
A short version of this paper appears in ICPP'99

Multi-Capacity Bin Packing Algorithms

with Applications to

Job Scheduling under Multiple Constraints �

William Leinberger, George Karypis, Vipin Kumar
Department of Computer Science and Engineering, University of Minnesota

(leinberg, karypis, kumar) @ cs.umn.edu

TR 99-024: Draft May 27, 1999

Abstract

In past massively parallel processing systems, such as the TMC CM-5 and the CRI
T3E, the scheduling problem consisted of allocating a single type of resource among the
waiting jobs; the processing node. A job was allocated the minimum number of nodes
required to meet its largest resource requirement (e.g. memory, CPUs, I/O channels,
etc.). Single capacity bin-packing algorithms were applied to solve this problem. Recent
systems, such as the SUN E10000 and SGI O2K, are made up of pools of independently
allocatable hardware and software resources such as shared memory, large disk farms,
distinct I/O channels, and software licenses. In order to make e�cient use of all the
available system resources, the scheduling algorithm must be able to maintain a job
working set which fully utilizes all resources. At the core of this scheduling problem is a
d-capacity bin-packing problem where each system resource is represented by a capacity
in the bin and the requirements of each waiting job are represented by the d capacities of
an item in the input list. Previous work in d-capacity bin-packing algorithms analyzed
extensions of single capacity bin-packing. These extended algorithms are oblivious to
the additional capacities, however, and do not scale well with increasing d. We provide
new packing algorithms which use the additional capacity information to provide better
packing and show how these algorithms might lead to better multi-resource allocation
and scheduling solutions.

Keywords: multiple capacities, bin packing, multiple constraints, job scheduling

�This work was supported by NASA NCC2-5268, by NSF CCR-9423082, by Army Research O�ce contract
DA/DAAG55-98-1-0441, and by Army High Performance Computing Research Center cooperative agreement
number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily
reect the position or the policy of the government, and no o�cial endorsement should be inferred. Access
to computing facilities was provided by AHPCRC, Minnesota Supercomputer Institute. Related papers are
available via WWW at URL: http://www.cs.umn.edu/~karypis

1

1 Introduction

New parallel computing systems, such as the SUN Microsystems E10000, the SRC-6, and
the SGI Origin 2000, provide a pool of homogeneous processors, a large shared memory,
customizable I/O connectivity, and expandable primary and secondary disk storage support.
Each resource in these system architectures may be scaled independently based on cost and
user need. A site which typically runs CPU intensive jobs may opt for a con�guration which
is fully populated with CPUs but has a reduced memory to keep the overall system cost
low. Alternatively, if the expected job mix contains a large percentage of I/O and memory
intensive jobs, a large memory con�guration may be purchased with high I/O connectivity
to network or storage devices. Finally, a mixed job set may be best serviced by a balanced
system con�guration. Therefore, given an expected job mix, a "shared-everything" parallel
system can be con�gured with the minimal set of resources needed to achieve the desired
performance. The question, then, is how to schedule jobs from the actual job stream onto a
given machine to achieve the expected performance.

In classical job management systems (JMS), a job was submitted along with a set of
resource requirements which specify the number of CPUs, amount of memory, disk space,
etc., and the expected time to complete. The target systems were primarily distributed
memory parallel processors with a single system resource - a processing node consisting
of a CPU, memory, and a network connection to I/O devices. Although job allocation
research literature is �lled with exotic methods of allocating resources to a job stream [9],
simple allocation schemes such as First-Come-First-Serve (FCFS) or FCFS with Back�ll
(FCFS/BF) were used in practice, providing acceptable levels of performance [8]. These job
allocation schemes were limited in part due to the all-or-nothing hardware partitioning of
the distributed systems. For example, a memory intensive job must be allocated enough
nodes to meet the jobs memory requirements, but may not need all the CPUs which were
co-allocated by default. The excess CPUs are not available to other waiting jobs and are
essentially wasted. This situation is worse in newer systems where resources may be allocated
to a job independently from each other. The greedy FCFS-based job allocation schemes
cannot take full advantage of this additional exibility.

Consider extending the FCFS-based schemes to account for multiple resources in a par-
ticular physical system con�guration. The pure FCFS job allocation scheme would pack
jobs from the job queue into the system, in order of their arrival, until some system resource
(CPUs, memory, disk space, etc.,) was exhausted. The weak point of FCFS is that the next
job in the queue may require more resources than those left available in the system. In
this case, the job allocation scheme is blocked from scheduling further jobs until su�cient
resources become available for this large job. This results potentially in large fragments of
resources being under-utilized. The FCFS with back�ll probabilistically performs better by
skipping over jobs which require a large percentage of a single resource and �nding smaller
jobs which can make use of the remaining resources. Still, a single resource becomes ex-
hausted while others remain under-utilized. The FCFS-based algorithms are restricted in
selecting jobs based on their general arrival order.

2

(a)

(b)

