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Abstract—In this paper we explore the design space of
creating a multi-threaded graph partitioner. We present and
compare multiple approaches for parallelizing each of the
three phases of multilevel graph partitioning: coarsening, initial
partitioning, and uncoarsening. We also explore the differences
in thread lifetimes and data ownership in this context. We show
that despite the options for fine-grain synchronization and task
decomposition offered by current threading technologies, the
best performance is achieved by preserving data ownership and
minimizing synchronization. In addition to this we also present
an unprotected approach to generating a vertex matching in
parallel with little overhead. We use these findings to develop
an OpenMP based implementation1 of the Metis algorithms and
compare it against MPI based partitioners on three different
multi-core architectures. Our multi-threaded implementation
not only achieves greater than a factor of two speedup over
the other partitioners, but also uses significantly less memory.

I. INTRODUCTION

Graphs are used in a large number of areas in computing
including social networks, biological networks, scientific
computing and distributed computing, and VLSI design. The
graph partitioning problem is to divide the vertices of a graph
into groups of roughly equal size, such that the number of
edges connecting vertices of different groups is minimized.
Graph partitioning is used as a first step in divide & conquer
approaches to reduce complexity, task decomposition for
parallel systems, and data decomposition for distributed
systems. As the capacity to collect information and to model
complex systems has soared, so has the size and diversity
of the graphs that are being generated and need to be
processed and analyzed. This growth in scale and scope
presents new challenges to partitioning these graphs quickly
and efficiently.

Because the problem of graph partitioning is known to
be in NP-Complete [1], directly solving it is not feasible.
However, graph partitioning is a well studied problem and
as a result, many fast heuristic algorithms exist for finding
high-quality partitionings. The multilevel paradigm is a
widely used approach in graph partitioning libraries includ-
ing Chaco [2], Metis [3], Jostle [4], Party [5], Scotch [6],
and KaFFPa [7]. In multilevel approaches a series of succes-
sively smaller graphs that approximate the original graph are

1The mt-metis software is available at http://www.cs.umn.edu/∼metis

generated before a partitioning of the smallest graph is made,
which is then applied to each successively larger graph with
some optimization, until it is finally applied to the original
graph. Many of these multilevel algorithms also have parallel
formulations designed for distributed memory systems [8],
[9], [10], [11].

In recent years we have seen everything from the nodes
of high-end distributed systems to commodity workstations
shift from being single-core/single-processor machines to
multi-core/multi-processor shared memory machines. This
shift has also caused the amount of available memory per
processing element to decrease [12]. Although existing par-
allel graph partitioning algorithms designed for distributed
memory systems can be used as is on these shared memory
systems, doing so is sub-optimal. This is because they do
not fully take advantage of the shared memory capability
of the architectures to reduce the amount of data that needs
to be replicated between the processes nor the ability that
shared memory allows for fine-grain synchronization.

In this paper we explore the design space of creating a
multi-threaded graph partitioner. We present and compare
various algorithms for the key steps of the multilevel par-
titioning paradigm that take different strategies in terms of
synchronization frequency, task granularity, data ownership,
and thread lifetime. Our experiments, on three different
multicore architectures using the threading functionality
provided by OpenMP, show that even though multicore
architectures allow for fine grain task decomposition and
frequent synchronization, the best performance is achieved
when the task decomposition is coarse and synchronization
is infrequent. In addition to this we found that data locality,
which when using OpenMP can only be controlled implicitly
by having threads operate on the data they generate, is also
crucial to achieving performance on a large number of cores.
These findings are to a large extent consistent with the
best practices of high performance parallel algorithms used
on distributed memory machines. However, we identify a
technique for implementing the coarsening phase of the mul-
tilevel paradigm that results in a significant speedup beyond
the distributed formulation. In addition, without the need
for caching remote data locally on multicore architectures,
we were able to significantly reduce the aggregate amount
of memory required as the number of threads increases



compared to distributed memory formulations.
The remainder of this paper is organized into five sections.

Section II provides a definition of the graph partitioning
problem and the associated notations used in this paper.
Section III gives an overview of multilevel graph partition-
ing, followed by a detailed look at the algorithms used by
KMetis and ParMetis. In Section IV we discuss the different
approaches to parallelization we experimented with while
engineering mt-metis, a multi-threaded implementation of
the Metis algorithms. In Section V we detail the conditions
of our experiments. The results of those experiments are
presented in Section VI, including the comparison of the
different algorithmic approaches, threading approaches, and
our best implementation against PT-Scotch and ParMetis.
Finally in Section VII we provide a summary of these results
and discuss future directions of this work.

