
Architecture Aware Partitioning Algorithms�

Irene Moulitsas1,2 and George Karypis1

1 University of Minnesota, Department of Computer Science and Engineering
and Digital Technology Center and Army HPC Research Center

Minneapolis, MN 55455
2 The Cyprus Institute, P.O. Box 27456, 1645 Nicosia, Cyprus

{moulitsa,karypis}@cs.umn.edu

Abstract. Existing partitioning algorithms provide limited support for
load balancing simulations that are performed on heterogeneous parallel
computing platforms. On such architectures, effective load balancing can
only be achieved if the graph is distributed so that it properly takes into
account the available resources (CPU speed, network bandwidth). With
heterogeneous technologies becoming more popular, the need for suitable
graph partitioning algorithms is critical. We developed such algorithms
that can address the partitioning requirements of scientific computations,
and can correctly model the architectural characteristics of emerging
hardware platforms.

1 Introduction

Graph partitioning is a vital pre-processing step for many large-scale applica-
tions that are solved on parallel computing platforms. Over the years the graph
partitioning problem has received a lot of attention [3, 12, 5, 1, 2, 7, 10, 11, 14, 15,
18, 19, 23, 20]. Despite the success of the existing algorithms, recent advances in
science and technology demand that new issues be addressed in order for the
partitioning algorithms to be effective.

The Grid infrastructure [9,4] seems to be a promising viable solution for sat-
isfying the ever increasing need for computational power at an affordable cost.
Metacomputing environments combine hosts from multiple administrative do-
mains via transnational and world-wide networks into a single computational
resource. Even though message passing is supported, with some implementation
of MPI [8], there is no support for computational data partitioning and load

� This work was supported in part by NSF EIA-9986042, ACI-0133464, ACI-0312828,
and IIS-0431135; the Digital Technology Center at the University of Minnesota;
and by the Army High Performance Computing Research Center (AHPCRC) under
the auspices of the Department of the Army, Army Research Laboratory (ARL)
under Cooperative Agreement number DAAD19-01-2-0014. The content of which
does not necessarily reflect the position or the policy of the government, and no
official endorsement should be inferred. Access to research and computing facilities
was provided by the Digital Technology Center and the Minnesota Supercomputing
Institute.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 42–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Architecture Aware Partitioning Algorithms 43

balancing. Even on a smaller scale, clusters of PCs have become a popular alter-
native for running distributed applications. The cost effectiveness of adding new,
and more powerful nodes to an existing cluster, and therefore increasing the clus-
ter potential, is an appealing solution to a lot of institutions and researchers. We
can clearly see that upcoming technologies have introduced a totally new class
of architectural systems that are very heterogeneous in terms of computational
power and network connectivity.

Most of the graph partitioning algorithms mentioned above compute a data
partitioning that is suitable for homogeneous environments only. Recently there
has been some work on partitioning for heterogeneous architectures, namely
PaGrid [16, 24], JOSTLE [22], MiniMax [21], and DRUM [6].

In the context of the widely used MeTiS [17] library, we have developed graph
partitioning algorithms for partitioning meshes/graphs onto heterogeneous ar-
chitectures. Our algorithms allow full heterogeneity in both computational and
communication resources. We use a more accurate model to describe the commu-
nication cost instead of the notion of edgecut used in the algorithms mentioned
above. We also do not solve the expensive and unscalable quadratic assignment
problem, and we do not enforce a dense processor-to-processor communication.

In the remainder, Section 2 discusses the modeling of the computational graph
and the heterogeneous architecture system. In Section 3 we present the problem
formulation. In Section 4 we describe our proposed algorithms. Section 5 presents
a set of experimental results. Finally Section 6 provides some concluding remarks.

2 Problem Modeling

The graph partitioning problem can be defined as follows: Given a graph G =
(V, E), where V is the set of vertices, n = |V | is the number of vertices, and E
is the set of edges in the graph, partition the vertices to p sets V1, ..., Vp such
that Vi

⋂
Vj = ∅ for i �= j and

⋃
Vi = V , for i, j = 1, ..., p. This is called a

p−way partitioning and is denoted by P . Every one of the subsets Vi is called a
partition or subdomain. P is represented by a partition vector of length n, such
that for every vertex v ∈ V , P [v] is an integer between 1 and p, indicating the
partition which v is assigned to.

