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Abstract

Geometric Multigrid methods have gained
widespread acceptance for solving large systems
of linear equations, especially for structured grids.
One of the challenges in successfully extending
these methods to unstructured grids is the problem
of generating an appropriate set of coarse grids. The
focus of this paper is the development of robust al-
gorithms, both serial and parallel, for generating a
sequence of coarse grids from the original unstruc-
tured grid. Our algorithms treat the problem of
coarse grid construction as an optimization problem
that tries to optimize the overall quality of the result-
ing fused elements. We solve this problem using the
multilevel paradigm that has been very successful in
solving the related grid/graph partitioning problem.
The parallel formulation of our algorithm incurs a
very small communication overhead, achieves high
degree of concurrency, and maintains the high qual-
ity of the coarse grids obtained by the serial algo-
rithm.
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1 Introduction

Geometric multigrid methods have gained widespread
acceptance for solving large systems of linear equations,
especially for structured grids. One of the challenges
in successfully extending these methods to unstructured
meshes is that there exists no widely accepted method for
generating an appropriate set of coarse grids.

Existing coarse grid construction algorithms operate
on the dual graph of the unstructured mesh and obtain
the control volumes of the coarse grid by using a variety
of agglomerating techniques [9, 2, 10, 11, 12]. The basic
idea behind these approaches is to start from a particu-
lar vertex of the dual graph and fuse together some of its
adjacent vertices into a new coarse grid control volume.
The selection of the vertices to be fused together can be
based either on the connectivity of the dual graph [2], or
it can be done so that the quality of the coarse control vol-
ume, as measured by its aspect ratio, is locally optimized
[13]. Unfortunately, such locally greedy agglomerating
techniques quite often lead to coarse grids of poor qual-
ity. Thus, despite the number of different agglomerative
approaches already developed, there is still a great need
for improvement.

The focus of this paper is to develop robust algo-
rithms, both serial and parallel, for generating a sequence
of coarse grids from the original unstructured grid. To
this end, we formulate the problem as an optimization
problem whose goal is to generate a coarse grid that op-
timizes a particular objective function which captures the
overall quality of the grid subject to lower and upper
bound constraints on the size of grid’s control volumes.
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We investigate two general classes of coarse-grid
quality measures that are based on the aspect ratios of
the resulting control volumes. The first class tries to op-
timize an additive function of the individual control vol-
umes’ aspect ratios, whereas the second class focuses on
bounding the aspect ratio of the worst elements. We de-
velop highly accurate and computationally efficient algo-
rithms for solving these optimization problems that are
based on the multilevel paradigm, that has been recently
found to be quite effective in solving the related prob-
lem of graph and mesh partitioning [1, 3, 5, 4]. We also
present a parallel formulation of our serial algorithm that
combines our serial multilevel coarse grid construction
algorithm with existing scalable parallel formulations of
adaptive graph partitioning [15] to effectively parallelize
the generation of coarse grids.

We experimentally evaluate the performance of our
algorithms in the simulation of unsteady flow on three
different unstructured grids. Our experiments show that
the coarse grids obtained by our serial algorithms allow
the multigrid solver to converge in 5% to 20% fewer it-
erations when compared to existing agglomerating tech-
niques. Moreover, our parallel evaluation shows that the
improved convergence rates carry over to the parallel for-
mulation as well and that our parallel formulation can
efficiently scale up to 512 processors even for moderate
size grids containing around one million elements.

The rest of the paper is organized as follows. Sec-
tion 2 motivates and describes the various objective func-
tions that were used to measure the quality of the coarse
grids. Section 3 describes the details of our serial mul-
tilevel algorithm for building coarse grids, and Section 4
describes its parallel formulation. The experimental eval-
uation of both the serial and parallel algorithms is shown
in Section 5. Finally Section 6 provides some concluding
remarks.