II. DEFINITIONS & NOTATION

A graph G = (V,E) consists of a set of vertices V and
a set of edges E, where each edge e = {v, u} contains a
pair of vertices (i.e., v, u ∈ V ). Each vertex v ∈ V and each
edge e ∈ E can have a positive weight associated with them
that are denoted by η(v) and θ(e), respectively. If there are
no weights associated with the vertices and/or edges, then
their weights are assumed to be one. Given a vertex v ∈ V ,
its set of adjacent vertices are denoted by Γ(v) and it will
be referred to as the neighborhood of v.

A partitioning of V into k non-empty and disjoint subsets
V1, V2, . . . , Vk is called a k-way partitioning of G, and each
set Vi is referred to as a partition. The partitioning of V
will be represented using a partitioning vector P , such that
P v will store the partition number of vertex v. The edges
that connect vertices in different partitions are considered to
be cut by the partitioning and the sum of the weight of the
cut edges is called the edgecut of a k-way partitioning. The
vertices incident on cut edges are referred to as boundary
vertices.

The balance of a k-way partitioning measures how
evenly-weighted are the k partitions and is defined as the
ratio of kmaxi(η(Vi))/η(V ), where η(A) is the sum of the
vertex weights of the vertices in set A. A balance close
to one indicates that the partitions are evenly weighted,
whereas values greater than one, indicate that there are some
partitions whose vertex weight is much greater than the
average.

Given a user supplied parameter ε, we define the k-way
partitioning problem of G as the optimization problem of
computing a k-way partitioning of G with minimum edgecut
subject to the constraint that the balance is upper bounded
by 1 + ε. Due to the balance constraint, this partitioning
problem is also referred to as the bounded capacity graph
partitioning problem.

III. MULTI-LEVEL GRAPH PARTITIONING

Since their introduction over 20 years ago [13], multilevel
approaches for graph partitioning have become the standard
approach for developing high-quality and computationally
efficient approaches for graph partitioning. These algorithms
solve the underlying optimization problem using a method-
ology that follows a simplify & conquer approach, initially
used by multi-grid methods for solving systems of partial
differential equations.

Multilevel partitioning methods consist of three distinct
phases: coarsening, initial partitioning, and uncoarsening. In
the coarsening phase, the original graph G0 is used to gener-
ate a series of increasingly coarser graphs, G1, G2, . . . , Gm.
In the initial partitioning phase, a partitioning Pm of the
much smaller graph Gm is generated using a more expensive
algorithm. Finally, in the uncoarsening phase, the initial
partitioning is used to derive partitionings of the successive
finer graphs. This is done by first projecting the partition
of Gi+1 to Gi, followed by partitioning refinement whose
goal is to reduce the edgecut by moving vertices among the
partitions. Since the successive finer graphs contain more
degrees of freedom, such refinement is often feasible and
leads to dramatic edgecut reductions.

The overall effectiveness of the multilevel paradigm de-
pends on the approaches used to identify the set of all ver-
tices that will be contracted during the coarsening phase and
the partitioning refinement during the uncoarsening phase.
Over the years various approaches have been developed
and extensively evaluated [14]. For example, coarsening is
usually performed by computing a matching [13], [15] or
clustering [16] though approaches based on weighted aggre-
gation have also been explored [17], [18]. The refinement is
often performed using local search methods based on either
on the Kernighan-Lin [19], Fiduccia-Mattheyses [20], or
Greedy [15] refinement algorithms. More recently a second
method of refinement has been used in [21] and [7], in
which a modified version of max-flow min-cut algorithm is
used.

Because the methods described in Section IV build on
the algorithms in KMetis [22] and ParMetis [8] in the
rest of this section we provide additional details about
the data structures and algorithms used in both of these
algorithms/codes.

A. KMetis

KMetis stores the graph in a structure similar to that of
a Compressed Sparse Row format used for sparse matrices,
with the addition of a vector storing the vertex weights, the
partition vector P , and the vertex mapping vector C.

The coarsening phase in KMetis is made up of two parts:
matching and contraction. Matching is where the vector Ci

is generated from Gi, and contraction generates Gi+1 from
Ci and Gi. In matching we start with a matching vector
M , which is used to generate C. If two vertices, v and u,



are matched together they have corresponding entries in M ,
Mv = u and Mu = v. They are also mapped to the same
coarse vertex c = Cv

i = Cu
i .

