
Genome alignments using MPI-LAGAN

Ruinan Zhang
Computer Science

University of Minnesota
Minneapolis, MN 55414

rzhang@cs.umn.edu

Huzefa Rangwala
Computer Science

George Mason University
Fairfax, VA 22030

rangwala@cs.gmu.edu

George Karypis
Computer Science

University of Minnesota
Minneapolis, MN 55414

karypis@cs.umn.edu

Abstract

We develop a parallel algorithm for a widely used whole genome
alignment method called LAGAN. We use the MPI-based protocol
to develop parallel solutions for two phases of the algorithm which
take up a significant portion of the total runtime, and also have a
high memory requirement. The serial LAGAN program uses CHAOS
to quickly determine initial anchor or seeds, which are extended us-
ing a sparse dynamic programming based longest-increasing sub-
sequence method. Our work involves parallelizing the CHAOS and
LIS phases of the algorithm using a one-dimensional block cyclic
partitioning of the computation. This leads to development of an
efficient algorithm that utilizes the processors in a balanced way.
We also ensure minimum time spent in communication or transfer of
information across processors.

We also report experimental evaluation of our parallel imple-
mentation using pairs of human contigs of varying lengths. We dis-
cuss and illustrate the challenges faced in parallelizing a sparse dy-
namic programming formulation as in this work, and show equiva-
lent to theoretical speedups for our parallelized phases of the LA-
GAN algorithm.

1 Introduction
Alignment algorithms play a crucial rule in analyzing whole
genomes, identifying similar and conserved regions between
pairs of genomes, leading to annotation of genomes with site-
specific properties and functions.

Over the years several genome alignment algorithms like
BLAT [4], MUMMER [5], and LAGAN [2] have been devel-
oped. These algorithms quickly and accurately align genome
pairs by fast extraction of short exact or inexact matches using
different indexing techniques.

In this work we parallelize the anchor-based LAGAN [2]
to align large genomic sequences using a large number of
processors available on supercomputers and clusters. The
serial LAGAN program uses CHAOS [1] to quickly deter-
mine the initial anchor points which are extended using a
sparse dynamic programming based longest-increasing sub-
sequence method (LIS). Our work involves parallelizing the
CHAOS step by dividing the workload row-wise across pro-
cessors, and using a block cyclic partition based technique
for implementing the parallel LIS algorithm. The parallel im-
plementation is done using the MPI protocol, and the parallel
implementation will be referred to as MPI-LAGAN.

We perform a set of empirical studies to evaluate the
speedup and computational efficiency of our parallel imple-

mentation. Our parallel CHAOS implementation produces
slightly different anchor points without loss in accuracy of
the final global alignment, with an improved runtime and ef-
ficient use of memory. The parallel implementation allows us
to achieve theoretical speedup, with good load balancing and
processor utilization. 1

2 Serial LAGAN Algorithm
LAGAN [2] is an anchor-based pairwise global alignment al-
gorithm, and can be described using three steps: (i) the se-
quence pairs are analyzed to identify an initial set of high-
quality local alignment that will restrict the search space for
the final global alignment, (ii) LAGAN determines maximal-
scoring ordered subsets of local alignment subsets (called an-
chors), and generates a rough global map of the alignment,
and (iii) a dynamic-programming based algorithm is used to
determine the optimal global alignment within a limited area
of the global map. For pairs of successive anchors that are
apart by a certain distance threshold, the first two steps are ap-
plied recursively to determine the rough global map between
the subsequences, connecting the successive anchors.

3 Parallel LAGAN Algorithm
Even though the serial LAGAN algorithm is very efficient, it
still requires a significant amount of time while aligning long
genomic sequences. Table 1 shows the amount of time re-
quired by the various stages of LAGAN for aligning pairs of
sequences of length 1.5, 3, and 6 million base-pairs (Mbp).
In Table 1, we report the time required by CHAOS to find
the anchor points, the time required by the sparse LIS algo-
rithm to construct the rough global alignment, the time taken
by all recursive calls to fill in the large gaps in the alignments
(REC), and the time taken by the final global alignment re-
striction using the limited area dynamic programming (DP),
around the rough global alignment, along with the memory
required.

We see that the CHAOS phase of the algorithm takes the
most amount of time followed by the dynamic-programming
based global alignment. The time required by CHAOS grows
at a faster rate than the length of the sequences. Moreover,
LAGAN’s overall memory requirements also increases sub-

1A more detailed version of this paper is available at http:
//www.cs.umn.edu/research/technical_reports.php?
page=report&report_id=08-019

1

Table 1: Runtime and memory requirements of the serial
LAGAN algorithm.

