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Abstract

In past massively parallel processing systems, such as the Intel Paragon and the CRI
T3E, the scheduling problem consisted of allocating a single type of resource among
the waiting jobs; the processing node. A job was allocated the minimum number of
nodes required to meet its largest resource requirement (e.g. memory, CPUs, I/O
channels, etc.). Recent systems, such as the SUN E10000 and SGI O2K, are made up
of pools of independently allocatable hardware and software resources such as shared
memory, large disk farms, distinct I/O channels, and software licenses. In order to
make e�cient use of all the available system resources, the scheduling algorithm must
be able to maintain a job working set which fully utilizes all of the resources. Previous
work in scheduling multiple resources focused on coordinating the allocation of CPUs
and memory, using ad-hoc methods for generating good schedules. We provide new
job selection heuristics based on resource balancing which support the construction
of generalized K-resource scheduling algorithms. We show through simulation that
performance gains of up to 50% in average response time are achievable over classical
scheduling methods such as First-Come-First-Served with First-Fit back�ll.
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1 Introduction

New parallel computing systems, such as the SUN Microsystems E10000, the SRC-6, and
the SGI Origin 2000, provide a pool of homogeneous processors, a large shared memory,
customizable I/O connectivity, and expandable primary and secondary disk storage support.
Each resource in these system architectures may be scaled independently based on cost and
user need. A site which typically runs CPU intensive jobs may opt for a con�guration which
is fully populated with CPUs but has a reduced memory to keep the overall system cost
low. Alternatively, if the expected job mix contains a large percentage of I/O and memory
intensive jobs, a large memory con�guration may be purchased with high I/O connectivity
to network or storage devices. Finally, a mixed job set may be best serviced by a balanced
system con�guration. Therefore, given an expected job mix, a "shared-everything" parallel
system can be con�gured with the minimal set of resources needed to achieve the desired
performance. The question, then, is how to schedule jobs from the actual job stream onto
a given machine to achieve the expected performance. This is the K-resource scheduling
problem.

In classical job management systems (JMS), a job was submitted along with a set of
resource requirements which speci�es the number of CPUs, amount of memory, disk space,
etc., and the expected time to complete. The target systems were primarily distributed
memory parallel processors with a single system resource - a processing node consisting
of a CPU, memory, and a network connection to I/O devices. Although job allocation
research literature is �lled with exotic methods of allocating resources to a job stream [9],[3],
[10], simple allocation schemes such as First-Come-First-Serve (FCFS) or FCFS with First-
Fit back�ll (FCFS/FF) were used in practice, providing acceptable levels of performance
[8], [4],[14]. These job allocation schemes were limited in part due to the all-or-nothing
hardware partitioning of the distributed systems. For example, a memory intensive job
must be allocated enough nodes to meet the jobs memory requirements, but may not need
all the CPUs which were co-allocated by default. The excess CPUs are not available to
other waiting jobs and are essentially wasted. This situation is worse in newer systems where
resources may be allocated to a job independently from each other. The greedy FCFS-based
job allocation schemes cannot take full advantage of this additional 
exibility.

Consider extending the FCFS-based schemes to account for multiple (K) resources in
a particular physical system con�guration. The pure FCFS job allocation scheme would
pack jobs from the job queue into the system, in order of their arrival, until some system
resource (CPUs, memory, disk space, etc.,) was exhausted. In this case, the job allocation
scheme is blocked from scheduling further jobs until su�cient resources become available for
this large job. This potentially results in large fragments of resources being under-utilized.
The FCFS with back�ll probabilistically performs better by skipping over jobs which block
while waiting for large percentages of a single resource and �nding smaller jobs which can
make use of the remaining resources. Still, a single resource becomes exhausted while others
remain under-utilized.