1
0

2

Scheduling

0, 1
Epoch

3, 4
2

12/32
01/105

12/06

0

FCFS
Jobs

0,1,4,5

3

Jobs P/M

07/16
11/20

FCFS/BF
P/M

0, 2, 4
1, 3, 5 16/32

16/32
P/M

UNC
Jobs

Job

5
4
3
2

3

1

Scheme

07/16

Job

2

16x16 Crossbar

P15P0

Shared Memory
32 GBytes

SystemParallelJob Queue

16
2
4

20
12
10

Req.
MemCPU

Req.
8
4
7

11
1
1

14/28

Allocation

Figure 1: Job Allocation Scheme Comparison

In order for a job allocation scheme to e�ciently utilize the independently allocatable
resources of a parallel processor, it must be free to select any job based on matching all of
the jobs' resource requirements with the available system resources. As an example, consider
the JMS state depicted in �gure 1 (a). The job allocation scheme must map the six jobs
in the job queue to a two-resource system with 16 CPUs and 32 GBytes of memory. The
CPU and memory requirements of each job are speci�ed. Assume that the order in the
job queue represents the order of arrival and that each job requires the same amount of
execution time t. Under these assumptions, a job allocation scheme would select a set of
jobs for execution during scheduling epoch ei. The number of epochs required to schedule all
jobs in the job queue is used to compare di�erent job allocation schemes. Figure 1 (b) shows
the jobs allocated to each scheduling epoch for FCFS, FCFS/BF, and an unconstrained job
allocation scheme (UNC). The UNC scheme is free to select any job in the job queue for
allocation during the current epoch. Although this is a contrived example, it illustrates
the basic aws of FCFS-based job allocation schemes and the potential of less restrictive job
allocation schemes. The FCFS allocation scheme allocates jobs 0 and 1 in the �rst scheduling
epoch but then cannot allocate job 2, due to the total CPU requirement of the three jobs
being greater than the system provides (8 + 4 + 7 > 16). FCFS/BF overcomes this aw by

3

skipping job 2 and scheduling jobs 4 and 5 in the �rst epoch. However, it then must schedule
jobs 2 and 3 in separate epochs as there are no other jobs available to back�ll in each of
these epochs. Finally, the optimal UNC algorithm was smart enough to not schedule jobs 0
and 1 in the same epoch. Instead it �nds two job subsets which exactly match the machine
con�guration. As a result, the unrestricted job allocation scheme requires fewer scheduling
epochs to complete all jobs.

The UNC allocation scheme tries to select a subset of jobs whose total resource require-
ments match the physical con�guration of the target parallel system. This can be generalized
to solving a multi-capacity bin-packing problem. The parallel system is represented by a bin
with d capacities corresponding the multiple resources available in the system. The job
wait queue is represented by an item list where each item is described by a d-capacity re-
quirements vector. A scheduling epoch consists of packing jobs from the job queue into
the currently available resources in the parallel system. The information available in the
additional capacity requirements for each job is used to guide the scheduling process.

Our contribution is to provide multi-capacity aware bin-packing algorithms which make
use of the information in the additional capacities to guide item selection in the packing
process. Past research in multi-capacity bin-packing has focused on extending the single
capacity bin-packing to deal with the multiple capacities, and on providing performance
bounds on these simple algorithms. In general, these naive algorithms did not use the
additional capacity information to guide them so do not scale well with increasing capacity
counts. Our simulation results show that the multi-capacity aware algorithms provide a
consistent performance improvement over the previous naive algorithms. Further simulation
results shows that the multi-capacity aware algorithms can produce a better packing from
a small input list, which supports its use in online job scheduling. The complete bridge
between bin-packing and job scheduling under multiple constraints is the subject of our
current work in progress.

The remainder of this document is outlined below. Section 2 provides a summary of
past research in multi-capacity bin-packing algorithms and discusses some of the limitations
of these algorithms. Our new multi-capacity aware bin-packing algorithms are presented in
Section 3, with experimental results and conclusions provided in Section 4.

2 Related Research

A variety of past research has dealt with single and d-capacity bin-packing problem formu-
lations and their connection to the generalized scheduling problem [1], [2], [3], [5]. A brief
summary of this work is provided below. In general, the d-capacity bin-packing algorithms
are extensions of the single capacity bin-packing algorithms. However, they do not take
advantage of the information in the additional capacities, and therefore do not scale well
with increasing d.

The classical single capacity bin-packing problem may be stated as follows. We are given

4

a positive bin capacity C and a set (or list) of scalar items L = fx1; x2; : : : ; xi; : : : ; xng with
each item xi having an size s(xi) satisfying 0 � s(xi) � C. What is the smallest m such
that there is a partition L = B1

S
B2

S
: : :
S
Bm satisfying

P
xi2Bj

s(xi) � C; 1 � j � m? Bi

is interpreted as the contents of a bin of capacity C and the goal is to pack the items of L
into as few bins as possible.

The single capacity bin-packing problem formulation has been generalized to support
d-capacities as follows [10], [7]. The capacity of a container is represented by a d-capacity

vector, ~C = (C1; C2; : : : ; Cj; : : : ; Cd), where Cj; 0 � Cj, represents the kth component ca-

pacity. An item is also represented by a d-capacity vector, ~Xi = (Xi1; Xi2; : : : ; Xij; : : : ; Xid),
where Xij; 0 � Xij � Cj, denotes the jth component requirement of the ith item. Trivially,
Pd

j=1Cj > 0 and
Pd

j=1Xij > 0 8 1 � i < n. An item ~Xi can be packed (or �t) into a bin
~Bk, if ~Bk + ~Xi � ~C, or Bkj +Xij � Cj 8 1 � j � d. The items are obtained from an initial
list L, and the total number of items to be packed is denoted by n. Again, the goal is to
partition the list L into as few bins ~Bk as possible.

The approach to solving the d-capacity bin-packing problem has mainly been to extend
the single capacity bin-packing algorithms to deal with the d-capacity items and bins. The
Next-Fit (NF) algorithm takes the next d-capacity item ~Xi and attempts to place it in the

current bin ~Bk. If it does not �t (ie, if Xij + Bkj > Cj for some j) then a new bin, ~Bk+1,

is started. Note that no bin ~Bl; 1 � l < k is considered as a candidate for item ~Xi. The
First-Fit (FF) algorithm removes this restriction by allowing the next item ~Xi to be placed

into any of the k currently non-empty bins. If ~Xi will not �t into any of the current k
bins, then a new bin ~Bk+1 is created and accepts the item. The Best-Fit adds a further bin
selection heuristic to the First-Fit algorithm. Best-Fit places the next item into the bin in
which it leaves the least empty space. Other variations of these simple algorithms have also
been extended to support the d-capacity formulation.