Sequence CHAOS LIS REC DP Memory
1.5Mbp 49s 0.44s 4.63s 26s 242MB
3.0Mbp 175s 1.70s 11.38s 52s 504MB
6.0Mbp 853s 9.00s 33.00s 101s 1.05GB

The sequence pairs generated were contigs from human DNA se-
quencing project. These runs were computed on an Intel Pentium
3.0 GHz 64-bit dual core processor with 2GB memory.

stantially. Within the LAGAN algorithm the memory com-
plexity is determined by the CHAOS algorithm and corre-
sponds to the number of high quality anchors generated and
the memory required for the T-trie data structure. The runtime
of the LIS algorithm is dependent on the number of anchors
generated and provides interesting challenges for developing
a parallel algorithm. The remaining stages (recursive anchor-
ing and final global alignment) have lower memory require-
ments as they do not need to maintain all the high-quality lo-
cal alignments discovered by CHAOS, and have straight for-
ward parallel implementations [3].

3.1 Parallel CHAOS

Given a pair of sequences X and Y , our parallel CHAOS
formulation decomposes the work among the p processors in
one dimensional fashion. Specifically, sequence X is split
into p equal length segments (X0, . . . , Xp−1) with segment
Xi assigned to processor Pi, and sequence Y is distributed
to each processor. Each processor Pi then identifies the an-
chor points between sequence Y and subsequence Xi. Each
processor builds the T-trie data structure for sequence Y , and
finds the seeds using the walking procedure for subsequence
Xi.

This implementation leads to a row-wise decomposition
of the seed matrix identification between sequences X (along
the rows) and Y (along the columns), and as such decomposes
the work only along one of the dimensions. This decomposi-
tion is done to align with our one-dimensional decomposition
used for the parallel LIS algorithm, described in Section 3.2
and also shown in Figure 1.

This parallel formulation of CHAOS does not perform any
inter-processor communication during seed identification and
extension steps. As a result, the final set of anchors that it
finds may be somewhat different from those found by the se-
rial CHAOS algorithm. The CHAOS algorithm is a heuristic
to quickly filter and reduce the search space. Even if some of
the boundary anchors (across processors) are missed by our
parallel implementation, we find these differences to be very
small. As such, in our empirical evaluation we find that the
final alignments produced by the parallel and serial LAGAN
implementation are identical.

The differences in the generated anchors between the se-
rial and parallel CHAOS versions are due to the following two
reasons. Firstly, during seed discovery, each processor Pi at-
tempts to find seeds using words or subsequences of length
k. Hence, the algorithm does not find seeds involving the last
k−1 positions of its segment of Yi and sequence X . Since the

length of each segment Yi is very large, usually greater than
100Kbp, whereas k is less than or equal to 10, the number of
potential seeds that are ignored is extremely small. Secondly,
our algorithm does not extend the anchors beyond processor
boundaries. In most cases, this will not result in the loss of
any anchors, as the anchors will be split among the two pro-
cessors and each processor will discover a segment of it. The
split anchor will then be combined in the next step of the algo-
rithm. The only times in which some alignment information
will be lost is when the portion of the anchor that is on one
processor is very small, and hence gets filtered out.

Note, as part of our research we also implement a paral-
lel version of CHAOS that faithfully parallelizes the serial
version of the CHAOS algorithm. However, due to its high
communication cost we decided to use the above no commu-
nication model.

We also use a block cyclic one-dimensional decomposi-
tion. This is primarily done to align the computation with the
parallel LIS algorithm (discussed in Section 3.2). This avoids
any transfer time associated with the redistribution of the an-
chors generated by CHAOS to processors involved in the LIS
phase of LAGAN. However, if the partition sizes controlled
by the number of block cycles and processors is set too small,
then the differences in the anchors generated between the se-
rial and parallel CHAOS may lead to significant changes in
the final resulting alignment. In our experimental evaluation,
we do not see this to be a problem because the lengths of se-
quences and subsequences within each partition are greater
than the size of the seed (k) by a fair margin.

3.1.1 Alternate Considerations We also considered
alternate approaches to the parallel implementation of
CHAOS discussed above. We could have potentially decom-
posed the seed matrix using a two-dimensional decomposi-
tion. In this case, the processors will be arranged in a

√
p×√p

two-dimensional grid, both X and Y will be split into
√

p seg-
ments, and each processor Pi,j will be responsible for finding
the seeds involving the pair of segments Xi and Yj . However,
CHAOS uses a normalization step that requires information
from all seeds in sequence Y for a particular position of se-
quence X , and can easily be found using the row-wise de-
composition. Removing this restriction would have required
a substantial re-engineering of CHAOS’s heuristics that we
decided not to pursue for the current work.

3.2 Parallel LIS

We developed a block cyclic one-dimensional partition based
parallel formulation [3] for solving the serial sparse LIS prob-
lem.

