a preference vector. Then a single objective graph partitioning algorithm is used to
compute a partitioning P that essentially minimizes

Pm

i=1 Cipi where Ci is the edge-cut with respect to the
ith objective. For example, if we have a three-objective problem and want to give the second objective �ve
times the weight of the �rst and third objectives, we could use a preference vector of (1, 5, 1). An edge with
a weight vector of say (2, 2, 1), would then be assigned a combined weight of 2+10+1=13.

Unlike the priority-based formulation, this one allows a �ne-tuned control of the tradeo�s among the
objectives, since the objectives are weighted and not merely ordered. However, this formulation cannot
handle dissimilar objectives. This is because it requires that the objectives be combined (by means of a
weighted sum). For dissimilar objectives (such as the number and magnitude of the ignored elements o� of
the diagonal), this combination can be meaningless.

One possible solution is to divide each edge weight by the average edge weight for the corresponding
objective in an attempt to normalize all of the objectives. Normalization may help us to combine dissimilar
objectives in a more meaningful way. However, this solution fails the predictability criteria. Consider the
example two-edge-weight graph depicted in Figure 1(a). In the center of this graph is a clique composed of
edges with edge weight vectors of (10000, 1), while the rest of the edges have vectors of (1, 1). (Note, not
all of the edges have their weights marked in the �gure.) In this example, the �rst edge weight represents
the degree to which we would like to have the vertices incident on an edge to be in the same subdomain.
The second edge weight represents the interaction between vertices as normal. Therefore, in partitioning
this graph, we have two objectives. (i) We would like the vertices of the clique to be in the same subdomain.
(ii) We would like to minimize the edge-cut. The intuitive meaning of this graph is that the clique should be
split up only if doing so reduces the edge-cut by tens of thousands. Figure 1(b) gives the new edge weights
after normalization by the average edge weight of each objective. Here we see that the �rst edge weights of
the clique edges have been scaled down to about �ve, the �rst edge weights of the non-clique edges have been
scaled down to about zero, and the second edge weights of all edges have remained at one. Now, consider
what will happen if we input di�erent preference vectors and partition the graph. If the preference vector
gives each objective equal weight (i.e., a preference vector of (1, 1)), then the clique will not be split during
partitioning. This is as expected, since the clique edges in the input graph have very high edge weights
for the �rst objective. Also, if we favor the �rst edge weight to any extent (i.e., supply a preference vector
between (2, 1) and (1000000, 1)), this trend continues. However, if we favor the second edge weight only
moderately (eg., a preference vector of (1, 6)), then the optimal partitioning will split the clique. This is
because normalizing by the average edge weight has caused the �rst edge weights of the clique edges to
be scaled down considerably compared to the second edge weights. The result is that we lose the intuitive
meaning that the �rst edge weights had in Figure 1(a).

3 A Multi-objective Graph Partitioning Algorithm

As discussed in the previous section, existing formulations of multi-objective optimization problems do not
fully address the requirements of the multi-objective graph partitioning problem. In this section, we present

4

(10000, 1)

(1, 1)

(1, 1)(1, 1)

(1, 1) (10000, 1)

(1, 1)

(1, 1) (1, 1)

(1, 1)

(5.3, 1)

(5.3, 1)

(0.0005, 1)

(0.0005, 1)

(0.0005, 1)

(0.0005, 1) (0.0005, 1)

(0.0005, 1)

(0.0005, 1)

(0.0005, 1)

(a) (b)

Figure 1: This is an example of a two-edge-weight graph. The edges of the clique in the center of the graph are weighted

(10000, 1) in (a) and (5.3, 1) in (b). The other edges are weighted (1, 1) in (a) and (.0005, 1) in (b). The edge weights in (b)

are computed by normalizing the edge weights in (a) by the average edge weights of the corresponding objective.

a new formulation that allows the user to control the tradeo�s among the di�erent objectives, produces
predictable partitionings, and can handle objectives of both similar as well as dissimilar type.