Orthogonal to the item-to-bin placement rules described above is the method for pre-
processing the item list before packing. For the single capacity bin-packing problem, sorting
the scalar item list in non-increasing order with respect to the item weights generally improves
the performance of the packing. First-Fit Decreasing (FFD) �rst sorts the list L in non-
increasing order and the applies the First-Fit packing algorithm. Next-Fit and Best-Fit may
be extended in a similar manner. The impact of pre-sorting the item list may be thought
of as follows. Consider the First-Fit packing algorithm. When the input list is pre-sorted,
the largest items are placed into the lower-numbered bins. Each successive item considers
each currently de�ned bin in the order of their creation until it �nds a bin into which it will
�t. The result of this process is that the large items placed in the earlier bins are usually
paired with the smaller items placed last. This avoids cases where the many small items
may be wasted by �lling common bins with other small or medium items, leaving no small
items to be paired with the larger items. Sorting in the d-capacity formulation has also been
explored with similar success as in the single capacity case. In the d-capacity formulation,
however, the items are sorted based on a scalar representation of the d components. A
simple extension to the single capacity case is to sort the items based on the sum of their d

5

components (Maximum Sum). Other methods include sorting on the maximum component,
sum of squares of components, product of components, etc.. The goal is to somehow capture
the relative size of each d-capacity item.

The performance bounds for d-capacity bin-packing have also been studied [4]. If A is an
algorithm and A(L) gives the number of bins used by that algorithm on the item list L, then
de�ne RA � A(L)=OPT (L) as the performance ratio of algorithm A, where OPT (L) gives
the optimal number of bins for the given list. It has been shown that RA � d + 1 for any
reasonable algorithm. Reasonable implies that no two bins may be combined into a single
bin. Note that the Next-Fit algorithm is not reasonable whereas the First-Fit and Best-Fit
are reasonable. While this bound may seem a bit dismal, simulation studies have shown
that the simple algorithms described above perform fairly well over a wide range of input.
However, even though these algorithms perform better, on average, than the worst-case
performance bound might suggest, there is still room for improvement.

Consider the First-Fit algorithm. When selecting a bin for placing the next item, First-
Fit essentially ignores the current component weights of the item and the current component
capacities of the bins. Its only criteria for placing an item in a bin is that the item �ts. As a
result, a single capacity in a bin may �ll up much sooner than the other capacities, resulting
in a lower overall utilization. This suggests that an improvement may be made selecting
items to pack into a bin based on the current relative weights or rankings of it d capacities.
For example, if Bkj currently has the lowest available capacity, then search for an item ~Xi

which �ts into ~Bk but which also has Xij as its smallest component weight. This reduces the

pressure on Bkj, which may allow additional items to be added to bin ~Bk. This multi-capacity
aware approach is the basis for the new algorithm designs presented in Section 3.

3 The Windowed Multi-Capacity Aware Bin-Packing

Algorithms

The d-capacity First-Fit(FF) bin-packing algorithm presented in section 2 looks at each item
~Xi in the list L in order and attempts to place the item in any of the currently existing bins
~B1 : : : ~Bk. If the item will not �t in any of the existing bins, a new bin ~Bk+1 is created and
the item is placed there. An alternate algorithm which achieves an identical packing to FF
is as follows. Initially, bin ~B1 is created and the �rst item in the list L, ~X1, is placed into
this bin. Next, the list L is scanned from beginning to end searching for the next element ~Xi

which will �t into bin ~B1. Place each successive ~Xi which �ts into bin ~B1. When no element
is found which will �t, then bin ~B2 is created. Place the �rst of the remaining elements
of L into ~B2. The process is repeated until the list L is empty. The primary di�erence is
that each bin is �lled completely before moving on to the next bin. With respect to job
scheduling, this is analogous to packing jobs into a machine until no more will �t during a

6

single scheduling epoch. At the start of the scheduling epoch, a bin is created in which each
component is initialized to reect the amount of the corresponding machine resource which
is currently available. Jobs are then selected from the job wait queue and packed into the
machine until there are not su�cient quantities of resources to �ll the needs of any of the
remaining jobs.

The list scanning process provides the basic algorithm structure for our new multi-
capacity aware bin-packing algorithms. The key di�erences between the new algorithms and
the FF algorithm is the criteria used to select the next item to be packed into the current bin.
Whereas FF requires only that the item �ts into the current bin, the multi-capacity aware
algorithms will use heuristics to select items which attempt to correct a capacity imbalance
in the current bin. A capacity imbalance is de�ned as the condition Bki < Bkj; 1 � i; j � d in

the current bin ~Bk. Essentially, at least one capacity is fuller than the other capacities. The
general notion is that if the capacities are all kept balanced, then more items will likely �t
into the bin. A simple heuristic algorithm follows from this notion. Consider a bin capacity
vector in which Bkj is the component which is currently �lled to a lower capacity than all
other components. A lowest-capacity aware packing algorithm searches the list L looking
for an item which �ts in bin ~Bk and in which Xij is the largest resource requirement in
~Xi. Adding item ~Xi to bin ~Bk heuristically lessens the capacity imbalance at component
Bkj. The lowest-capacity aware packing algorithm can be generalized to the case where the
algorithm looks at the w; 0 � w � d�1 lowest capacities and searches for an item which has
the same w corresponding largest component requirements. The parameter w is a window
into the current bin state. This is the general windowed multi-capacity bin-packing heuristic.
Similar heuristics have been successfully applied to the multi-constraint graph partitioning
problem [6]. Two variants of this general heuristic applicable to the d-capacity bin-packing
problem are presented below.