2 Objective Functions

The aim of our coarse grid construction algorithms is
to generate a sequence of coarse grids such that each
grid optimizes a certain function that captures the overall
quality of the fused elements, i.e., the control volumes
of the coarser grids. In order to ensure fast convergence
rates of multigrid algorithms the sequence of coarse grids
must contain well shaped control volumes. A widely ac-
cepted measure for the quality of a control volume (i.e.,
how well-shaped it is) is its aspect ratio A. For two–

dimensional grids the aspect ratio is defined as

A = l2

S
,

where l is the circumferential length and S is the area of
the control volume, respectively. Analogously, for three-
dimensional grids the aspect ratio is defined as

A = S3/2

V
,

where, S is the surface area and V is the volume of the
control volume, respectively. A control volume is well-
shaped if it is as compact as possible, i.e., its aspect ra-
tio is minimized. Hence, for two- and three-dimensional
grids we want to get control volumes that are as close to
being circular and spherical, respectively.

Using the aspect ratio of a control volume as a mea-
sure of its quality we can derive a number of different
measures to capture the overall quality of a coarse grid.
In particular, if NCoarse is the number of control vol-
umes in the coarse grid, a simple way of measuring its
quality is to add the aspect ratios of all of its control vol-
umes. That is,

F1 =
NCoarse∑

i=1

Ai , (1)

where Ai is the aspect ratio of the i th control volume.
Since our goal is to obtain grids that contain well-shaped
control volumes, a coarse grid that minimizes F1 is pre-
ferred. One of the limitations of the F1 measure is that it
does not take into account the size of the different con-
trol volumes which can potentially be somewhat differ-
ent. This measure can be easily modified to give higher
weight to larger control volumes; thus, penalizing (or re-
warding) it when the aspect ratio of large control vol-
umes are poor (or good). In this case the new grid quality
measure is

F2 =
NCoarse∑

i=1

wi Ai , (2)

where wi is the number of elements that were fused to-
gether to obtain the i th control volume. Again, coarse
grids that minimize the F2 measure are also preferred.
Potentially, though, either the F1 or the F2 measures can
fail to account for coarse grids whose overall quality is
good, but nonetheless, they still contain a limited num-
ber of control volumes that are of poor quality. To correct
this problem, we can measure the quality of a coarse grid
by looking at the aspect ratio of its worst (i.e., higher as-
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pect ratio) control volume. In this case, the quality of the
coarse grid is given by

F3 = max
i=1...NCoarse

Ai . (3)

Coarse grids that minimize the F3 measure will be pre-
ferred.

These three different functions for measuring the
quality of a coarse grid can be used as the objectives to
be optimized while generating the next level coarse grid.
In particular, the coarse grid construction problem can be
formulated as the following optimization problem.

Given an initial grid, generate a coarse grid
such that each of its control volumes contains
at least Lmin and at most Lmax elements of
the initial grid, and the coarse grid minimizes
one of the different grid quality measures, that
is either F1, F2, or F3.

Note that the various grid-quality measures can be
combined to perform multi-objective optimizations. In
particular, F3 can be easily combined with either F1 or
F2. In this case, the goal of the optimization algorithm
is to generate a coarse grid that first minimizes the F3

measure, and among the solutions that have the same F3

value, it focuses on constructing a grid that minimizes
either F1 or F2.

In the rest of this paper we will refer to the vari-
ous grid-quality measures as the corresponding objective
functions.

3 Serial Multilevel Coarse Grid
Construction

Our algorithm for generating coarse grids solves the op-
timization problem described in Section 2, using the
multilevel paradigm. The basic idea of the multilevel
paradigm is the following. If M is the original prob-
lem, a sequence of successive approximations of M is
obtained {M1, M2, . . . , Mn} such that each successive
approximation Mi+1 is a smaller problem than its pre-
vious approximation Mi . Once that sequence has been
obtained, a solution of the optimization problem is com-
puted at the coarsest approximation Mn . This solution
is used to derive a solution for the next-level finer ap-
proximation Mn−1, which is further optimized locally on
Mn−1. Now, the solution to Mn−1 is again used to de-
rive a solution for Mn−2 which is also further optimized.
This process continues, until a solution propagates all the

way up to the original problem M , which becomes the fi-
nal solution. The three distinct phases of the multilevel
paradigm are called coarsening, initial solution, and un-
coarsening phases, respectively.

The multilevel paradigm has been used successfully
in many applications such as traveling salesman and
graph partitioning [1, 3, 16, 5, 4]. In fact, the widely used
graph partitioning algorithms available in Chaco, METIS,
and JOSTLE are based on this paradigm. Also note that
the overall idea of the multilevel optimization paradigm
is very similar in nature to the multigrid algorithm itself.