2.1 Computational Graph Modeling

The graph G is a weighted graph if every vertex v is associated to either or
both weights w(v) and c(v). If no specific weights are provided, we can assume
that all vertices, have uniform weights. The first vertex weight w is assigned
depending on the amount of computations performed by a vertex. The second
weight c reflects the amount of data that needs to be sent between processors
i.e., communication.

The majority of multilevel graph partitioning formulations have primarily
focused on edgecut based models and have tried to optimize edgecut related
objectives. In the edgecut model all the edges split between different partitions
account as multiple communication messages. The edgecut metric is only an

44 I. Moulitsas and G. Karypis

P0 P1

u[1]

v2[1]

v3[1]

v4[1]

v1[1]
2

2

2

2

Edgecut = 4*2=8, Volume = 1 + 4 = 5

Communication Volume = 5

(a)

P0 P1

v2[1]

v3[1]

v4[1]

v1[1]

Edgecut = 4*2=8, Volume = 4 + 4 = 8

Communication Volume = 8

2

2

2

2

u1[1]

u2[1]

u3[1]

u4[1]

(b)

Fig. 1. Comparison between the edgecut and volume models

approximation of the total communication cost [13]. The actual communication
may be lower and depends on the number of boundary vertices. For this reason
we will focus on the Volume of a partitioning which we define as the total
communication volume required by the partition. This measure is harder to
optimize [13] than the edgecut.

Look at the two different scenarios presented in Figure 1(a) and (b). Let’s
assume vertex u and vertices u1, u2, u3, u4 are assigned to partition P0, while
vertices v1, v2, v3, v4 are assigned to partition P1. We have noted the communi-
cation weights of every vertex in square brackets in the figure (i.e., c(ui) = 1
and c(vi) = 1 for all i). If the edgecut model was used, each one of the cut edges
would have an edge weight of 2, as each one of the incident vertices to the edge
has communication size of 1. Both of the partitionings presented in Figure 1,
would incur an edgecut of 8. However, in Figure 1(a) the actual communication
volume is only 5, as processor P0 will send a message of size 1 to P1, and P1

will send four messages of size 1 to P0. Only if the volume model is used, will
we have an accurate estimate of the actual communication for both cases.

2.2 Architecture Graph Modeling

Partitioning for a heterogeneous environment requires modeling the underlying
architecture. For our model we use a weighted undirected graph A = (P, L), that
we call the Architecture Graph. P is the set of graph vertices, and they correspond
to the processors in the system, P = {p1, . . . , pp}, p = |P |. The weights w∗(·)
associated with the architecture graph vertices represent the processing cost per
unit of computation. L is the set of edges in the graph, and they represent
communication links between processors. Each communication link l(pi, pj) is
associated with a graph edge weight e∗(pi, pj) that represents the communication
cost per unit of communication between processors pi and pj .

If two processors are not ”directly” connected, and the communication cost
incurred between them is needed, we sum the squares of the weights of the

Architecture Aware Partitioning Algorithms 45

shortest path between them. This is called a quadratic path length (QPL). In [22]
it is shown that a linear path length (LPL) does not perform as well as the QPL.
The insight is that LPL does not sufficiently penalize for cut edges across links
that suffer from slower communication capabilities.

For our model we assume that communication in either direction across a
given link is the same, therefore e∗(pi, pj) = e∗(pj , pi), for i, j = 1, . . . , p. We
also assume that e∗(pi, pi) = 0, as the cost for any given processor to retrieve
information from itself is incorporated in its computational cost w∗(pi).

Although the existing heterogeneous partitioning algorithms assume a com-
plete weighted architecture graph, we find that this approach is not scalable and
therefore avoid it. We provide more details in Section 4.