Permutation Pack. Permutation Pack (PP) attempts to �nd items in which the largest
w components are exactly ordered with respect to the ordering of the corresponding smallest
elements in the current bin. For example, consider the case where d = 5 and the capacities
of the current bin ~Bk are ordered as follows:

Bk1 � Bk3 � Bk4 � Bk2 � Bk5

The limiting case is when w = d� 1. In this instance, the algorithm would �rst search the
list L for an item in which the components were ranked as follows:

Xi1 � Xi3 � Xi4 � Xi2 � Xi5

which is exactly opposite the current bin state. Adding ~Xi to ~Bk has the e�ect of increasing
the capacity levels of the smaller components (Bk1; Bk3 : : :) more than it increases the capac-
ity levels of the larger components (Bk2; Bk5; : : :). If no items were found with this relative
ranking between their components, then the algorithm searches the list again, relaxing the

7

orderings of the smallest components �rst, and working up to the largest components. For
example, the next two item rankings that would be searched for are:

Xi1 � Xi3 � Xi4 � Xi5 � Xi2

and
Xi1 � Xi3 � Xi2 � Xi4 � Xi5

: : : and �nally,
Xi5 � Xi2 � Xi4 � Xi3 � Xi1

In the limiting case, the input list is essentially partitioned into d! logical sublists. The
algorithm searches each logical sublist in an attempt to �nd an item which �ts into the
current bin. If no item is found in the current logical sublist, then the sublist with the
next best ranking match is searched, and so on, until all lists have been searched. When
all lists are exhausted, a new bin is created and the algorithm repeats. The drawback is
that the search has a time complexity of O(d!). A simple relaxation to this heuristic is to
consider only w of the d components of the bin. In this case, the input list is partitioned
into d!=(d�w)! sublists. Each sublist contains the items with a common permutation of the
largest w elements in the current bin state. Continuing the previous example, if w = 2, then
the �rst list to be searched would contain items which have a ranking of the following form:

Xi1 � Xi3 � Xi4; Xi2; Xi5

The logic behind this relaxation is that the contribution to adjusting the capacity imbalance
is dominated by the highest relative item components and decreases with the smaller com-
ponents. Therefore, ignoring the relative rankings of the smaller components induces a low
penalty. The algorithm time complexity is reduced by O(d� w)!, to approximately O(dw).
The simulation results provided in Section 4 show that substantial performance gains are
achieved for even small values of w � 2, making this a tractable option.

Choose Pack. The Choose Pack (CP) algorithm is a further relaxation of the PP algo-
rithm. CP also attempts to match the w smallest bin capacities with items in which the
corresponding w components are the largest. The key di�erence is that CP does not enforce
an ordering between these w components. As an example, consider the case where w = 2
and the same bin state exists as in the previous example. CP would search for an item in
which

Xi1; Xi3 � Xi4; Xi2; Xi5

but would not enforce any particular ordering between Xi1 and Xi3. This heuristic partitions
the input list into d!=w!(d�w)! logical sublists thus reducing the time complexity by w! over
PP.

An example is provided in Tables 1 and 2 which further illustrates the di�erences between
the FF, PP, and CP algorithms. Table 1 provides an item list for d = 5. Associated with
each item is an item rank which indicates the relative rank of a component with respect

8

to the other components in the same item. Item components are ranked according to the
maximum so the largest component is ranked 0, the second largest is ranked 1, etc.. Table 2
shows the items selected by the FF, PP, and CP algorithms in packing the �rst bin, given
w = 2. All algorithms initially select the �rst item, ~X1. The bin rank is analogous to the
item rank in that it ranks the relative sizes of each component capacity. However, the bin
rank uses a minimum ranking so the smallest component is ranked 0, the next smallest is
ranked 1, and so forth. For each algorithm, Table 2 shows the item selection sequence, the
resultant cumulative bin capacities, and the resultant bin ranking. The bin ranking is used
by the PP and CP algorithms to �lter the input list while searching for the next item. The
FF algorithm ignores the current bin ranking.

After the selection of item ~X1, the FF algorithm searches the list for the next item which
will �t. It �nds that item ~X2 �ts and selects it next. The next item, ~X3 will not �t as the
capacity Bk5 would be exceeded. Therefore, ~X3 is skipped as is ~X4 and ~X5. Item ~X6 �ts
into the bin and completely exhausts Bk1 and Bk5 so the algorithm creates a new bin and
and selects item ~X3 as the �rst item.

The PP algorithm revises the bin rank as each item is selected and uses it to guide
the selection of the next item. After the selection of item ~X1, the bin rank is (0; �; 1; �; �)
indicating that the smallest capacity is Bk1 and the next smallest capacity is Bk3. The �'s
represent don't cares to the PP algorithm (remember that only the w largest component
capacities are of interest. PP then attempts to �nd an item in which the Xi1 is the largest
component and Xi3 is the next largest. This item will have a ranking identical to the current
bin ranking, due to the fact that item ranks are based on the maximum and bin ranks are
based on the minimum components. Therefore, PP skips all items in the input list which
are not ranked the same as the bin ranking for the �rst w components. Item ~X5 matches
the bin ranking and �ts into the bin so it is selected next. After the addition of item ~X5,
the new bin ranking is (�; 0; 1; �; �). Item ~X7 is the �rst item in the list which matches this
ranking and �ts within the space remaining in the bin, so it is selected next. This results in
a bin ranking of (0; �; 1; �; �). Item ~X8 matches this ranking but does not �t in the bin as
it would exceed capacity Bk1. No other item which matches this bin ranking will �t either
so PP searches for items which match the next best bin ranking of (0; �; �; 1; �). Item ~X9

matches this ranking and �ts, so it is selected and results in �lling all capacities in ~Bk except
Bk3, so PP creates a new bin and continues by selecting item ~X2 as the �rst item.

The CP algorithm works much the same way as the PP algorithm except that the w
smallest bin items are all ranked equally. When comparing a bin rank to an item rank, the
w largest item components are all treated equally as well. After the selection of item ~X1, CP
searches for an item in which Xi1 and Xi3. To reiterate, the ordering between Xi1 and Xi3

is not considered. Therefore, CP selects item ~X4 and adds it to the bin. Note that this item
was skipped by PP because it did not have the exact ordering of Xi1 � Xi3. However, since
CP has relaxed this requirement, ~X3 is an acceptable item candidate. Next, CP selects item
~X6 which succeeds in �lling bin capacities Bk1 and Bk3. CP creates a new bin and selects
item ~X2 as the �rst item.