The vertices are visited in ascending order with respect
to their degree. Vertices with the same degree are visited in
random order, to encourage exploration of the solution space
over multiple runs. If a visited vertex v has already been
matched, it is skipped. Otherwise the neighbors Γ(v) of v
are searched for the unmatched neighbor u connected by the
heaviest edge and is recorded in the matching vector as both
Mv = u and Mu = v. If v has no unmatched neighbors, it is
matched with itself, Mv = v. The ascending order visitation
is meant to reduce the occurrence of unmatched vertices,
by giving low degree vertices first choice of neighbors with
which to match. This coarsening scheme is known as Sorted
Heavy Edge Matching or SHEM.

In contraction, two matched vertices v, u ∈ Vi will share
the same mapping to the coarse vertex c. The vertex weight
of c is equal to the sum of the weights of v and u. The
coarse edges connected to c are the fine edges connected to
v and u minus the contracted edge {v, u}. Where multiple
edges connect the same two coarse vertices, they are reduced
to a single edge with a weight equal to the sum of all the
weights of the combined edges.

The coarsening phase is terminated when the coarsest
graph contains a smaller number of vertices than some
threshold t, |Vi| < t. In KMetis t is based on the size of
G0, so that the ratio of time taken by initial partitioning
in comparison to coarsening and uncoarsening is the same
regardless of the size of G0.

Partitioning of Gm in KMetis is handled by its sister
program PMetis, which performs a recursive bisectioning
in order to generate a k-way partitioning. A series of
partitionings are generated by PMetis [3] for the coarsest
graph, and the best partitioning is chosen for Pm.

Just as coarsening is made up of two parts, uncoarsening
also consists of two parts: projection and refinement. During
the projection part of the uncoarsening phase, the partition
labels in Pi+1 are assigned to the corresponding fine vertices
in Gi via Ci. For a fine vertex v this can be expressed as:

P v
i = P

Cv
i

i+1.

The weight of the cut edges and the partition weights are
the same for Pi+1 and Pi at this point.

For the refinement of the k-way partitioning on Gi, the
Greedy [15] refinement algorithm is used and operates only
on the boundary vertices. At the start of a refinement pass,
all of the boundary vertices are added to the priority queue.
The priority of a vertex is determined by its potential gain.
The gain of v is determined by its connectivity to other
partitions as detailed by:

gainv =
∑

u∈Γ(v)

{
−θ({v, u}) if Pu

i = P v
i

θ({v, u}) else .

Vertices are then extracted from this priority queue and
considered for moving. If moving a vertex will reduce the
total weight of cut edges and still result in balanced partition
weights, the vertex is moved and the partition weights are
updated. In order to speed up these checks, each vertex
stores information about the weight of the edges connecting
it to different partitions. If at least one vertex has been
moved, and the maximum number of passes has not been
exceeded, another pass is attempted with the new boundary
vertices. Otherwise the partitioning is projected to the next
finer graph.

Uncoarsening then finishes when the partitioning has been
projected and refined on the original graph G0.

B. ParMetis

ParMetis is an MPI based parallel formulation of KMetis
and as a result achieves parallelism through p processes.
Each process is assigned a contiguous chunk of |V |/p
vertices, and stores the associated edges and weights. Each
process also stores a vector D of length p+1 which serves to
describe the vertex distribution of the entire graph. A vertex
v belongs to process i where Di ≤ v < Di+1.

Matching in ParMetis is split up into passes. During
each pass, processes select heavy edge matchings for their
vertices. Matching between vertices local to a process is
handled in the same way as in KMetis. Matchings with non-
local vertices generate requests at the end of a pass that the
other processes either grant or reject. After a set number of
passes have been performed the graph is contracted. Because
each edge is stored once for each incident vertex, contraction
can be performed independently by each process once the
matching information of adjacent non-local vertices has been
communicated. The distribution of Gi+1 is based on the
distribution of Gi, where a process owns the coarse vertices
resulting from the matches it generated.

The initial partition in ParMetis is made through recursive
bisection. The processes perform an all-to-all broadcast
resulting in each process having all of Gm. Then using
the same random seed they each generate a branch of the
bisection tree required to create the k-way partitioning. That
is, all processes generate the initial bisection of the graph,
then half of the processes generate a bisection of the left
partition and half of the processes generate a bisection of
the right partition, and so forth. These partitionings are then
assembled so that each process has all k partitions applied
to its local part of Gm.