3 Metrics Definition

Given the proposed models for the computational graph and the architecture
graph, we now define several metrics that will be used in our partitioning algo-
rithms.

Computational Cost. This first metric is the cost a processor pi will incur to
perform computations, over all its assigned portion of vertices Vi:

CompCostVi
pi

= w∗(pi) ×
∑

v∈Vi

w(v)

The computational cost reflects the time needed by a certain processor to process
the vertices assigned to it.

Communication Cost. This metric is the cost a processor pi will incur for
communicating, sending and receiving, any necessary information.

Each partition can distinguish between three types of vertices: (i) interior (lo-
cal) vertices, those being adjacent only with local vertices, (ii) local interface
vertices, those being adjacent both with local and non–local vertices, and (iii)
external interface nodes, those vertices that belong to other partitions but are
coupled with vertices that are assigned to the local partition. In the context of a
parallel application, communication is performed only due to the internal and ex-
ternal interface vertices. Specifically, vertices that belong to category 2 will need
to be sent to the corresponding neighboring processors, and vertices belonging
to category 3 will need to be received from their hosting processor/partition.

The cost that a processor pi will incur for communicating any information
associated to its assigned portion of the vertices Vi of the computational graph:

CommCostVi
pi

=
∑

v∈Vi

⎛

⎝
∑

P (w),w∈adj(v)

e∗(pi, P (w)) × c(v)

⎞

⎠ +

∑

v∈Vi

⎛

⎝
∑

w∈adj(v)

e∗(pi, P (w)) × c(w)

⎞

⎠

46 I. Moulitsas and G. Karypis

where adj(v) indicates the vertices adjacent to vertex v, and P (w) is the proces-
sor/partition a vertex w is assigned to. In the above equation, please note that
no communication links are double counted.

Processor Elapse Time. For every processor pi, its elapse time (ElTime) is
the time it spends on computations plus the time it spends on communications.
Therefore, using the above definitions, the elapse time of processor pi is:

ElapseT imeVi
pi

= CompCostVi
pi

+ CommCostVi
pi

Processor Overall Elapse Time. By summing up the elapse times of all
individual processors, we have an estimate of the overall time (SumElTime)
that all processors will be occupied:

TotalElapseT ime =
∑

pi∈P

ElapseT imeVi
pi

Application Elapse Time. The actual run time of the parallel application
(MaxElTime) will be determined by that processor that needs the most time
to complete. Therefore, no matter how good the quality of a partitioning is, its
overall performance is driven by its ”worst” partition:

ElapseT ime = max
pi∈P

{ElapseT imeVi
pi
}

4 Framework for Architecture-Aware Partitioning

One of the key ideas of our architecture-aware partitioning algorithms is that
they follow the two-phase approach. The purpose of the first phase is to focus
entirely on the computational and memory resources of each processor and com-
pute a problem decomposition that balances the demands on these resources
across the different processors. The purpose of the second phase is to take into
account the interconnection network characteristics (and its potential hetero-
geneity) and modify this partitioning accordingly so that it further optimizes
the final problem decomposition. We will refer to this as the predictor-corrector
approach, since the purpose of the second phase can be thought of as correct-
ing the decomposition computed by the first phase. The motivation behind this
approach is that it allows us to leverage existing high-quality partitioning algo-
rithms for achieving the first phase, which even though in the context of network
heterogeneity they tend to produce suboptimal partitionings, these partitionings
are not arbitrarily poor. As a result, these partitionings can be used as building
blocks for constructing good architecture-aware partitionings.

In all of our algorithms, the partitioning for the first phase is computed us-
ing the kvmetis algorithm from the MeTiS [17] library. This algorithm computes
a p-way partitioning that takes into account the resource capabilities of each

Architecture Aware Partitioning Algorithms 47

processor and minimizes the total communication volume. The partitioning for
the second phase is computed by utilizing a randomized greedy refinement al-
gorithm (similar to those used in MeTiS’s p-way partitioning algorithms) that
moves vertices between partitions as long as such moves optimize the quality of
the resulting decomposition.