Note that other multi-capacity aware heuristics may be employed which essentially look

9

Table 1: Example Item Input List with Item Rankings; d = 5;

Item# Capacities Item Rank (Max)

Xi1 Xi2 Xi3 Xi4 Xi5 r1 r2 r3 r4 r5

1 0.1 0.3 0.2 0.5 0.4 4 2 3 0 1

2 0.4 0.1 0.1 0.2 0.5 1 3 4 2 0

3 0.1 0.3 0.2 0.1 0.4 3 1 2 4 0

4 0.4 0.1 0.6 0.2 0.3 1 4 0 3 2

5 0.5 0.1 0.3 0.2 0.3 0 4 1 3 2

6 0.5 0.3 0.2 0.1 0.1 0 1 2 3 4

7 0.1 0.5 0.3 0.1 0.2 3 0 1 4 2

8 0.4 0.1 0.2 0.1 0.1 0 2 1 3 4

9 0.3 0.1 0.1 0.2 0.1 0 2 3 1 4

10 0.1 0.2 0.3 0.5 0.4 4 3 2 0 1

10

Table 2: Example Item Selection for FF, PP(w = 2) and CP(w = 2); d = 5;

Algo. Item# Item Capacities Cum. Bin Capacities Bin Rank (Min)

Xi1 Xi2 Xi3 Xi4 Xi5 Bk1 Bk2 Bk3 Bk4 Bk5 r1 r2 r3 r4 r5

FF 1 0.1 0.3 0.2 0.5 0.4 0.1 0.3 0.2 0.5 0.4 0 2 1 4 3

2 0.4 0.1 0.1 0.2 0.5 0.5 0.4 0.3 0.7 0.9 2 1 0 3 4

6 0.5 0.3 0.2 0.1 0.1 1.0 0.7 0.5 0.8 1.0 3 1 0 2 4

Total Bin Weight = 4.00

PP 1 0.1 0.3 0.2 0.5 0.4 0.1 0.3 0.2 0.5 0.4 0 * 1 * *

5 0.5 0.1 0.3 0.2 0.3 0.6 0.4 0.5 0.7 0.7 * 0 1 * *

7 0.1 0.5 0.3 0.1 0.2 0.7 0.9 0.8 0.8 0.9 0 * 1 * *

9 0.3 0.1 0.1 0.2 0.1 1.0 1.0 0.9 1.0 1.0 1 * 0 * *

Total Bin Weight = 4.90

CP 1 0.1 0.3 0.2 0.5 0.4 0.1 0.3 0.2 0.5 0.4 0 * 0 * *

4 0.4 0.1 0.6 0.2 0.3 0.5 0.4 0.8 0.7 0.7 0 0 * * *

6 0.5 0.3 0.2 0.1 0.1 1.0 0.7 1.0 0.8 0.8 * 0 * 0 *

Total Bin Weight = 4.30

11

at the relative state or ordering of the individual bin capacities and search for items which
exhibit compatible relative state which could be used to correct a capacity load imbalance.
For example, suppose that Bkl and Bkm represent the largest and smallest component ca-
pacities, respectively, in the current bin. One heuristic would be to search for an item in
which Xil and Xim are the smallest and largest component (and that ~Xi �ts, naturally). A
more relaxed heuristic may only require that Xil < Xim.

4 Experimental Results

The following subsections present simulation results for the Permutation Pack (PP) and
Choose Pack (CP) bin-packing algorithms. The performance measure of interest is the num-
ber of bins required to pack all the items in the list. The results are reported as normalized
to the First-Fit (FF) algorithm. Note that PP(w = 0) and CP(w = 0) are identical to the
FF algorithm where w is the number (or window) of capacity components used to guide the
packing process. In the following discussion, FF refers to PP or CP with w = 0 and PP and
CP imply that w � 1.

Both the PP and CP algorithms were tested with d, the capacity count, ranging from 1
to 32 and w, the capacity window, ranging from 0 to 4. Results are reported for d = 8 and
the full range of w tested. The results for the other test cases had similar characteristics as
those provided below so are omitted here for the sake of brevity.

The input list of n = 32768 items is generated as follows. For item ~Xk 1 � k � n, the lth
capacity component, Xkl 1 � l � d, was drawn from the lth independent random number
generator. The d independent random number generators each followed an exponential
distribution with a mean of X. The mean weight, X, was varied from 0.05 to 0.35 which
provides substantial range of test input cases for the packing algorithms. The most profound
e�ect of the average weight is the resultant average number of items which can be packed
into a bin. At the low end of 0.05, the packing algorithms pack between 15 and 25 items per
bin, with an average of approximately 1:0=(X), or 20. As the average weight increases, the
average number of items packed drops due to the items being larger but also due to there
being fewer small items to �ll in the gaps in the bins. At an average weight of 0.35, only
2 or 3 items can be packed into a bin on the average no matter which packing algorithm is
used. Above this average weight, we found the results to be approximately the same with
all the algorithms so they are omitted here for the sake of brevity.

12

4.1 Performance of the Permutation and Choose Pack Algorithms

on Unsorted Lists

The PP and CP algorithms were implemented and simulated on the synthetic test cases
as described above. Figure 2 shows the results for the PP algorithm with similar results
provided for CP in �gure 3. These �gures plot the bin requirement for the PP and CP
algorithms, respectively, normalized to the FF algorithm versus the average capacity weight,
X. The data represents the ratio of the FF bin requirement to the PP or CP bin requirement.
Therefore, a value greater than 1:0 represents a performance gain.