The method used to obtain approximate representa-
tions of the original problem plays an important role in
the success of the multilevel paradigm. In particular, the
approximate representations must be such that the qual-
ity of a solution obtained in them is similar (if not iden-
tical) to the quality of the same solution when viewed in
the original problem. This ensures that the optimization
being performed at the coarsest levels of the approxima-
tions, does optimize the solution of the original problem.
This is true in the context of graph partitioning, and as
we will show in the rest of this section, is true for our
problem as well.

In the rest of this section we discuss how the vari-
ous grids are represented, and describe our algorithms for
the coarsening, initial solution, and uncoarsening phases.
Note that our discussion will only focus on generating
the next level coarse grid and the overall sequence of
grids can be obtained by applying the same algorithms
repeatedly.

3.1 Grid and Solution Modeling

Our algorithms model the grid using its dual graph. In the
dual graph G = (V, E), each vertex corresponds to an el-
ement of the grid (i.e., triangle, tetrahedron, brick), and
two vertices are connected via an edge, if the correspond-
ing grid elements share a segment or face depending on
whether or not the grid is two- or three-dimensional. An
example of a two-dimensional triangular mesh and its
corresponding dual graph is shown in Figure 1.

For every vertex v in the graph we have three values
associated with it, that we call them vertex-weight (vw),
vertex-boundary-surface (vs), and vertex-volume (vv).
The vertex-weight captures the number of original grid
elements that this particular element represents. Initially,
all vertex-weights are set to one, but as the original grid
is coarsened, their weights are updated to account for the
number of elements that the particular control volume is

3



��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

(0,0) (2,0) (4,0) (5,0)

(2,2)

(0,3)

(3,5)

(4,7)

(5,5)

(5,3)

1 2

3 4

5 76

13 14 15

12

8 9

11
10

(1,0,2) (1,2,1)

(1,0,2)

(1,0,3)

(1,2,3)(1,5,3)

(1,0,1)

2 1

2

2

1

1

2

2

1

2

(1,0,2)

(1,0,1)

1 2

4
7

13
14

15

8

5
6

121110

3

(1,0,1)

9

(1, 2
√

2, 2)

(1, 2
√

2, 2)

(1,
√

5, 1)

√
5

√
5

√
5√

5

√
10

√
10 √

10√
13

(1, 0, 1
2 )

(1, 4, 3
2 )

Figure 1: Sample two-dimensional triangular mesh and the dual Graph.

made off. The vertex-boundary-surface is used to cap-
ture the length or area of the element’s segments or faces
that are not shared by other elements, i.e., they are on the
boundary of the grid. Note that for all interior elements
vs will be zero. The vertex-volume is used to capture
the area (for two-dimensional grids) or the volume (for
three-dimensional grids) of that particular element. Fi-
nally, for every edge (v, u), our dual graph has a weight
associated with it that corresponds to either the length of
the shared line segment or the area of the shared face, in
two- or three-dimensional grids, respectively. The vari-
ous vertex and edge weights are illustrated in Figure 1.

The weighted dual graph contains all the information
that is necessary to compute the aspect ratios of each grid
element as well as any control volume derived by com-
bining any of these elements. In particular, in the case
of two-dimensional grids, the area of an element is noth-
ing more than vv , whereas its circumferential length is
the sum of the weights on its edges plus v s . Similarly,
the area of a control volume consisting of a collection
of such elements B, is nothing more than the sum of the
vertex-volumes of the vertices in B, and the circumferen-
tial length is equal to the sum of the weights of the edges
connecting a vertex in B with a vertex in V − B plus
the sum of the vertex-boundary-surfaces of the vertices
in B. For example, consider the control volume that is
derived from the shaded elements of the grid shown in
Figure 1. The area of that control volume is equal to
the sum of the vv weights of the corresponding vertices,

and its circumferential length is equal to the sum of the
weights of the edges that are being cut by the correspond-
ing partitioning plus the vs weights of all the vertices
corresponding to the shaded region. A similar method
can be used to compute the corresponding quantities in
three-dimensional grids.