We used two different approaches to assess the quality of the architecture-
aware partitioning. The first is based on the maximum communication volume
and the second is based on the application elapsed time. This leads to two differ-
ent objectives functions that drive the refinement routines of the second phase.
The first objective function tries to minimize the maximum communication vol-
ume while keeping the computational load proportional to the computational
power of each processor. The second objective function couples the communica-
tion and computational requirements and tries to directly minimize the appli-
cation elapsed time (i.e., the maximum elapsed time across the p processors).
Note that both of these formulations attempt to compute decompositions that
will be balanced. However, they use a different notion of “balance”. The first
treats computation and communication as two different phases and attempts to
balance them individually, whereas the second one treats them in a unified way
and attempts to balance them in a coupled fashion.

Our discussion so far assumed that each processor has full information about
the communication cost associated with sending data between each pair of pro-
cessors (i.e., e∗(pi, pj)). This is required in order to properly compute either the
maximum communication volume or the application elapsed time. If the number
of processors is small, this is not a major drawback, as the cost associated with
determining and storing these values is rather small. However, for large number
of processors, such an approach creates a number of problems. First, if we need
to have accurate estimates of these costs, these values need to be determined dur-
ing the execution of the partitioning algorithm (e.g., by using a program to send
messages between all pairs of processors to explicitly measure them). This will
increase the time required by the partitioning algorithm and impose a quadratic
memory complexity, which in some cases can be the determining factor of the
scalability of these algorithms. Second, if we rely on a network topology model
to infer some of these communication costs, then we introduce a level of approxi-
mation in our models, which their inherent errors may nullify any improvements
that can potentially be achieved by architecture-aware partitionings.

To overcome this problem, we augmented the maximum volume- and applica-
tion elapsed time-based formulations to operate on a sparse representation of the
architecture graph. The idea behind these formulations is to constraint the refine-
ment algorithms of the second phase so that not to create decompositions that
require communication between any additional pairs of processors beyond those
required by the first phase decomposition. By imposing this addition constraint,
then our two-phase algorithm needs to only estimate the communication costs
associated with the pairs of communicating processors of the first phase, and use
those to accurate evaluate the maximum communication volume and application
elapsed time objectives. Since the first-phase decomposition was obtained using

48 I. Moulitsas and G. Karypis

state-of-the-art graph partitioning algorithms, the pairs of processors that need
to communicate is rather small and independent of the number of processors in
the system. On the average, each subdomain will need to communication with
a constant number of other subdomains. This greatly reduces the memory and
time complexity associated with constructing the architectural graph, and leads
to scalable architecture-aware partitioning algorithms.

In summary, using the above predictor-corrector framework, we developed four
different architecture-aware partitioning algorithms that differ on the objective
function that they use (maximum communication volume or application elapsed
time) and whether or not they use a dense or a sparse architectural graph. We
will refer to these algorithms using the names VolNS (maximum volume, non-
sparse), VolS (maximum volume, sparse), ElTNS (elapsed time, non-sparse), and
ElTS (elapsed time, sparse).

5 Experimental Results

We evaluated the performance of our algorithms using a wide variety of graphs
and architecture topologies. The characteristics of the computation graphs are
presented in Table 1. The size of these graphs ranged from 14K to 1.1M vertices.

The architecture graphs we used are presented in Figure 2. Figure 2(a) presents
a one dimensional array. Figure 2(b) is a two dimensional array. Figure 2(c)
presents an 8–node, 32–processor cluster. Each node has four tightly connected
processors, and a fast interconnection network among its 4 processors. Communi-
cation between different nodes is slower Finally, Figure 2(d) shows a typical grid
architecture. The top and bottom part may each be physically located in the same
geographical location and each is a metacomputer. The intra-communication
across the two parts is slower than the inter-communication locally for each one.