Our formulation is based on the intuitive notion of what constitutes a good multi-objective solution.
Quite often, a natural way of evaluating the quality of a multi-objective solution is to look at how close it
is to the optimal solutions for each individual objective. For example, consider a graph with two objectives,
let P1;2 be a multi-objective partitioning for this graph, and let C1 and C2 be the edge-cuts induced by
this partitioning for the �rst and second objectives, respectively. Also, let P1 be the optimal partitioning
with respect to only the �rst objective, and let Co

1
be the corresponding edge-cut. Finally, let P2 be the

optimal partitioning with respect to only the second objective, and let Co
2
be the corresponding edge-cut.

Given these de�nitions, we can easily determine whether or not P1;2 is a good multi-objective partitioning
by comparing C1 against C

o
1
and C2 against C

o
2
. In particular, if C1 is very close to Co

1
and C2 is very close

to Co
2
, then the multi-objective partitioning is very good. In general, if the ratios C1=C

o
1
and C2=C

o
2
are

both close to one, then the solution is considered to be good.
Using this intuitive notion of the quality of a multi-objective partitioning, we can de�ne a scalar combined

edge-cut metric, Cc, to be equal to

Cc =

mX
i=1

Ci

Co
i

(2)

where Ci is equal to the actual edge-cut of the ith objective, and Co
i is equal to the optimal edge-cut of the

ith objective. We can augment this de�nition with the inclusion of a preference vector p. So Equation 2
becomes

Cc =

mX
i=1

pi
Ci

Co
i

: (3)

Equation 3 then becomes our single optimization objective. In essence, minimizing this metric attempts
to compute a k-way partitioning such that the edge-cuts with respect to each objective are not far away from
the optimal edge-cuts. The distance that each edge-cut is allowed to stray from the optimal is determined
by the preference vector. A preference vector of (1, 5) for example, indicates that we need to move at least
�ve units closer to the optimal edge-cut of the second objective for each one unit we move away from the
optimal edge-cut of the �rst objective. Conversely, we can move one unit closer to the optimal edge-cut of
the �rst objective if it moves us away from the optimal edge-cut of the second objective by less than �ve
units. In this way, the preference vector can be used to traverse the area between the optimal solutions
points of each objective. This results in predictable partitionings based on the preference vector as well as
�ned-tuned control of the tradeo�s among the objectives. Finally, this scheme works with both similar and
dissimilar objectives. This is because it makes all quantities similar before combining them. Each element
of an edge weight vector is divided by the optimal cut of its corresponding objective, and so, represents a
certain fraction of the optimal cut. Since all weights now represent a fraction of the optimal cut, they can
be combined meaningfully.

5

(1250, 0.25)

(1250, 0.25)

(0.13, 0.25)

(0.13, 0.25)

(0.13, 0.25)

(0.13, 0.25)

(0.13, 0.25)

(0.13, 0.25)

(0.13, 0.25)

(0.13, 0.25)

Figure 2: This shows the resulting two-edge-weight graph constructed by normalizing each edge weight of the graph in

Figure 1(a) by the optimal edge-cut for the corresponding objective.

If we further expand the Ci term of Equation 3, it becomes

=

mX
i=1

pi

P
j�cut w

ej
i

Co
i

(4)

where the term
P

j�cut w
ej
i represents the sum of the ith weights of the edges cut by the partitioning. By

manipulating this equation, we get

=
X
j�cut

mX
i=1

piw
ej
i

Co
i

!
: (5)

The term
Pm

i=1

piw
ej

i

Co
i

in Equation 5 gives the scalar combined weight of an edge (de�ned in Equation 1)

with each weight normalized by the optimal edge-cut of the corresponding objective. Since Equations 3
and 5 are equal, we have shown that minimizing the normalized combined weights of the edges cut by

the partitioning minimizes the combined edge-cut metric, Cc. That is, the problem of computing a k-way
partitioning that optimizes Equation 3 is identical to solving a single-objective partitioning problem with
this proper assignment of edge weights.