There exists an ordered dependency in the serial LIS algo-
rithm that limits the concurrency that can be achieved by the
parallel LIS algorithm. We partition the computation along
sequence X into pb rows. In this setting each processor Pi

is responsible for computing entries for all rows pq + i for
q = 0 . . . b − 1, where p and b denote the number of proces-
sors and cycles, respectively. The cyclic distribution elimi-
nates idling time of processors, and ensures that most of the

2

processors are active throughout the execution of the algo-
rithm. Such an approach leads to better load balancing and
good utilization of the processors.

All the processors or row blocks contain the anchors gen-
erated across the entire length of the sequence X and subse-
quence from Y . These anchors are generated by the paral-
lel CHAOS in the same row partition. The parallel CHAOS
explained above is also run in a block cyclic fashion. The
parallel LIS algorithm follows the computation in a diagonal
fashion as shown in Figure 1. For each position i of X , cer-
tain maximal scoring elements may get updated with anchors
having start/end indices equal to Xi as in the serial LIS al-
gorithm. This information after updated is transferred to the
next row block. The problem with pursuing such a parallel
model implies that more time will be spent in communication
or transfer of information rather than computation. This is
because for every position of X or start/end points of anchors
there will be transfer of information.

To ensure that the communication between processors is
done at a coarse-grain fashion, each of the pb rows of the
matrix are conceptually partitioned into pb blocks as well.
The overall computation is performed into 2pb− 1 steps, one
for each diagonal of the pb × pb block-matrix, and commu-
nication between the processors occurs once each processor
has finished processing all the blocks of the current diagonal.
This leads to a theoretical speedup of (pb × pb)/(2pb − 1).
The overall decomposition and computational flow is illus-
trated in Figure 1 for p = 4 and b = 2.

The chaining algorithm for the parallel LIS algorithm re-
mains the same as the serial LIS algorithm. Each computation
block updates the maximal scoring lists stored in the current
processor, transfers information about anchors that could be
potentially chained to anchors present in the next processor.
The information transfer is from top to bottom. The chaining
conditions for each processor remains the same as the serial
LIS algorithm, where the start and end points of each anchors
are checked before carrying out the update operations. Infor-
mation about high scoring chains/anchors provided by pre-
ceding processor blocks allows the current processor block
to extend chains across processor blocks. The final maxi-
mal scoring chain, and the maximal score is computed by the
last processor block. Since, the parallel CHAOS follows the
same row-wise (even block cyclic) decomposition as the par-
allel LIS algorithm no redistribution of anchors generated by
CHAOS is needed.

3.3 Recursive Chaining and Anchoring

To compute the overall global alignment and find anchors and
local alignments between the long gapped regions, we per-
form this step locally across each of the processors. Each
processor locally determines new anchors within its segment
to fill in the local gaps. The local alignments generated from
these gaps by CHAOS are put together with the anchors from
the previous step. Then a process of chaining the anchors
across all the processors takes place to output the final rough
global map. This process takes advantage of the fact that the
starts of the local alignments generated within gaps must be

Y sequence

0P

0P

1P

2P

3P

1P

2P

3P

Information
Transferred

mputational Flow

X
 sequence

Figure 1: The cyclic decomposition and computational flow
used by the parallel LIS algorithm.

greater than the end of the previous anchor present within an-
other block. Hence the processor does not need to update
previously generated anchors. The algorithm simply runs the
serial chaining consecutively on the processor, passing infor-
mation of the last anchor over to the next processor for chain-
ing.

4 Results and Discussion
The performance of LAGAN is analyzed in terms of speedup
and efficiency for different problem sizes (length of sequence
pairs), number of processors, and number of blocks or cy-
cles in cases of block-cyclic decomposition. We downloaded
two contigs from human DNA sequencing project website for
testing the program. Their sizes are 12.5Mbp and 13Mbp.
We generated shorter length sequences for testing, by truncat-
ing the sequences at lengths of 6Mbp, 3Mbp, and 1.5Mbp.

All the empirical evaluations were performed on the IBM
Bladecenter Linux Cluster at the Minnesota Supercomputing
Institute, University of Minnesota. Each node of the cluster
was a dual core 2.6GHz AMD Opteron processor with 2 GB
of memory per processor.

4.1 Parallel CHAOS Performance

When the sequence size is doubled, the search space for the
CHAOS algorithm increases four-fold and hence the run time
for the CHAOS part on a single processor shows an approxi-
mate four fold increase.

Figure 2 shows the speedup for the CHAOS algorithm.
We also plot the linear speedup line as reference. Using se-
quences of sizes 1.5Mbp each, we achieve speedups of 1.36,
2.3, 3.5, and 4.9 for 2, 4, 8, and 16 processors, respectively.
For the 12Mbp sequences we achieve super linear speedup as
seen in the Figure 2. The algorithm does not achieve linear
speedups for the small sequences because of load imbalance
and uneven distribution of work.