The FCFS-based algorithms are restricted in selecting jobs based on their general arrival
order. In order for a job allocation scheme to e�ciently utilize the independently allocatable
resources of the K-resource system, it must be free to select any job based on matching
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Figure 1: Job Allocation Scheme Comparison

all of the jobs' resource requirements with the available system resources. As an example,
consider the JMS state depicted in �gure 1 (a). The job allocation scheme must map the
six jobs in the job queue to a two-resource system with 16 CPUs and 32 GBytes of memory.
The CPU and memory requirements of each job are speci�ed. Assume that the order in
the job queue represents the order of arrival and that each job requires the same amount
of execution time t. Under these assumptions, a job allocation scheme would select a set of
jobs for execution during scheduling epoch ei. The number of epochs required to schedule all
jobs in the job queue is used to compare di�erent job allocation schemes. Figure 1 (b) shows
the jobs allocated to each scheduling epoch for FCFS, FCFS/FF, and an unconstrained job
allocation scheme (UNC). The UNC scheme is free to select any job in the job queue for
allocation during the current epoch. Although this is a contrived example, it illustrates
the basic 
aws of FCFS-based job allocation schemes and the potential of less restrictive job
allocation schemes. The FCFS allocation scheme allocates jobs 0 and 1 in the �rst scheduling
epoch but then cannot allocate job 2, due to the total CPU requirement of the three jobs
being greater than the system provides (8 + 4 + 7 > 16). FCFS/FF overcomes this 
aw by
skipping job 2 and scheduling jobs 4 and 5 in the �rst epoch. However, it then must schedule
jobs 2 and 3 in separate epochs as there are no other jobs available to back�ll in each of
these epochs. Finally, the optimal UNC algorithm was smart enough to not schedule jobs 0
and 1 in the same epoch. Instead it �nds two job subsets which exactly match the machine
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con�guration. As a result, the unrestricted job allocation scheme requires fewer scheduling
epochs to complete all jobs.

The FCFS/FF-based schemes use a greedy method to back�ll a machine by selecting
the next job which �ts, subject to the back�ll constraints. In general, these methods do
not look at the additional resource requirements of the jobs in the job pool or the current
state of the system resource loads. In the K-resource scheduling problem, this approach
leads to premature depletion of some resources while others remain under-utilized. In the
previous example, selecting job 0 followed by job 1 depletes the available CPU resources
faster than the available memory resources. Our approach is to provide K-resource aware
job selection heuristics which use additional job resource requirements and system state to
guide the selection of the next job. These heuristics are easily incorporated into the current
FCFS/FF-based scheduling algorithms. Our simulation results show that enhancing the
FCFS/FF scheduling algorithm with the K-resource aware heuristics provide a substantial
performance improvement in average system response time over the previous greedy �rst-�t
heuristics.

The remainder of this document is outlined below. Section 2 provides a summary of past
research in multi-resource job scheduling algorithms and presents our new K-resource aware
job selection heuristics. Experimental results and conclusions are provided in Section 3.

2 The Balanced Resource Heuristics

2.1 Related Research

Job scheduling in parallel processing systems has been extensively researched in the past.
Typically this research has focused on allocating a single resource type (e.g. CPUs) to
jobs in the ready queue. A limited e�ort has extended this work to scheduling jobs with
two resource requirements; CPUs and memory. In [12], memory requirements were used
as a lower-bound constraint on the number of CPUs to allocate to a job in a distributed
memory system. In [13], a branch-and-bound approach was used to select jobs which �t
in the available memory in a shared memory system then allocated CPUs to those jobs
based on the number available and the current system load. The goal was to allocate the
minimum CPU and memory resources to a job such that neither resource allocation cause
severe performance degradation. Both of these e�orts recognized that the performance of a
job is dependent upon more than the number of CPUs it receives. This shows that future
job scheduling systems must be more cognizant of all resource requirements for a given job
when attempting to allocate resources to that job. However, these e�orts do not provide a
clear path for generalized scheduling under K-resource requirements.

Current job scheduling practices typically support variable resource allocation to a job,
and run-to-completion scheduling. Scheduling policies are also heavily based on First-Come-
First-Served (FCFS) policies which allocate resources to jobs in the order that they arrive
to preserve fairness. The FCFS scheduling algorithm breaks down when the next job in the
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ready queue requires a large amount of of any single resource. This job essentially blocks any
job which arrived after it, even though there may be su�cient resources to execute it in the
current scheduling epoch. This de�ciency led to the addition of back�lling. Back�lling selects
jobs from farther down the ready queue for immediate execution subject to interference
constraints on jobs near the head of the ready queue. The EASY back�ll scheduler selects
any job from the queue which does not interfere with the expected start time of the �rst
blocked job in the ready queue [8]. This results in a lower average response time for smaller
or shorter jobs, and guarantees a level of progress to larger jobs. Conversely, conservative
back�ll limits job selection to only those jobs which will not interfere with any job ahead of
them in the queue [4]. A generalized back�ll scheme protects the top N jobs in the ready
queue. This supports trading determinicity for performance in average response time. Other
variants of back�ll have also been studied [15], [16].