Given such a graph representation of the original grid,
the desired coarse grid can be viewed as a k-way parti-
tioning of the vertices of the dual graph such that each
partition contains between Lmin and Lmax vertices, and
optimizes a particular grid-based objective function. Es-
sentially, the vertices in each partition represent the grid
elements that will be combined to form the control vol-
umes of the coarse grid. This graph-partitioning-based
view of the solution will be used through out our descrip-
tion of the algorithm. In particular, our algorithms will
operate on the dual graph and will try to find such a k-
way partitioning. The various vertex and edges weights
of the dual graph contain all the information necessary to
accurately evaluate the various objective functions dis-
cussed in Section 2.

3.2 Coarsening Phase

Our algorithms, starting from the original grid rep-
resented by its dual graph G = (V, E), con-
struct a sequence of approximate representations by
obtaining a sequence of successively coarser graphs
{G1, G2, . . . , Gn}. Each graph Gi is obtained from the
previous graph Gi−1 by first finding a maximal indepen-
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dent set Ii−1 of edges of Gi−1, and then collapsing to-
gether the pairs of vertices that are connected by edges
in Ii−1. As a result of this operation, G i contains |Ii−1|
fewer vertices than Gi−1. An independent set of edges
of a graph is a set of edges no two of which are incident
to the same vertex. An independent set is maximal if it is
not possible to add any other edge to it without making
two edges become incident on the same vertex.

To preserve the geometric properties of the original
grid, the weights of the vertices and edges in G i are up-
dated to account for the different vertices and edges that
are being collapsed together. In particular, if (v1, v2) is
an edge in Ii−1, and u1 is the vertex of Gi that is obtained
by collapsing together vertices v1 and v2, our algorithm
sets the vertex-weight uw of u to be equal to vw

1 + vw
2 , its

vertex-boundary-surface u s to be equal to vs
1 +vs

2, and its
vertex-volume uv to be equal to vv

1 + vv
2 . To preserve the

connectivity information in the coarser graph, the edges
of u are the union of the edges of the vertices v1 and v2.
If both vertices v1 and v2 contain edges to the same ver-
tex v3, then the weight of the edge (u, v3) is set equal
to the sum if the weights of these edges. By updating
the weights in this fashion, we can accurately compute
the aspect ratio of the control volumes that each vertex
represents.

The key step of our algorithm is the method used to
find the maximal independent sets of edges. Motivated
by earlier research on graph partitioning we use a method
called globular matching that was inspired by the heavy
edge heuristic [5]. The idea behind this approach is to
select a maximal independent set of edges such that the
control volumes that are created as a result of collapsing
the pairs of vertices for each edge, have the smallest as-
pect ratio. In globular matching, we try to achieve that
using the following greedy algorithm. The vertices are
visited in decreasing order of their degree. If a vertex
has not been matched yet (i.e., is not part of an edge al-
ready in the independent set), we match it with its adja-
cent unmatched vertex that leads to the smallest aspect
ratio, and the resulting vertex does not violate the con-
straint of the maximum size of the control volume (i.e.,
the Lmax constraint). The edge corresponding to this
pair of vertices is then added to the independent set. Note
that this algorithm does not guarantee that the obtained
independent set leads to the smallest aspect ratios, but
our experiments have shown that it works very well in
practice. The complexity of computing a globular ag-
glomeration is O(|E|).

The coarsening phase ends when the graph cannot be

further coarsened without violating the Lmax constraint
on the maximum size of each control volume.

3.3 Initial Solution Phase

The goal of the initial solution phase is to compute a
solution of the original problem using its coarsest ap-
proximation. In our algorithm, the coarsest approxi-
mation corresponds to a graph G n whose vertices were
obtained by collapsing adjacent elements of the origi-
nal grid. Also, due to the termination condition of the
coarsening phase, each vertex is guaranteed to contain
no more than Lmax elements of the original grid. Given
these characteristics of Gn , we obtain a solution to the
original problem by essentially treating each vertex of
Gn as a single coarse element of the original grid. Note
that this solution may not necessarily satisfy the Lmin
constraint, since some of the vertices in G n may actually
contain fewer than Lmin elements of the original grid.
This is something that will be corrected during the un-
coarsening phase.