Consider the results for the PP algorithm shown in �gure 2. For the case where w � 1 and
the average weight X is low, the PP algorithm provides approximately a 10% improvement
over the classical FF algorithm. The performance di�erence diminishes as the average weight
X grows, due to granularity issues. The larger component weights result in a less e�cient
packing of any single capacity in a bin, and is independent of d. Basically there are not
enough small items to pair with the many large items. As w increases above 1 the additional
performance gains also diminish. This is due to three di�erent e�ects. First, the inuence of
the largest weight is most important in achieving a balanced capacity state. As w increases,
the impact to the capacity balancing by the lesser weighted components is also smaller. The
second reason for the diminishing performance at higher w is a reection of the static and
�nite population of the input list. Essentially, there are a �xed and limited number of small
items in the input list. An item, ~Xk is considered small if the individual components are
generally much smaller than the average item weight, X. Small items are valuable for �lling
in the cracks of a bin which has already has several items. Initially, there is a large sample
of items to select from, and PP has a lot of success in packing the �rst few bins. In doing so,
however, PP essentially depletes the input list of small items. Simulations have shown that
as PP progresses, the average item size in the input list increases more rapidly than with
FF. Additionally, as the bin number grows, the average number of items packed into a bin
decreases more rapidly than with FF. The overall result is that, for large w, the performance
gains from intelligent item selection are o�set by the performance losses due to depleting
the supply of small items early in the packing process. In fact, for large average weights,
FF performs slightly better than PP as this e�ect is ampli�ed by the larger average item
sizes initially in the input list. This is evident in �gure 2 for w = 4 and X > 0:25. This
situation is exacerbated by pre-sorting the input item list and will be explored further in
Section 4.2. Note that this situation is primarily due to the �nite population of the input list
used for bin-packing experiments. When PP is applied to job scheduling, the input stream
is constantly re-newed so the impact of small item depletion does not become a global issue.
This will be explored further in Section 4.4. The third reason for a diminished performance
with increasing w has to do with the way PP splits up the input list into logical sublists.
Recall that PP �lters the input list into logical sublists, searching for an item with a speci�c
ranking among its component weights. If it does not �nd an item with this speci�c ranking,
it then adjusts its search to the next best ranking and repeats its search on that logical

13

sublist. As w gets larger, the number of logical lists grows as d!=(d�w!). Note that each list
represents a speci�c permutation of the w capacity rankings. The windowed multi-capacity
aware heuristic is successful only if it is able to �nd an item with the proper component
rankings among the d!=(d � w)! lists. For this to be true, d!=(d � w)! must be small with
respect to n. As PP packs the �rst few bins, this relationship is true (for our experiments).
However, as items are removed from the input list, n is e�ectively reduced and the probability
that the PP algorithm will �nd the properly ranked item diminishes. The net e�ect is that
the �rst few bins are packed very well but the average improvement over all the bins is less.

Now consider the performance of the CP algorithm depicted in �gure 3. The �rst thing to
note is that the general performance of CP is nearly as good or better than PP even though
it uses a relaxed selection method. The CP method is not as strict as the PP method in
selecting the next item for packing, therefore, it does not achieve the high e�ciency bin-
packing on the �rst few bins as does the PP method. However, it does not su�er as bad from
the small item depletion syndrome seen in the PP algorithm at the higher w values. This is
seen by comparing the performance results between �gures 2 and 3 for the case w = 4 and
X > 0:25. Whereas the performance of PP gets worse than FF in �gure 2, CP maintains a
performance advantage over FF as shown in �gure 3.

4.2 E�ects of Pre-sorting the Input List on the Performance of

PP and CP

Pre-sorting the input list in a non-increasing order of item size has been used to improve the
performance of the single capacity bin-packing algorithms. Our simulations show that this
general trend continues for the d-capacity aware algorithms. For this experiment, the input
list was sorted using a maximum sum method to assign a scalar key (~Xi(key) =

Pd
j=1Xij)

to an item. The PP and CP algorithms were then applied to the sorted list. The results for
the PP and CP algorithms are depicted in �gures 4 and 5 respectively.

The results depicted for PP in �gure 4 show approximately an 8% performance gain at
low average component weights for w � 1 as compared to the FF applied to the same pre-
sorted list. Note that this performance gain is less than the approximately 10% seen for the
case when the input list is unsorted as depicted in �gure 2. The reasons for this diminished
return are twofold. First, since the PP algorithm is more selective in picking the next item
to pack into a bin, it searches deeper into the list to �nd an item to adjust the capacity
imbalance. Alternatively, FF �nds the next item which �ts. Since the list is pre-sorted, the
item found by PP is no greater than the item found by FF. After the initial item selection,
PP tends to �ll the current bin with smaller items resulting in depleting the small items in
the �nite list population. This contributes to a overall diminished performance as the larger
items are left for the last bins, with no smaller items to pair with them. This e�ect was
also noted for PP on the unsorted list for w = 4 and average weight X > 0:25. Pre-sorting

14

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 B
in

 R
eq

ui
re

m
en

t

 Average Weight

(w=0)
(w=1)
(w=2)
(w=3)
(w=4)

Figure 2: Performance Gains for Permutation Pack (d=8; No Pre-sorting)

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 B
in

 R
eq

ui
re

m
en

t

 Average Weight

(w=0)
(w=1)
(w=2)
(w=3)
(w=4)

Figure 3: Performance Gains for Choose Pack (d=8; No Pre-sorting)

15

the list merely ampli�es this phenomena. The second reason for a diminished performance
with increasing w has to do with the way PP splits up the input list into logical sublists.
The globally sorted input list is fragmented into d!=(d�w!) locally sorted sublists which are
searched in an order which is dependent on the capacity ranking of the current bin. The net
result is that as w increases (with with respect to constant input list size), the actual search
order of the items in the input list becomes globally random so the performance gain due to
pre-sorting is nulli�ed.