Then in uncoarsening, each process projects the partition
information from the coarse vertices Vi+1 that it owns to the
fine vertices Vi that it owns. It also transmits the partition
information of coarse vertices that it owns and contain fine
vertices from other processes.

Due to the serial nature of greedy refinement, ParMetis
makes some significant diversions from the refinement used
in KMetis. Selecting moves to make in parallel can result in a



situation where two boundary vertices in different partitions
that are connected by a heavy edge are both chosen to move
to each other’s partitions, which can increase the weight of
cut edges. For this reason, ParMetis splits each refinement
iteration into two passes, once where vertices can only move
from partitions with a lower label than the partition they
reside in, and a second time where they can only move to
partitions with a higher label than the one they reside in.

Furthermore, each of these passes consists of 3 parts. In
the first part each process generates a vector of all the moves
it would like to make. Then in the second part once the
processes communicate how this would affect the partition
balance, move requests are rejected until the remaining ones
will result in a balanced set of partitions. In the third part, the
vertex and partition information is updated for the vertices
approved to move. As in KMetis, refinement stops when
either no vertices are moved, or a maximum number of
passes has been performed.

IV. SHARED MEMORY MULTILEVEL GRAPH
PARTITIONING

In this section we present algorithms for paralleliz-
ing KMetis on a shared memory system using OpenMP.
Performing parallel graph partitioning in shared memory
presents more algorithmic options compared to that of using
distributed memory. The availability of a shared address
space and the locking mechanisms allow us to potentially
exploit a more fine grain level of parallelism. We explored
different approaches for each of coarsening, initial partition-
ing, and uncoarsening.

A. Coarsening

The coarsening phase of multilevel graph partitioning
first computes a vertex matching and then builds the next-
level coarser graph via graph contraction in which the
matched vertices are combined and the adjacency lists of
the combined vertices are combined.

As discussed in Section III, the matching algorithm used
by KMetis visits the vertices of the graph in a certain order
and then for each unmatched vertex, it matches it with its
adjacent unmatched vertex that is connected via a highest
weight edge. If no such vertex exists, then the vertex remains
unmatched. In parallelizing this algorithm, we followed an
approach in which the vertices of the graph are divided
among the different threads, and each thread is responsible
for matching the vertices assigned to it.

A direct implementation of this approach will use a shared
matching vector M and each thread will be reading this
vector in order to determine the matching status of the
vertices and writing to it every time the matching status
of a vertex has been determined. In order to ensure that
there are no race conditions, each read/write operation on
the shared vector M will need to be protected via a lock.
This will result to excessive locking and lead to poor parallel

performance. An alternate approach is for each thread to
read M without locking but ensure that the write operations
(i.e., the matching decisions) are valid. This is achieved as
follows. Once a thread has chosen to match vertex v with
vertex u, it locks both Mv and Mu and performs a final
check to make sure that both vertices are still unmatched. If
this holds, it then sets Mv = u and Mu = v before releasing
the locks on them. Because the number of vertices in graphs
can easily reach into the millions, creating a separate lock
for each vertex is not feasible. In order to lock vertices
we instead use a fixed number of locks much greater than
the number of threads, and use a hashing function to map
multiple vertices to the same lock. Acquiring a lock then
locks multiple unrelated vertices at once. Locks are acquired
in ascending order to prevent deadlocks. We will refer to this
scheme as fine-grain matching.

Even though the above approach reduces the amount of
time spent in locks/unlocks over the naive approach, we
expect that it will still incur substantial shared data access
synchronization overheads. For this reason, we evaluated
another approach that is similar to the iterative two-pass
approach used by ParMetis. Specifically, the vertices of the
graph are initially divided among the threads. Each thread
matches its vertices by giving preference to unmatched
adjacent vertices that are also assigned to the same thread.
Each thread also has a request buffer for each other thread.
The matchings that involve adjacent vertices assigned to
other threads, are placed into the request buffer correspond-
ing to that thread. During the second pass, each thread
processes the corresponding request buffers of other threads
and either accepts or rejects the requested matches made for
its vertices and modifies M accordingly. After several passes
any unmatched vertices are matched with themselves. We
will refer to this scheme as multi-pass matching.