3.4 Uncoarsening Phase

The goal of the uncoarsening phase is to take the solu-
tion computed in the coarsest graph and propagate it all
the way up to the original graph, by going through graphs
Gn−1, . . . , G1, G, and further refine it during this prop-
agation.

The initial solution at the coarsest graph is nothing
more than a |Vn|-way partitioning of this graph, such that
the i th part contains only the i th vertex of this graph.
When this solution is propagated to the next level finer
graphs, most of these |Vn| partitions will contain more
than just a single vertex. The overall quality of the so-
lution can be potentially improved by moving some of
the vertices to different partitions, as long as the size-
constraints are not violated. Such vertex movements take
a subset of elements from one control volume and assign
them to a different control volume. Such improvements
are possible because of three reasons. First, the maximal
independent set were computed using a greedy algorithm
and does lead to an optimal independent set. Second, the
objective function that we try to optimize may be some-
what different than the heuristic used to guide the con-
struction of the maximal independent set. Third, finer
graphs have more degrees of freedom that can be used to
further improve the quality of a solution derived from a
coarser graph.

We use a randomized refinement algorithm that is

5



similar in nature to that used in the context of multi-
level k-way partitioning [4]. It consists of a number of
iterations. In each iteration the vertices are visited in a
random order. For each vertex v we compute the reduc-
tion in the value of the objective function that will be
achieved if v was to move to another neighboring parti-
tion (i.e., control volume). If there exist some moves that
lead to actual improvements without violating the size-
constraints, then v is moved to the partition that leads to
the highest improvement among them. If no such move
exists, then v is not moved. This process stops when
no vertex can be moved during an entire iteration. Our
experiments show that in each graph, our refinement al-
gorithm converges within two to five iterations.

This randomized refinement algorithm can be used
with all the different objectives functions described in
Section 2. Moreover, all of these objective functions can
be efficiently evaluated as they depend on the aspect ra-
tios of the partitions that are adjacent to the vertex that
we try to move.

One of the side-effects of our refinement algorithm is
that it does not guarantee that the discovered partitions
will be contiguous, even if the initial partitioning con-
tained contiguous partitions. This is because during the
refinement, vertices corresponding to graph articulation
points can be moved when such moves improve the par-
ticular objective function. To handle these cases, at the
end of each refinement phase, we identify which parti-
tions contain non-contiguous control-volumes, and cre-
ate different partitions for each one of them. As a re-
sult, the final solution may contain more than |Vn| par-
titions. Due to this contiguity enforcement as well as
due to the coarsening, the partitions may actually con-
tain fewer than Lmin elements. To correct this problem
after the partition contiguity has been enforced, we try to
merge small partitions with some of their adjacent parti-
tions, as long as the resulting partition does not violate
the Lmax constraint. The selection of which partitions
to merge is guided by the particular objective function
that we try to optimize. Once the merging operation is
finished, the number of control volumes that have fewer
than Lmin elements is now greatly minimized. Only
those control volumes that are adjacent to prohibitively
“large” control volumes will remain unmerged. As a last
step, the neighbors of the small partitions, that can afford
to lose some of their vertices, have to contribute these
vertices to these partitions. In this way we can ensure
that the Lmin and Lmax constraints are satisfied.

4 Parallel Implementation

In recent years, a number of scalable parallel formu-
lations of multilevel graph partitioning algorithms have
been developed [8, 14, 6, 15]. However, even though
our serial coarse grid construction algorithm shares many
characteristics with these multilevel partitioning algo-
rithms, their parallel formulations cannot be used to effi-
ciently parallelize the grid construction algorithm. This
is because, unlike graph partitioning, in which the num-
ber of partitions is very small relatively to the size of the
graph, in coarse grid construction, the number of fused
elements (which correspond to the number of partitions)
is very large and of the same order as the number of ver-
tices. This difference makes existing parallel formula-
tions of multilevel graph partitioning unscalable, as their
communication overhead is lower bounded by the num-
ber of partitions. This led us to develop an entirely new
approach of parallelizing the coarse grid construction al-
gorithm that does not rely on existing parallel formula-
tions of multilevel graph partitioning.