5.1 Quality of the Results

We compared the characteristics of the partitionings produced by the four algo-
rithms described in Section 4 by looking at four performance metrics: maximum
elapsed time (i.e., application elapsed time), sum of elapsed time over all proces-
sors, (total) edgecut, and total communication volume. Due to space constraints,

Table 1. Characteristics of the test data sets

Name # Vertices # Edges Description
1 144 144, 649 1, 074, 393 Graph corresponding to a 3D FEM mesh of a parafoil
2 auto 448, 695 3, 314, 611 Graph corresponding to a 3D FEM mesh of GM’s Saturn
3 brack2 62, 631 366, 559 Graph corresponding to a 3D FEM mesh of a bracket
4 cylinder93 45, 594 1, 786, 725 Graph of a 3D stiffness matrix
5 f16 1, 124, 648 7, 625, 318 Graph corresponding to a 3D FEM mesh of an F16 wing
6 f22 428, 748 3, 055, 361 Graph corresponding to a 3D FEM mesh of an F22 wing
7 finan512 74, 752 261, 120 Graph of a stochastic programming matrix

for financial portofolio optimization
8 inpro1 46, 949 1, 117, 809 Graph corresponding to a 3D stiffness matrix
9 m6n 94, 493 666, 569 Graph corresponding to a 3D FEM mesh of an M6 wing

Architecture Aware Partitioning Algorithms 49

61841 2382420221

(a)

1 2 3 4

5678

9 10 11 12

1415 3161

21222324

17 18 19

25 26 27 28

20

29303132

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

2022

23

24

21

25

26

27

28

29

30

31

32

1

2

3

456

7

8

9

10

11

12 14

15

13

16 17

18

19

20

21

22

23

24

25

26

28

27

29 32

30 31

)d()c()b(

Fig. 2. (a) Arch32 1: 1D Array Processor Graph, (b) Arch32 2: 2D Array Processor
Graph, (c) Arch32 3: Cluster of 8 compute nodes, (d) Arch32 4: Metacomputer.

for each one of the architectures and algorithms, we report the average of these
metrics over the nine graphs. These results are summarized in Figure 3.

From these results we can see that all four proposed algorithms lead to de-
compositions that have a lower application elapsed time than those computed
by kvmetis (Figure 3(a)). This is true for both the maximum volume- and the
application elapsed time-based formulations. These results show that non triv-
ial reductions (10%–25%) in the applications elapsed time can be obtained by
explicitly modeling and optimizing the communication characteristics of the ar-
chitecture and problem. Comparing the two different objective functions, we see
that the one that explicitly minimizes the application elapsed time leads to con-
sistently better results than the one that just tries to minimize the maximum
volume. This is not surprising, as the former is capable of better trading com-
munication and computational costs towards the goal of reducing the maximum
elapsed time. The results comparing the sum of the elapsed times over all pro-
cessors (Figure 3(b)) provide some additional insights on the type of solutions
produced by the two objective functions. In general, the volume-based objec-
tive function achieves lower values than those achieved by its elapsed time-based
counterpart. This suggests that the dramatic improvements at the application
elapsed time (i.e., maximum elapsed time) come at the expense of uniformly
increasing the amount of time spent by all the processors.

Comparing the edgecut and volume of the resulting partitions (Figures 3(c)
and(d)), we see that in general, the architecture-aware algorithms produced de-
compositions that have higher edgecuts than those produced by kvmetis, but
lower communication volumes. This is not surprising, as the refinement algo-
rithms used in the corrector phase, entirely ignore the edgecut and focus either
on the maximum volume or the application elapsed time. These two objective
functions better correlate with the total volume and as the results suggest, in

50 I. Moulitsas and G. Karypis

Max El Time: New .vs. KVMETIS

0

0.2

0.4

0.6

0.8

1

Arch32_1 Arch32_2 Arch32_3 Arch32_4

Vol NS Vol S ElT NS ElT S

Sum El Time: New .vs. KVMETIS

0

0.2

0.4

0.6

0.8

1

Arch32_1 Arch32_2 Arch32_3 Arch32_4

Vol NS Vol S ElT NS ElT S

(a) (b)