The CP algorithm relaxes its search criteria with respect to PP. As shown in �gure 5,
this results in slightly higher performance gains over FF as compared to gains achieved
by PP for w > 1. Speci�cally, CP maintains a performance advantage at high average
component weights and higher w. This is due to the fact that CP partitions its input
list into d!=(w!(d � w!)) logical sublists (a factor of w! fewer than PP) so the e�ects of
fragmentation are reduced. As a result, CP realizes a higher bene�t from the pre-sorting
than does PP.

4.3 Adaptive Pack: An Adaptive Multi-Capacity Aware Packing

Algorithm

The results presented in Sections 4.1 and 4.2 may be generalized as follows. For lower average
component weights, the PP and CP algorithms perform better with a higher w. At higher
average weights, they perform better with a lower w. This is a reection of the ability of
the PP and CP algorithms to aggressively pack the �rst few bins with the smaller items
in the �nite population list, leaving the larger grained items for packing last. The high
packing e�ciency on the �rst bins is o�set by the lower e�ciency on the later bins. In view
of these results, an adaptive packing algorithm could be devised which modi�es the window,
w, based on the probability of �nding smaller items among those remaining in the input
list. As this probability gets higher, a more aggressive w (larger) could be used to pack
the abundant smaller items into bins to a higher capacity. Conversely, as the probability
gets lower, a less aggressive w (smaller) could be used to pack the larger items greedily as
done by FF. Adaptive Pack (AP) adjusts w based on the average component weight of the
items remaining in the input list after each bin is packed. The performance results for AP
are shown in Figures 6 and 7 for unsorted and pre-sorted input lists for a range of capacity
counts 2 � d � 32.

In general, the AP performs as good or better than the PP and CP algorithms over the
range of input simulated. Speci�cally, the degradation seen in the PP and CP algorithms
at high average weights, X, and high windows, w, is avoided by the AP algorithm. Also,
the performance gains for each d value are as good or better than the PP or CP algorithms
using any single w value. This may be seen by comparing the data for d = 8 in Figures 6 and
7 with the data in Figures 2 and 4. In Figure 6, for d = 8 and X = 0:15, the performance

16

gain of AP over FF is approximately 8% while for the same case in Figure 2, the gain is
approximately 7%. A similar comparison between Figures 7 and 4 shows that AP maintains
the performance seen by PP(w = 4).

4.4 A First Step Towards Job Scheduling under Multiple Con-

straints

Bin-packing is basically an abstraction of a restricted batch processing scenario in which all
the jobs arrive before processing begins and all jobs have the same execution time. The goal
is to process the jobs as fast as possible. De�ne Ai as the arrival time and Ti as the expected
execution time of job i. In the batch processing scenario, Ai = 0, and Ti = T for some
constant T . The results of Sections 4.1 and 4.2 suggest that the windowed multi-capacity
aware bin-packing algorithms may be used as the basis for a scheduling algorithm. Basically,
each bin corresponds to a scheduling epoch on the system resources, and the scheduling
algorithm must pack jobs onto the system in an order such that it all jobs are scheduled
using the fewest epochs. The Adaptive Pack algorithm with a pre-sorted job queue should
give good results as it provides the best performance in achieving the lowest number of bins.

The next level of complexity is to remove the restriction on Ai to allow the continuous
arrival of new jobs. Now the performance of the scheduling algorithm depends on the packing
e�ciency of only the �rst bin or epoch from a much smaller item list or job queue. The
PP and CP algorithms work even better under this dynamic item list population scenario.
In the static input list scenario, the PP and CP are able to pack a lot of smaller items
into the �rst few bins. However, this depleted the supply of small items on the earlier bins
resulting in a less e�cient packing of the remaining items due to their large granularity.
In the dynamic item list scenario, each bin is packed from essentially a new list as items
are replaced as soon as items are packed. Also, since the PP and CP algorithms select
the �rst element of the input list before initiating capacity balancing, the waiting time of
any item is bounded by the number of items ahead of it in the queue. Figure 8 shows the
performance of the PP algorithm on �rst-bin packing e�ciency for d = 8. In this simulation,
the number of items in the item list is initialized to 4 times the expected number of items
which would optimally �t into a bin. Speci�cally, n = 4:0 � d1:0=Xe. Note that this n
is much smaller than the n used for the bin-packing experiments. This reect the smaller
size of job wait queues expected to be seen by the scheduler. The simulation loops between
packing an empty bin and replacing the items drawn from the list. In this manner, the
number of items that a packing algorithm starts with is always the same. The d-capacity
items are generated as in previous simulations. As shown in �gure 8, for small average
weights X and w > 0, the PP algorithm achieves a 13% to 15% performance gain over the
FF algorithm. Compare this performance gain to the 11% gain seen by the AP algorithm in
Figure 6. The multi-capacity aware algorithms can pack any single bin much better than the

17

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 B
in

 R
eq

ui
re

m
en

t

 Average Weight

(w=0)
(w=1)
(w=2)
(w=3)
(w=4)

Figure 4: Performance Gains for Permutation Pack (d=8; Maximum Sum Pre-Sorting)

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 B
in

 R
eq

ui
re

m
en

t

 Average Weight

(w=0)
(w=1)
(w=2)
(w=3)
(w=4)

Figure 5: Performance Gains for Choose Pack (d=8; Maximum Sum Pre-Sorting)

18

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 B
in

 R
eq

ui
re

m
en

t

 Average Weight

d=2
d=4
d=8

d=16
d=32

 FF Baseline

Figure 6: Performance Gains for Adaptive Pack (No Pre-Sorting)

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 B
in

 R
eq

ui
re

m
en

t

 Average Weight

d=2
d=4
d=8

d=16
d=32

 FF Baseline

Figure 7: Performance Gains for Adaptive Pack (Maximum Sum Pre-Sorting)

19

naive FF algorithm, when starting from the same input list. For higher w and X, maintains
its performance gain over FF. The results for other d were simulated and showed similar
trends. In general, the packing e�ciency of the PP algorithm increases with increasing w.
The diminished increases in performance for higher w, while positive and �nite, are due
primarily to the lower impact of considering the smaller item components when performing
capacity balancing. Additionally, for higher w, the probability of �nding an item which
best matches the current bin capacity imbalance is decreased due to the relatively small
population from which to choose (n �!d=(d � w)!). Recall that the search performed by
PP(w = i) is a re�nement of the search used by PP(w = j) for i > j. If PP(w = i) cannot
�nd the exact item it is looking for, then it should heuristically �nd the item that PP(w = j)
would have found. Therefore, increasing w should heuristically do no worse than for lower
w at the cost of higher time complexity. Essentially, when (d!=(d � w)! � n), PP(w = i)
collapses to PP(w = j).