FCFS with First-Fit back�lling (FCFS/FF) performs well when allocating a single re-
source such as a computational node. However it is still subject to resource depletion in a
K-resource scheduling system. This is because these methods typically use a greedy �rst-
�t criteria when selecting jobs to back�ll. This can lead to scenarios where consecutively
selected jobs may all have high resource requirement in a common resource type, which de-
pletes this system resource type leaving other resource types idle. Thus the basis for our new
back�ll heuristics is to avoid premature resource depletion by maintaining equal utilization
of all resource types in the system. Essentially, the relative usage of all system resources is
balanced. The goal is to allocate each of the K machine resources to the same level so that
no single resource becomes prematurely depleted. Back�ll jobs are selected which best move
the system towards a balanced state. Heuristically, this increases the probability that the
additional jobs will �t during the current scheduling epoch. Two such balancing heuristics
are described in the next section.

2.2 The BL and BB Heuristics

The First-Fit (FF) back�ll job selection heuristic requires only that the job �ts into the
system. The K-resource balancing heuristics select jobs which attempt to correct a resource
imbalance in the system. A resource imbalance is de�ned as the condition where Ki <
Kj; 1 � i; j � K in the current scheduling epoch. Essentially, at least one resource is
more heavily used than the other resources. The general notion is that if the resource
usages are all kept balanced, then more jobs will likely �t into the system. The �rst simple
heuristic algorithm follows from this notion. Consider a system state in which Kj is the
resource which is currently at a lower utilization than all the other resources. A lowest-
utilization aware selection algorithm searches the job queue looking for a job which �ts
in the system and which has Kj as its largest resource requirement. Adding this job to
system heuristically lessens the capacity imbalance at resource Kj. The lowest-resource
aware packing algorithm can be generalized to the case where the algorithm looks at the
w; 0 � w � K � 1 lowest resource utilization and searches for an item which has the same w
corresponding largest resource requirements. The parameter w is a window into the current
system state. This is the general windowed lowest-resource job selection heuristic. Similar
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heuristics have been successfully applied to the multi-constraint graph partitioning problem
[6] and a generalized multi-capacity bin-packing problem [7]. The connection between multi-
constraint bin-packing and multi-resource scheduling has also been studied [11], [1], [5]. The
additional selection granularity provide by the window, w, provides a bene�t when there are
su�cient items from which to choose. However, in the typical job scheduling system, the
number of jobs in the queue can be quite small. Therefore, a version of this heuristic which
look only at the single lowest utilized resource (w = 1) is pursued here and is called Back�ll
Lowest (BL).

The BL heuristic may also su�er from a resource size granularity problem. In the previous
bin-packing e�ort, the performance of the windowed lowest-resource degraded as the average
resource requirement of an item grew with respect to the size of the bin. This reduced the
number of items that would �t into a bin, which reduced the opportunity of the heuristic
to correct an imbalance. In the typical job scheduling system the size of the jobs relative to
the empty space in the machine is often quite large. When one job leaves the system, often
only a single job can be selected to replace it. Therefore, the BL heuristic cannot guarantee
to actually balance the resource utilization as it will only attempt to balance one of the K
resources with the single replacement job. For this reason, we created a second balancing
heuristic which selects a job based on its overall ability to balance the resource utilization,
termed Back�ll Balanced (BB). BB uses a balance measure to score each potential back�ll
job and then selects the job which results in achieving the best resource utilization balance
based on this measure. For our experiments, we used the following balance measure:

maxi(USi +RJi)
P

K

ik=1
USi+RJi

K

where USi represents the current utilization of resource i by the system S, and RJi represents
the requirement for resource i by job J . This is essentially a max=average balance measure
where a lower value indicates a better balance.