Edgecut: New .vs. KVMETIS

0

0.2

0.4

0.6

0.8

1

1.2

Arch32_1 Arch32_2 Arch32_3 Arch32_4

Vol NS Vol S ElT NS ElT S

Volume: New .vs. KVMETIS

0

0.2

0.4

0.6

0.8

1

1.2

Arch32_1 Arch32_2 Arch32_3 Arch32_4

Vol NS Vol S ElT NS ElT S

(c) (d)

Fig. 3. Characteristics of the induced 32-way partitioning for Arch32 1, Arch32 2,
Arch32 3, and Arch32 4

some cases it is at odds with minimizing the edgecut. This is also an indirect
verification of the argument that eventhough the edgecut gives an indication of
the communication volume, it is by no means an accurate measure of it. Indeed,
by looking at Figure 3(c) we would have been misled as to say that our algo-
rithms would have higher communication needs, which is not true as shown in
Figure 3(d).

5.2 Comparison between Sparse and Non-sparse Algorithms

As discussed in Section 4, one of the main contributions of this work is that it
also proposes sparse algorithms that are more scalable compared to the non-
sparse refinement ones. Of course there lies a question regarding how much we
have sacrificed in quality in order to achieve this scalability.

In Figure 4 we compare the sparse volume refinement algorithm with its non-
sparse counterpart, and the sparse elapse time refinement algorithm with the
non-sparse one. We have taken the ratio of the application elapse times of the
sparse algorithms, over the application elapse times of the non-sparse ones. We
have a total of 72 comparisons. We can see that in only 5 of the cases, did the

Architecture Aware Partitioning Algorithms 51

Max El Time Sparse .vs. Non-sparse Arch 32_1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

14
4

au
to

bra
ck

2

cy
lin

de
r93 f16 f22

fin
an

51
2

inp
ro1 m6n

Data Sets

Vol ElT

Max El Time Sparse .vs. Non-sparse Arch 32_2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

14
4

au
to

bra
ck

2

cy
lin

de
r93 f16 f22

fin
an

51
2

inp
ro1 m6n

Data Sets

Vol ElT

(a) (b)

Max El Time Sparse .vs. Non-sparse Arch 32_3

0

0.2

0.4

0.6

0.8

1

1.2

14
4

au
to

bra
ck

2

cy
lin

de
r93 f16 f22

fin
an

51
2

inp
ro1 m6n

Data Sets

Vol ElT

Max El Time Sparse .vs. Non-sparse Arch 32_4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

14
4

au
to

bra
ck

2

cy
lin

de
r93 f16 f22

fin
an

51
2

inp
ro1 m6n

Data Sets

Vol ElT

(c) (d)

Fig. 4. Comparison of the sparse and non sparse approaches

sparse scalable algorithms produce worse results. In the remaining 67 cases, the
qualities were comparable, and therefore we did not see any degradation.

6 Conclusions

The field of heterogeneous graph partitioning is a very new field and there is a
lot of room for improvement. However the approaches described above represent
a scalable solution that merits further investigation and development. We were
able to produce partitions of high quality that can correctly model architecture
characteristics and address the requirements of upcoming technologies.

References

1. Barnard, S.T.: Pmrsb: Parallel multilevel recursive spectral bisection. In: Super-
computing 1995 (1995)

2. Barnard, S.T., Simon, H.: A parallel implementation of multilevel recursive spectral
bisection for application to adaptive unstructured meshes. In: Proceedings of the
seventh SIAM conference on Parallel Processing for Scientific Computing, pp. 627–
632 (1995)

52 I. Moulitsas and G. Karypis

3. Bui, T., Jones, C.: A heuristic for reducing fill in sparse matrix factorization. In:
6th SIAM Conf. Parallel Processing for Scientific Computing, pp. 445–452 (1993)

4. Chapin, S.J., Katramatos, D., Karpovich, J., Grimshaw, A.S.: The Legion resource
management system. In: Feitelson, D.G., Rudolph, L. (eds.) Job Scheduling Strate-
gies for Parallel Processing, pp. 162–178. Springer, Heidelberg (1999)