1...nsteps

Create Fused Element Graph

Refine Graph

Distribute Graph

Redistribute Original Graph

Run serial algorithm on every processor

Repartition Fused Element Graph and

Figure 2: The various phases of the the parallel procedure.
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The overall structure of our parallel algorithm is
shown in Fig. 2. Initially, the mesh is distributed among
the processors using a parallel multilevel graph partition-
ing algorithm. This results in a distribution in which
each processor contains a well-shaped subdomain, in the
sense that the number of elements between processors is
minimized. Now, each processor, operates on its locally
stored portion of the overall mesh, and it cuts all connec-
tions to other processors. It then uses the serial multilevel
coarse grid construction algorithm to generate a coarse
grid for its local subdomain. Since the processors oper-
ate only on their own subdomains, this approach leads
to a coarse grid whose interior contains elements with
good aspect ratios, but because it is not allowed to create
fused elements across processor subdomain boundaries,
the quality of the elements along the processor subdo-
main boundaries may be poor.

Original Partition

New partition

Figure 3: Partition.

One way of correcting this problem is to allow fused
elements on the boundaries to participate in refinement
iterations with the fused elements stored in neighboring
(with respect to the mesh) processors. However, this ap-
proach leads to fine-grain communication and synchro-
nization that can potentially limit the overall parallel ef-
ficiency. For this reason we developed an alternate ap-
proach for correcting the quality of these interface ele-
ments. The key idea of our approach is to use an adap-
tive graph partitioning algorithm to perturb the existing
mesh partition, so that the elements along the processor
interface boundary move closer to the interior, and away
from the boundary. The motivation behind this approach
is that if the fused elements along the interface move to-
wards the interior of the subdomain, then their adjacent
fused elements will move to the same subdomain as well,

and their quality can be improved by simply performing
local refinement. This is illustrated in Fig. 3, in which
the dark black lines correspond to the new partitioning
of the original mesh. Note that the repartitioning of the
mesh can be done in such a way so that the elements
that have already been fused together are assigned to the
same processor, thus preserving the quality of the exist-
ing fused elements.

Our parallel algorithm uses the adaptive graph par-
titioning algorithm available in PARMETIS([7]), and the
overall process of adaptive repartitioning followed by lo-
cal refinement is performed until the overall quality the
coarse grid does not improve any further. Our exper-
iments have shown that the overall process converges
within a small number of iterations (less than ten).

5 Experimental Results

We evaluated the performance of our serial and parallel
algorithms using three different 3D tetrahedral meshes
whose characteristics are shown in Table 1. The size of
these meshes ranged from 94.5K to 1.1M elements. We
tested the quality of the grids obtained from our algo-
rithms in the simulation of an unsteady flow of moving
grids, arising in aero–elasticity problems, using an edge–
based multigrid solver, for each one of the three meshes.
The parallel performance was evaluated on two differ-
ent architectures. The first one was a 1024–processor
CRAY T3E-1200 parallel computer with EV6 Alpha pro-
cessors running at 600MHz and 512MB of memory at
each processor. The second was a 16-processor Linux-
based cluster of workstations connected via a 100MBit
Ethernet switch. Each processor was an Intel Pentium III
at 650Mhz with 1GB of main memory. We will refer to
this cluster as the “BEO” machine.

Name # Elements Description
M6 94, 493 M6 wing
F22 428, 748 F22 wing
F16 1, 124, 648 F16 wing

Table 1: Characteristics of the test data sets.

5.1 Evaluation of the Serial Algorithm

Our first set of experiments was focused on evaluating
the quality of the coarser grids produced by our serial
multilevel coarse grid construction algorithm using the
unsteady flow simulation.

Table 2 shows the convergence characteristics of the
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multigrid solver for different methods for constructing
the coarse grids. In particular, the table shows the re-
sults for six different algorithms for coarse grid con-
struction. The row labeled “Trad1” corresponds to the
results obtained by the simple neighborhood based ag-
glomerative scheme [2]. The results labeled “Trad2”
correspond to the neighborhood based agglomerative
scheme that takes into account the aspect ratio of the new
cells [11, 13]). The remaining results labeled “ML F1”,
“ML F2”, “ML F3”, “ML F3 F2”, correspond to our
multilevel coarse grid construction algorithms using the
F1, F2, F3, and F3 + F2 objective functions respectively
from section 2.