As the average weight increases, the item granularity issues diminish the packing e�ciency
for any packing algorithm. The relaxed selection criteria used by the CP method results in
little performance gains for w > 1 so those results are omitted from the graph for the sake
of clarity. However, the CP algorithm still has a much lower time complexity for higher w
than does the PP algorithm, so a trade is available.

The �nal level of complexity in bridging the gap from bin-packing to job scheduling is
to remove the execution time restriction and allow each item to have a di�erent execution
time. This is the subject of our current work in progress.

4.5 Summary of Experimental Results

The experimental results for the PP and CP algorithms are summarized below.

1. The windowed multi-capacity aware bin-packing algorithms, PP and CP, provide a
consistent performance increase over the classical FF algorithm for items with smaller
average weights and comparable performance for items with higher average weights in
an unsorted list.

2. A large percentage of the performance gains are achieved by a small window w � 2
which reduces the time complexity of the general windowed heuristic.

3. Pre-sorting the input list provides performance gains for all the tested bin-packing
algorithms but the gains are less for the multi-capacity aware algorithms using high
window values on lists with high average component weights due to list fragmentation
and small item depletion.

4. An adaptive algorithm, AP, was devised which maximizes the performance gains by
adapting the capacity window according to the average weight of the items remaining
in the input list. AP performs as good or better than the PP and CP algorithms

20

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 F
irs

t B
in

 P
ac

ki
ng

 E
ffi

ci
en

cy

 Average Weight

 First Bin Packing Efficiency - No Pre-Sort

PP: w=0
PP: w=1
PP: w=2
PP: w=3
PP: w=4

Figure 8: Performance Gains in First-Bin Packing E�ciency for Permutation Pack (d=8;

No Pre-Sorting)

21

and does not su�er from the same degradation seen by PP and CP at high average
component weights.

5. The �rst-bin packing e�ciency of the PP algorithms provides substantial performance
over the FF algorithm which provides a proof-of-concept that the windowed multi-
capacity aware heuristic may be applied to the generalized online multi-constraint job
scheduling problem.

In general the experimental results show that the multi-capacity aware heuristics, which
strive to correct local capacity imbalances, provides consistent performance gains over the
classical capacity oblivious bin-packing algorithms. Additionally, a large percentage of the
performance gains come from small w which greatly reduces the running time complexity of
the algorithms. Further, the heuristic produces superior �rst-bin packing e�ciencies from a
small population list which shows the applicability of the heuristic to job scheduling under
multiple constraints.

As a �nal note, the simulation results presented here are in some respect an artifact of
the synthetic input data. Speci�cally, the relationship between the d components in a given
item was uncorrelated as they were drawn from independent random number streams. In
a job scheduling scenario, the relationships between the components of a jobs requirement
vector may be quite correlated. In one case, if the items are proportional, (e.g. large memory
implies large CPU requirements), then the dimension of the packing problem is e�ectively
reduced from a 2-capacity to a 1-capacity. In this case the multi-capacity aware algorithms
would provide a smaller performance gain with respect to the naive packing algorithms. If,
however, the requirement components are inversely related, (e.g. Large memory requirement
with small CPU and medium I/O requirements), then the performance gains seen by the
multi-capacity aware algorithms should be substantial. Job stream characterization is part
of our on-going work in applying the multi-capacity aware heuristics to the general problem
of job scheduling under multiple constraints.

22

References

[1] Jr. E. G. Co�man, M. R. Garey, and D. S. Johnson. An application of bin-packing to
multiprocessor scheduling. SIAM Journal of Computing, 7(1):1{17, February 1978.

[2] Jr. E. G. Co�man, M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM
Journal of Computing, 12(2):226{258, May 1983.

[3] Jr. E. G. Co�man, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin-packing - an updated survey. In G. Ausiello, M. Lucertini, and P. Sera�ni, ed-
itors, Algorithm Design for Computer System Design, pages 49{99. Springer-Verlag,
New York, 1984.

[4] M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling with resource
constraints. SIAM Journal of Computing, 4(2):187{201, June 1975.

[5] M. R. Garey, R. L. Graham, D. S. Johnson, and Andrew Chi-Chih Yao. Resource
constrained scheduling as generalized bin packing. Journal of Combinatorial Theory,
pages 257{298, 1976.

[6] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning.
Technical Report 98-019, University of Minnesota, Department of Computer Science,
Army HPC Research Center, 1998.

[7] L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM Journal
of Research and Development, 21(5):443{448, September 1977.

[8] D. Lifka. The anl/ibm sp scheduling system. Technical report, Mathematics and Com-
puter Science Division, Argonne National Laboratory, Argonne, IL, 1995.

[9] R. K. Mansharamani and M. K. Vernon. Comparison of processor allocation policies
for parallel systems. Technical report, Computer Sciences Department, University of
Wisconsin, December 1993.

[10] K. Maruyama, S. K. Chang, and D. T. Tang. A general packing algorithm for multidi-
mensional resource requirements. International Journal of Computer and Information
Sciences, 6(2):131{149, May 1976.

23