5. Diniz, P., Plimpton, S., Hendrickson, B., Leland, R.: Parallel algorithms for dy-
namically partitioning unstructured grids. In: Proceedings of the seventh SIAM
conference on Parallel Processing for Scientific Computing, pp. 615–620 (1995)

6. Faik, J., Gervasio, L.G., Flaherty, J.E., Chang, J., Teresco, J.D., Boman, E.G.,
Devine, K.D.: A model for resource-aware load balancing on heterogeneous clusters.
Technical Report CS-03-03, Williams College Department of Computer Science
(2003), Submitted to HCW, IPDPS 2004

7. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network
partitions. In: Proc. 19th IEEE Design Automation Conference, pp. 175–181 (1982)

8. Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230 (1994)

9. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting 11(2), 115–128 (1997)

10. Gilbert, J.R., Miller, G.L., Teng, S.-H.: Geometric mesh partitioning: Implemen-
tation and experiments. In: Proceedings of International Parallel Processing Sym-
posium (1995)

11. Goehring, T., Saad, Y.: Heuristic algorithms for automatic graph partitioning.
Technical report, Department of Computer Science, University of Minnesota, Min-
neapolis (1994)

12. Heath, M.T., Raghavan, P.: A Cartesian parallel nested dissection algorithm. SIAM
Journal of Matrix Analysis and Applications 16(1), 235–253 (1995)

13. Hendrickson, B.: Graph partitioning and parallel solvers: Has the emperor no
clothes (extended abstract). In: Workshop on Parallel Algorithms for Irregularly
Structured Problems, pp. 218–225 (1998)

14. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for
mapping parallel computations. Technical Report SAND92-1460, Sandia National
Laboratories (1992)

15. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. Tech-
nical Report SAND93-1301, Sandia National Laboratories (1993)

16. Huang, S., Aubanel, E.E., Bhavsar, V.C.: Mesh partitioners for computational
grids: A comparison. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P.
(eds.) ICCSA 2003. LNCS, vol. 2669, pp. 60–68. Springer, Heidelberg (2003)

17. Karypis, G., Kumar, V.: METIS 4.0: Unstructured graph partitioning and sparse
matrix ordering system. Technical report, Department of Computer Science, Uni-
versity of Minnesota (1998), http://www.cs.umn.edu/∼metis

18. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing 48(1), 96–129 (1998),
http://www.cs.umn.edu/∼karypis

19. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20(1) (1999); A short
version appears In: Intl. Conf. on Parallel Processing 1995,
http://www.cs.umn.edu/∼karypis

20. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance
scientific simulations. In: Dongarra, J., et al. (eds.) CRPC Parallel Computing
Handbook, Morgan Kaufmann, San Francisco (2000)

http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~karypis
http://www.cs.umn.edu/~karypis

Architecture Aware Partitioning Algorithms 53

21. Kumar, R.B.S., Das, S.K.: Graph partitioning for parallel applications in hetero-
geneous grid environments. In: Proceedings of the 2002 International Parallel and
Distributed Processing Symposium (2002)

22. Walshaw, C., Cross, M.: Multilevel Mesh Partitioning for Heterogeneous Commu-
nication Networks. Future Generation Comput. Syst. 17(5), 601–623 (2001) (orig-
inally published as Univ. Greenwich Tech. Rep. 00/IM/57)

23. Walshaw, C., Cross, M.: Parallel optimisation algorithms for multilevel mesh par-
titioning. Parallel Computing 26(12), 1635–1660 (2000)

24. Wanschoor, R., Aubanel, E.: Partitioning and mapping of mesh-based applications
onto computational grids. In: GRID 2004: Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing (GRID 2004), Washington, DC, USA,
pp. 156–162. IEEE Computer Society, Los Alamitos (2004)

	Introduction
	Problem Modeling
	Computational Graph Modeling
	Architecture Graph Modeling

	Metrics Definition
	Framework for Architecture-Aware Partitioning
	Experimental Results
	Quality of the Results
	Comparison between Sparse and Non-sparse Algorithms

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