M6 F22 F16
Technique # Iterations # Iterations # Iterations

Trad1 215 181 399
Trad2 160 153 358

ML F1 146 155 349
ML F2 149 159 345
ML F3 156 157 349

ML F3 F2 148 160 339

Table 2: Convergence of serial multigrid algorithm.

Looking at the results in this table we can see that
the different objectives of the proposed multilevel algo-
rithms for constructing the coarse grids, tend to perform
very similar to each other. In most cases, the number of
iterations required by the multigrid solver on the coarse
grids generated by the four objectives are within 3% from
each other. The only exception was ML F3 that required
7% more iterations on M6 than the other schemes. Com-
paring Trad1 against Trad2 we can see that the former
performs significantly worse. Comparing the multilevel
approaches against Trad2 we can see that they lead to
coarse grids that are better (at least in terms of the num-
ber of iterations) for M6 and F16 and they achieve com-
parable quality for F22. In particular, the number of iter-
ations required by the multigrid solver is lower by 10%
on M6 and 6% on F16 when the multilevel schemes are
used.

5.2 Evaluation of the Parallel Algo-
rithm

We evaluated the performance of our parallel formula-
tion of the multilevel coarse grid construction algorithm
on the same three unstructured meshes used by the se-
rial algorithm. Our evaluation was done at three levels.
First we compared the aspect-ratio characteristics of the

generated coarse grids as the number of processors in-
creased. Second, we compared the performance of the
multigrid solver on the parallel generated grids. Finally,
we evaluated the scalability of the parallel algorithm it-
self.

Table 3 shows the quality of the coarse grids pro-
duced by our parallel algorithm on the CRAY using
1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 processors for
the M6, F22 and the F16 data sets. These results were
obtained using the scheme ML F3 F2. Note that some
of the results could not be obtained due to the fact that
there was not enough memory on small number of pro-
cessors on the CRAY T3E. Table 4 shows the results of
the same tests ran on the BEO cluster for 1, 2, 4, 8, and
16 processors. Results from tests that were not obtained
on the CRAY due to memory limitations can be seen in
this table. From these results we can see that with re-
spect to the F2 measure, the quality of the coarse grids
produced by the parallel algorithm remains the same as
we increase the number of processors. In fact the overall
F2 measure seems to improve as we increase the num-
ber of processors. This is primarily due to the fact that
the larger processor configurations produced grids with
slightly more elements. With respect to the F3 measure
the overall quality still remains the same, even though
there are certain instances in which the results are some-
what different. This is primarily due to the fact that the
F3 measure is entirely determined by the quality of a sin-
gle fused element, and it is much more sensitive to the
underlying randomization of the algorithm.

Table 5 shows the convergence of the multigrid solver
using the various grids generated by the different objec-
tive functions of the multilevel algorithm. Since the cur-
rent version of our multigrid solver runs only serially,
these results were obtained by first generating the coarse
grids in parallel, and then using them as input to the se-
rial multigrid algorithm. Due to time limitations the re-
sults reported in this table show only the convergence
performance for up to 16 processors. Nevertheless, even
from these limited results, we can see that, in general,
our parallel multilevel algorithms produce grids that lead
to similar convergence rates for the multigrid algorithm,
as our serial multilevel algorithm. In fact, the number
of iterations required by the various algorithms remained
pretty much constant as we increased the number of pro-
cessors. The only exception was with problem F16, for
which the number of iterations did increase slightly for
ML F2, ML F3, and ML F3 F2. One of the reasons for
that may be due to the fact the size of the coarse grids
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M6 F22 F16
# PES F3 F2 F3 F2 F3 F2

1 2.43e + 01 1.82e + 06 — — — —
2 2.26e + 01 1.82e + 06 — — — —
4 2.25e + 01 1.82e + 06 2.71e + 01 8.29e + 06 — —
8 2.27e + 01 1.82e + 06 2.93e + 01 8.28e + 06 — —

16 2.26e + 01 1.81e + 06 2.31e + 01 8.25e + 06 2.24e + 01 2.02e + 07
32 2.26e + 01 1.80e + 06 2.36e + 01 8.23e + 06 2.64e + 01 2.02e + 07
64 2.26e + 01 1.80e + 06 2.40e + 01 8.21e + 06 7.11e + 01 2.01e + 07

128 2.26e + 01 1.80e + 06 2.31e + 01 8.20e + 06 2.28e + 01 2.01e + 07
256 2.30e + 01 1.79e + 06 1.68e + 02 8.19e + 06 2.84e + 01 2.01e + 07
512 2.43e + 01 1.78e + 06 4.57e + 01 8.18e + 06 3.50e + 01 2.01e + 07

Table 3: Quality measures on CRAY T3E on 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 processors.