Consider what happens if we apply this technique to the problem in Figure 1(a). Figure 2 gives the new
edge weights after the edge weights from the graph in Figure 1(a) are normalized by the optimal edge-cut of
the corresponding objective. Here, we see that the �rst edge weights of the clique edges are still quite high
compared to the second edge weights. Therefore, we must favor the second edge weights by a great amount
(eg., (1, 5000)) before the clique is split. Here we see how our scheme obtains more predictable results than
normalizing by the average edge weights of an objective.

Note that this formulation can also be described under the fuzzy logic framework [10]. Essentially, we
have a number of fuzzy sets equal to the number of objectives. Every edge has some degree of membership
in each of these sets. The normalization of the elements of the edge weight vector by the optimal edge-cut
performs the task of the membership functions. Our formulation utilizes a preference vector as the ranking
mechanism between sets. Finally, we utilize the sum of the (weighted and normalized) edge weight values as
a simple fuzzy combination operator.

We have developed a multi-objective graph partitioning algorithm that is able to compute partitionings
with respect to this new formulation. In our algorithm, we �rst utilize the k-way graph partitioning algorithm
implemented in MeTiS [4] to compute a partitioning for each of the m objectives separately. We record the
best edge-cuts obtained for each objective. Next, our scheme assigns to each edge a combined weight equal
to the sum of the edge weight vector normalized by the best edge-cuts and weighted by the preference vector.
In the �nal step, we again utilize MeTiS to compute a partitioning with respect to these new combined edge
weights.

4 Experimental Results

The experiments in this section were performed using the graph, MDUAL2. It is a dual of a 3D �nite
element mesh and has 988,605 vertices and 1,947,069 edges. We used this graph to construct two types of

6

1

1.1

1.2

1.3

1.4

1.5

1.6

Com
bin

ed

1s
t O

bje
cti

ve

2n
d

Obje
cti

ve

N
or

m
al

iz
ed

 E
dg

e-
cu

t
objective 1
objective 2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Com
bin

ed

1s
t O

bje
cti

ve

2n
d

Obje
cti

ve

3r
d

Obje
cti

ve

4t
h

Obje
cti

ve

N
or

m
al

iz
ed

 E
dg

e-
cu

t

objective 1
objective 2
objective 3
objective 4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Com
bin

ed

1s
t O

bje
cti

ve

2n
d

Obje
cti

ve

N
or

m
al

iz
ed

 E
dg

e-
cu

t

objective 1
objective 2

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Com
bin

ed

1s
t O

bje
cti

ve

2n
d

Obje
cti

ve

3r
d

Obje
cti

ve

4t
h

Obje
cti

ve

N
or

m
al

iz
ed

 E
dg

e-
cu

t

objective 1
objective 2
objective 3
objective 4

(a)

(c) (d)

(b)

Figure 3: This �gure compares the normalized edge-cut results obtained by the multi-objective graph partitioner and those

obtained by partitioning with respect to each of the objectives alone for a 2-objective Type 1 problem (a), a 2-objective Type 2

problem (b), a 4-objective Type 1 problem (c), and a 4-objective Type 2 problem (d).

2- and 4-objective graphs. For the �rst type, we randomly select an integer between one and 100 for each
edge weight element. For the second type, we obtained the edge weights in the following manner. For the
�rst objective, we computed a set of nine di�erent 7-way partitionings utilizing the k-way graph partitioning
algorithm in MeTiS and kept a record of all of the edges that were ever cut by any one of these partitionings.