4.2 Parallel LIS Performance

Figure 3 presents the speedup achieved for the parallel LIS
algorithm. When the number of cycles b are set to be one, we

3

 0

 5

 10

 15

 20

 0 5 10 15 20

S
pe

ed
up

Number of Processors

Linear Speedup
1.5M

3M
6M

12M

Figure 2: Speedup for Parallel CHAOS.

achieve a theoretical speedup of p2/(2p−1). This theoretical
speedup is achieved provided the data is evenly distributed
and all processors perform equal amount of work. However,
in the experimental setting due to different anchors being han-
dled by different processors, we cannot expect perfect load
balancing. As the sequence size becomes larger the speedup
approaches the theoretical speedup. This is largely because
of increasing number of anchors and better load distribution
for each processor.

4.2.1 Block-Cyclic Decomposition To test the effec-
tiveness of the block cyclic approach for the parallel LIS
method we use the 1.5Mbp sized sequence pairs, but lower
the threshold criterion for selection of seeds and anchors in
the CHAOS algorithm to 15 rather than 20. This generates
a larger number of anchors (4041358) to be chained by the
LIS method. The run-time of the serial LIS program for this
dataset is 7.23 seconds. Table 2 shows the speedups for vary-
ing number of processors and cycles for sequence pairs of
sizes 1.5Mbp and 6.0Mbp, respectively.

Parallel LIS algorithm allows the distribution of the local
alignments among various processors with a limited amount
of data transfer in between processors. We observe from Ta-
ble 2 that the best speedups are obtained using two block cy-
cles, and is dependent on the problem size. Increasing the
number of cycles leads to an increase in the overall LIS run-
time, due to increasing transfer times between the different
processors at each step. Also, increasing the number of block
cycles will cause the CHAOS algorithm to generate vastly
different anchors.

Table 2: Parallel LIS Speedup with varying
number of processors and cycles.

1.5 Mbp 6.0 Mbp
p/b 1 2 3 4 1 2 3 4
2 1.06 1.13 1.15 1.00 1.11 1.32 1.28 1.14
4 1.31 1.54 1.23 1.08 1.53 1.65 1.21 1.19
8 1.57 1.61 1.36 1.13 1.73 1.53 1.07 1.11
16 1.68 1.76 1.42 1.00 1.85 1.93 1.10 1.10

These speedup results are computed for the 1.5Mbp
and 6.0Mbp sequences having 4041358 and 8988688
anchors generated by CHAOS using the parameters
{k, c, F, EF} = {12, 0, 15, 0}, respectively.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processors

Theoretical
1.5M

3M
6M

12M

Figure 3: Speedup for Parallel LIS.

5 Conclusions and Directions of Future
Work

The MPI-LAGAN algorithm presented here has shown to
be effective in reducing the run-times for both the CHAOS
and LIS phases of the algorithm. The block-cyclic row-wise
decomposition implemented in MPI-LAGAN reduced com-
munication times and balanced loads between processors for
achieving theoretical speedups. Though, our CHAOS algo-
rithm generated slightly different anchors compared to the
serial CHAOS algorithm, the final alignment generated was
exactly the same as produced by the original LAGAN pro-
gram. This was evaluated by matching the final alignment as
well as the alignment scores of the original serial LAGAN
and MPI-LAGAN.

Acknowledgements
This work was supported by IBM grant from IBM Life Sciences, Rochester,
NSF EIA-9986042, ACI-0133464, IIS-0431135, NIH RLM008713A, the
Digital Technology Center and the Minnesota Supercomputing Institute at
the University of Minnesota.

References
[1] Michael Brudno, Michael Chapman, Berthold Gottgens, Serafim Bat-

zogluo, and Burkhard Morgenstern. Fast and sensitive multiple align-
ment of large genomic sequences. BMC Bioinformatics, 4(66), 2003.

[2] Michael Brudno, Chuong B. Do, Gregory M. Cooper, Michael F. Kim,
Eugene Davydov, NISC Comparative Sequencing Program, Eric D.
Green, Arend Sidow, and Serafim Batzoglou. Lagan and multi-
lagan: Efficient tools for large-scale multiple alignment of genomic dna.
Genome Research, 13:721–731, 2003.

[3] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. In-
troduction to Parallel Computing: Design and Analysis of Algorithms,
2nd Edition. Adison Wesley Publishing Company, Redwood City, CA,
2003.

[4] J. Kent. Blat–the blast-like alignment tool. Genome Research,
12(4):656–664, 2002.

[5] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. An-
tonescu, and S. L. Salzberg. Versatile and open software for comparing
large genomes. Genome Biology, 5(R12), 2004.

4