Finally, both BL and BB, as de�ned, guide the job selection towards balancing the
resource utilization, but not increasing the utilization levels. Therefore, a fullness modi�er
is applied to both schemes which relaxes the balance criteria as the system becomes full.
This allows a larger job which achieves a worse balance to be selected over a smaller job
which achieves a better balance when the larger job nearly �lls the machine. This fullness

modi�er is simply 1:0�
P

K

ik=1
USi+RJi

K
, or the average resource availablilty. Note that as the

resource availability decreases, the BL and BB schemes approach FF functionally.

3 Experimental Results

The following subsections describe a parametric simulation study to evaluate the BL and BB
heuristics. The FCFS algorithm with First-Fit EASY back�ll (FCFS/FF-EASY) is used as
the baseline for performance comparison purposes. This algorithm was enhanced with the
BL and BB heuristics to for FCFS/BL-EASY and FCFS/BB-EASY. Additionally, a FCFS
with conservative back�ll, FCFS/FF-CONS was also simulated for completeness.
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3.1 Workload Model

The baseline workload model was the Feitelson workload model [2]. This workload model
is based on a detailed analysis of six production parallel system work logs and is generally
accepted as capturing the major characteristics of a typical production site. A more detailed
description and the code for generating the workload is available from:
www.cs.huji.ac.il/labs/parallel/workload/wlmodels.html . This code generator creates a list
of jobs, with each job described by size (number of processes, or parallelism), runtime (weakly
correlated to the size), and a repeat count. The repeat count captures a secondary e�ect in
the fact that a user will submit a job, wait for results, and then submit the same job again,
slightly altered. We used the job size and runtime characteristics for this study.

The Feitelson workload model was extended with the following three parameters:

1. K: This study involves the scheduling and allocation of a K-resource system. For each
job in the baseline Feitelson model, the job size was used to generate a vector of K
resource requirements for that job. For these simulations, values of K were taken from
f2; 4; 8g.

2. Relationship of the Kis: The relationship between the Kis of a single job was explored
using two di�erent distributions: Uniform and Exponential. For the uniform distribu-
tion, a set of K random numbers was drawn from a uniform random variable and then
scaled with the job size from the Feitelson model. A similar method was used for the
exponential distribution.

3. System Load: The Feitelson model does not provide an interarrival time between jobs,
as this is dependent upon the repeat execution characteristic. However, the arrival
characteristic is generally believed to be Poisson distributed. For this simulation,
we chose to use the average ready queue length achieved by the FCFS/FF-EASY
scheduling algorithm as a baseline. Basically, a series of experiments were run using
FCFS/FF-EASY to determine an average arrival rate from a Poisson process which
would produce a desired average ready queue length. The same arrival rate was then
used to simulate the other scheduling algorithms. Ready queue lengths were taken
from f64; 128; 256g.

3.2 Performance Metrics

Two basic metrics were collected to compare the performance of these algorithms:

1. Average Response Time: This the sum of the wait time plus the execution time of a
job, averaged over all jobs. This metric captures the ability of the scheduling algorithm
to service the smaller, shorter jobs. Since the job stream contains a large number of
smaller short jobs, the metric provides a good measure of the quality of the scheduling
algorithm.

2. Weighted Average Response Time: The weight of a job is de�ned as the product of its
resource requirement and execution time. The weighted average response time is then
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the product of the job weight and the job response time, averaged over all jobs. This
is basically a measure of how well the scheduling system provides progress to the large
jobs. It is also a measure of overall resource utilization over time.

3.3 Simulation Results

Figures 2 (a)-(f) and 3 (a)-(f) summarize our simulation results. Each graph in the �gures
shows the results for one value of K, one Ki distribution, and the three system load values.
Recall that the load value is referenced by the average job queue length achieved by the
FCFS/FF-EASY scheduling algorithm. In each �gure, the performance gains (or losses)
of FCFS/BL-EASY, FCFS/BB-EASY, and FCFS/FF-CONS are normalized to the base-
line performance of FCFS/FF-EASY. A positive performance gain indicates a performance
increase while a negative performance gain indicates a poorer performance.