Then, we set the �rst edge weight element of each edge to be one if this edge had ever been cut, and
�ve otherwise. Next, we computed a set of eight di�erent 11-way partitionings utilizing the k-way graph
partitioning algorithm in MeTiS and set the second edge weight elements to one if the edge had been cut by
any one of these partitionings and 15 otherwise. For the 4-objective graphs we then similarly computed a set
of seven di�erent 13-way partitionings and set the third edge weight elements to either one or 45 depending
on whether the corresponding edge had been cut. Finally for the 4-objective graphs, we computed a set of
six 17-way partitionings and similarly set the fourth edge weight elements to either one or 135.

We generated the Type 1 problems to evaluate our multi-objective graph partitioning algorithm on
randomly generated problems. We generated the Type 2 problems to evaluate our algorithm on some
particularly di�cult problems. Here, every graph should have a small number of good partitionings for each
objective. However, our strategy of basing these good partitionings on 7-, 11-, 13-, and 17-way partitionings
was designed to help ensure that the good partitionings of each objective do not signi�cantly overlap.
Therefore, computing a single partitioning that simultaneously minimizes each of these objectives is di�cult.

Quantitative Evaluation of the Multi-objective Graph Partitioner. Figure 3 compares the results
obtained by the multi-objective graph partitioner with those obtained by partitioning with respect to each

7

1

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
dg

e-
cu

t

1st Objective
2nd Objective
3rd Objective
4th Objective

(c)

1

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
dg

e-
cu

t
1st Objective

2nd Objective
3rd Objective
4th Objective

(a)

1

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
dg

e-
cu

t

1st Objective
2nd Objective
3rd Objective
4th Objective

(b)

1

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
dg

e-
cu

t

1st Objective
2nd Objective
3rd Objective
4th Objective

(d)

Figure 4: This �gure gives the normalized edge-cut results for 4-objective 64-way partitionings of Type 1 problems. The

preference vector used in (a) is (x, 1, 1, 1), (b) is (1, x, 1, 1), (c) is (1, 1, x, 1), and (d) is (1, 1, 1, x).

of the objectives alone with the single objective graph partitioner implemented in MeTiS. Speci�cally, we
show the results of 2- and 4-objective 64-way partitionings of Type 1 and 2 problems. In Figure 3(a) we
give the results of partitioning the 2-objective Type 1 problem. In (b) we give the results of partitioning
the 2-objective Type 2 problem. In (c) we give the results of partitioning the 4-objective Type 1 problem.
Finally, in (d) we give the results of partitioning the 4-objective Type 2 problem. All of the edge-cuts are
normalized by those obtained by partitioning with respect to a single objective only. Therefore, they give
an indication of how far away each objective is from the optimal edge-cut.

Figure 3 shows that our multi-objective algorithm is able to compute partitionings such that a good
tradeo� is found among the edge-cuts of all of the objectives. Partitioning with respect to a single objective
obtains good edge-cut results for only a single objective. All of the other objectives are worse than those
obtained by the multi-objective algorithm.

Control of the Tradeo�s by the Preference Vector. Figures 4 and 5 demonstrate the ability of our
multi-objective graph partitioner to allow �ne-tuned control of the tradeo�s of the objectives given a user-
suppled preference vector. Speci�cally, these give the results of a number of preference vectors for 4-objective
64-way partitionings of Type 1 and 2 problems. Here, three of the four elements of the preference vector are
set to one, while the fourth is set to a value x. This value is plotted on the x-coordinate. The y-coordinate

gives the values of the edge-cuts of each of the four objectives obtained by our multi-objective algorithm.
So, as we move in the direction of positive in�nity on the x-axis, a single objective is increasingly favored.
Figure 4 gives the results obtained on Type 1 problems. Figure 5 gives the results obtained on Type 2

8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
dg

e-
cu

t
1st Objective

2nd Objective
3rd Objective
4th Objective

(a)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
dg

e-
cu

t

1st Objective
2nd Objective
3rd Objective
4th Objective

(c)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
dg

e-
cu

t

1st Objective
2nd Objective
3rd Objective
4th Objective

(b)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 E
dg

e-
cu

t

1st Objective
2nd Objective
3rd Objective
4th Objective

(d)