M6 F22 F16
# PES F3 F2 F3 F2 F3 F2

1 2.70e + 01 1.82e + 06 2.55e + 01 8.33e + 06 2.28e + 01 2.04e + 07
2 2.29e + 01 1.82e + 06 2.32e + 01 8.30e + 06 2.84e + 01 2.03e + 07
4 3.19e + 01 1.82e + 06 2.55e + 01 8.29e + 06 2.84e + 01 2.03e + 07
8 2.27e + 01 1.81e + 06 2.41e + 01 8.28e + 06 2.28e + 01 2.03e + 07

16 2.26e + 01 1.81e + 06 2.31e + 01 8.25e + 06 2.84e + 01 2.02e + 07

Table 4: Quality measures on BEO on 1, 2, 4, 8, and 16 processors.

generated as the number of processors increases is some-
what larger. We are currently investigating these results.

Finally, Table 6 shows the run times (in seconds) re-
quired by the different processors to construct the coarse
grids. The times appearing here correspond to the runs
made for creating Tables 3 and 4. The single proces-
sor run times were obtained using the serial algorithm.
A number of observations can be made from this table.
First, looking at the results of M6 (which we were able to
run on single processor on the CRAY), and the results of
all grids on the BEO, we can see that the two-processor
time is actually higher than the serial time. This is due to
the fact that the parallel algorithm performs more compu-
tations, as it needs to refine the solutions multiple times
(once after each repartitioning). However as the number
of processors increases, the amount of time required does
decrease. In the case of the CRAY T3E, the runtime ac-
tually reduces linearly all the way up to 256 processors.
The run-time reduction is lower when going from 256
to 512 processors as all three problems are quite small
(even for the larger mesh, F16, there are only about 2150
elements at each processor). In the case of the BEO clus-
ter, a significant reduction in runtime is obtained all the
way up to 8 processors. However, when going from 8 to
16 processors, the amount of time required for M6 actu-
ally increases. The performance degradation is due to the
poor interprocessor interconnection network of the clus-

ter. Despite that, as the problem size increases, better
speedup can still be obtained as illustrated by the results
obtained for F22, for which the runtime reduced by 32%
when going from 8 to 16 processors.

CRAY T3E BEO
M6 F22 F16 M6 F22

# PES Time Time Time Time Time
1 80.66 — — 32.74 173.61
2 103.17 — — 46.14 246.66
4 50.43 256.13 — 28.21 153.21
8 22.30 125.21 — 14.18 74.71

16 9.95 61.06 163.14 18.64 50.55
32 4.38 29.71 90.08 — —
64 2.24 14.86 40.47 — —
128 1.68 7.11 19.15 — —
256 1.06 4.52 10.72 — —
512 1.06 3.55 7.11 — —

Table 6: Run Times (in seconds) on CRAY T3E and BEO clus-
ter.

6 Conclusions

In this paper we presented serial and parallel algorithms
for building coarse grids for geometric multigrid solvers
that use the multilevel paradigm. Our results show that
this approach leads to coarse grids that have well–shaped
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M6 F22 F16
# Iterations # Iterations # Iterations

Technique p = 2 p = 4 p = 8 p = 16 p = 2 p = 4 p = 8 p = 16 p = 2 p = 4 p = 8 p = 16
ML F1 146 147 149 150 158 159 160 157 353 352 350 344
ML F2 147 146 148 149 158 157 158 156 341 342 344 355
ML F3 148 148 150 152 157 156 156 156 339 348 345 354

ML F3 F2 146 146 147 152 159 158 161 158 338 341 349 357

Table 5: Convergence of multigrid algorithm on 1, 2, 4, 8, and 16, processors.

elements and the corresponding parallel formulation can
scale to large number of processors.
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