In general, the new FCFS/BB-EASY out performs all other algorithms for both perfor-
mance metrics by up to 50%. The FCFS/FF-EASY generally out performs both FCFS/BL-
EASY and FCFS/FF-CONS. FCFS/FF-CONS consistently performs much worse than the
other algorithms due primarily to a diminished number of jobs which meet its stronger
back�ll requirements. The e�ects of each of the three parameters on the average response
time metric is described below, followed by a comparison between the average and weighted
average response time results.

3.3.1 E�ect of K

As K increases, the BB heuristic maintains signi�cant performance gain over FF-EASY.
However, the performance gains achieved by the BL balancing heuristics decreases. This is
primarily due to the inability of the heuristics to correctly score a match between the current
system state and a job candidate in the ready queue. The error rate of the lowest-utilization
scheme used by BL increases with K. Also note that the BL heuristic e�ectively partitions
the set of candidate jobs into K subsets and selects a job from subset containing jobs in
which the Ki resource requirement is largest. Therefore, in order for BL to be e�ective, it
must have K times as many samples as the BB heuristic.

3.3.2 E�ect of Relationship between Kis

The performance gains seen by the BB heuristic is approximately 10% higher when the Kis
of a job are drawn from a uniform distribution as compared to an exponential distribution.
This is due to the fact that the uniform distribution results in more of the Kis being large
and harder to pack by the FF heuristics. However, the balancing heuristics were designed to
deal with these variances. The exponential distribution creates Kis which are mostly small
and therefore easier for the FF heuristics to pack so the performance gains are less.
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3.3.3 E�ect of System Load

As the system load increases, the performance gains achieved by the BB heuristic increase.
This is due to the increased number of jobs in which the BB heuristic can draw from to
improve the system resource utilization imbalance. This same increase in job numbers in
the ready queue is actually the down fall of the BL heuristic which performs poorer at high
loads. While it improves the sample size for BL, it also increases the probability that BL
will heuristically skip over jobs selected by FF-EASY and BB-EASY in search of a job with
a speci�c resource distribution, but which arrived later. This has the e�ect of increasing
the waiting time of jobs which were skipped. So while the packing e�ciency might improve
(from the larger sample size), the average response time su�ers. The net result is that the
BL heuristic performs poorer than FF-EASY for large K.

3.3.4 Comparison of Average vs Weighted Average Response Time Results

In comparing �gures 2 and 3, we see that the performance gains achieved by the BB heuristic
in average response time are higher than the performance gains achieved in weighted average
response time. While the BB achieved performance gains of 10 � 50% in average response
time, it achieves only gains of 10 � 30% in weighted average response time. This implies
that the BB heuristic is e�cient at moving small jobs ahead of large jobs with minimal
but positive impact to the waiting time of the large jobs. In many production sites, this is
actually a desirable e�ect during peak daytime hours as it improves the response time of the
small (and likely interactive) jobs.

4 Summary

In this report, we de�ned a new K-resource scheduling problem and provided two heuristics
which may be used to extend current scheduling methods to work in this environment. The
FCFS/BB-EASY back�ll heuristic provides up to a 50% performance gain in average system
response time and 40% performance in weighted average response time. The success of the
FCFS/BB-EASY scheduling algorithm shows that balancing resource usage can be e�ective
in increasing system performance in terms of the average and weighted average response
time metrics. This success can be attributed to the fact that FCFS/BB-EASY can perform
a better job packing of the small (common case) jobs while maintaining su�cient progress
on the large jobs. Future work will address further support for large job scheduling for both
online and o�ine scheduling of K-resource systems.

A second heuristic was adapted from two other domains: multi-constraint graph parti-
tioning and multi-capacity bin-packing. The FCFS/BL-EASY scheduling algorithm failed
for two reasons. First, the job size relative to the available system resources at any single
scheduling epoch provides little opportunity for the heuristic to pick a single job which im-
proves the system resource usage balance. This is due to the fact that the heuristic looks at
a single (maximal) resource imbalance at a time which does not accurately capture the state
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of the system. Second, the small sample size in the job ready queue is further decreased (ac-
tually reordered) due to the implicit partitioning performed by the heuristic. Therefore, this
heuristic, while appropriate for the original problem domains, is probably not appropriate
for online job scheduling.

Additional work is required to further characterize the exact relationship between the
resource requirements of a job in a production job stream.
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