Figure 5: This �gure gives the normalized edge-cut results for 4-objective 64-way partitionings of Type 2 problems. The

preference vector used in (a) is (x, 1, 1, 1), (b) is (1, x, 1, 1), (c) is (1, 1, x, 1), and (d) is (1, 1, 1, x).

problems. In both �gures, the preference vector used in (a) is (x, 1, 1, 1), (b) is (1, x, 1, 1), (c) is (1, 1, x,
1), and (d) is (1, 1, 1, x). All of the edge-cuts are normalized by those obtained by partitioning with respect
to a single objective only.

Figures 4 and 5 show that by increasing the values of one of the elements of the preference vector, it
is possible to gracefully tradeo� one objective for the others with the multi-objective partitioner. We see
that in each result, the value at x = 1 is a good tradeo� among the four objectives. As x is increased, the
edge-cut of the corresponding objective approaches that of the partitioning with respect to that objective
only. The edge-cuts of the other objectives increase gracefully.

5 Conclusion

We have described a new formulation for the multi-objective graph partitioning problem and an algorithm
that computes multi-objective partitionings with respect to this formulation. We have shown that this algo-
rithm provides the user with a �ne-tuned control of the tradeo�s among the objectives, results in intuitively
predictable partitionings, and is able to handle both similar and dissimilar objectives. We have shown that
this algorithm is better able to �nd a good tradeo� between the objectives than partitioning with respect to
a single objective only. Finally, we have shown that by modifying the preference vector, the multi-objective
graph partitioning algorithm is able to gracefully tradeo� decreases in one objective for increases in the
others.

Parallelizing the multi-objective graph partitioning algorithm is quite trivial, as highly scalable imple-

9

mentations of parallel graph partitioners exist [3, 8]. These codes assume that the graph is distributed across
the processors. They return the edge-cut results to each of the processors. Thus, the parallel formulation
consists of a number of calls to a parallel graph partitioning routine equal to the number of objectives followed
by a phase in which each processor independently computes its vertices' combined edge weights. Finally,
one last call to the parallel partitioner utilizing these new edge weights will produce the multi-objective
partitioning.

References

[1] P. Fishburn. Decision and Value Theory. J. Wiley & Sons, New York, 1964.

[2] Y. Haimes and W. Hall. Multiobjectives in water resource systems analysis: The surrogate trade-o� method. Water

Resources Research, 10:615{624, 1974.

[3] G. Karypis and V. Kumar. A parallel algorithms for multilevel graph partitioning and sparse matrix ordering. Technical

Report TR 95-036, Department of Computer Science, University of Minnesota, 1995. Also available on WWW at URL

http://www.cs.umn.edu/~karypis. A short version appears in Intl. Parallel Processing Symposium 1996.

[4] G. Karypis and V. Kumar. MeTiS 4.0: Unstructured graph partitioning and sparse matrix ordering system. Tech-

nical report, Department of Computer Science, University of Minnesota, 1998. Available on the WWW at URL

http://www.cs.umn.edu/~metis.

[5] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. Technical Report TR 98-019,

Dept. of Computer Science, Univ. of Minnesota, 1998.

[6] R. Keeney and H. Rai�a. Decisions with Multiple Objectives: Preferences and Value Tradeo�s. J. Wiley & Sons, New

York, 1976.

[7] M. Makowski. Methodology and a modular tool for multiple criteria analysis of lp models. Technical Report WP-94-102,

IIASA, 1994.

[8] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for adaptive unstructured meshes. Journal

of Parallel and Distributed Computing, 47(2):102{108, 1997.

[9] P. Yu. Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions. Plenum Press, New York, 1985.

[10] L. A. Zadeh. Fuzzy sets. Information and Control 8, pages 338{353, 1965.

10