The multi-pass matching approach addresses the high syn-
chronization overheads of the fine-grain matching approach
but it introduces the extra cost of maintaining and servicing
the request buffers. The third approach relies on the heuristic
nature of matching and exploits ideas from both the fine-
grain and the multi-pass matching approaches. Just as in
the fine-grain approach each thread populates M for both
local and non-local vertices; however, unlike the fine-grain
approach, the writes in M are done unprotected. So it is
possible for vertex v to believe that it is matched to u,
while vertex u believes it is matched to w. To correct this,
after M is generated, each thread goes through its list of
local vertices and any vertex v in an asymmetrical matching
Mv = u and Mu 6= v, are matched with themselves.
As long as the number of vertices in the graph is much
greater than the number of threads, these asymmetrical
matchings occur infrequently so as not to disturb the size
of the matching. In our experiments we observed 0.001%
of vertices involved in asymmetrical matchings at the finest
level, and 0.13% at the coarsest level. This corresponded



to about 120, 000 vertices per thread at the finest level,
and about 1, 000 vertices per thread at the coarsest level.
This unprotected approach attempts to gain the best of both
approaches, by avoiding the synchronization overheads of
the fine grained approach, and the extra memory accesses
required for handling requests in the multi-pass approach.
We will refer to this scheme as unprotected matching.

Once we have populated the matching vector M , a parallel
prefix-sum is performed over the matchings, so that in a
second pass coarse vertex numbers can be assigned to each
match in parallel, generating C.

With the matching vector M and its associated vertex
mapping vector C, the parallelization of the graph con-
traction operation on a shared-memory system is straight-
forward. Irrespective of the scheme used to compute the
matching, our parallel graph contraction algorithm operates
as follows. The vertices of the next-level coarse graph are
divided among the threads and each thread is responsible
for merging the adjacent lists of the corresponding matched
vertices.

B. Initial Partitioning

Since initial partitioning will always be performed on
a small problem size, the design space in which it can
effectively be parallelized is quite small. The two approaches
we explore are parallelizing each bisection, parallel bisec-
tioning, and parallelizing all of the k-way partitionings,
parallel k-sectioning.

In parallel bisectioning, each thread bisects Gm into Ga

and Gb, and the best bisection is selected. The threads
are then split into two groups, and one group recursively
performs a parallel bisectioning on Ga and the other re-
cursively performs a parallel bisectioning on Gb. This is
done until a k-way partitioning is obtained. This requires
the threads to synchronize log2 k times to perform a min-
reduce operation and select the best partitioning. At each
bisection, 16 partitionings are made.

In parallel k-sectioning, each thread independently gener-
ates k-way partitionings of Gm via recursive bisection, and
the best partitioning among all of the threads is selected.
Among all of the threads, 16 k-way partitionings are gen-
erated. Although the number of parallel tasks in parallel k-
sectioning is less than that of parallel bisectioning, the only
synchronization point is the min-reduce operation at the end
to select the best partitioning.

C. Uncoarsening

The uncoarsening phase of the multilevel graph partition-
ing paradigm consists of two steps. First, the partition labels
Pi+1 of the next-level coarse graph are projected to the
current coarse graph in order to compute Pi, and then a
greedy move-based refinement algorithm is used to further
reduce the edgecut of the resulting k-way partitioning.

Since all data is accessible by all threads, including the
partition label vector Pi+1, the projection step can be easily
parallelized by dividing the vertices among the threads,
and having each thread determine the partition label of its
assigned vertices. Because this is a memory bound operation,
memory bandwidth can become a limiting factor when
attempting to achieve high speedup with a large number of
cores.

On the other hand, parallelizing the greedy move-based
refinement algorithm is considerably more complicated. First
in order to ensure concurrent refinement, the global greedy
strategy needs to be relaxed. Second, as different threads
move vertices among partitions concurrently, care must be
taken to ensure that balance is maintained. For example, the
partitioning solution can become unbalanced if thread ta
considers moving vertex v to partition Vi, and at the same
time thread tb considers moving vertex u to partition Vi.
When both threads check to make sure their moves will re-
sult in balanced partitions, they see |Vi|+η(v) and |Vi|+η(u)
as being below the maximum allowable partition weight,
but the resulting weight of |Vi| + η(v) + η(u) is greater
than the maximum allowable partition weight. Third, the
concurrent move of vertices can also lead to a degradation
of the edgecut, even if these moves were initially selected
based on greedy strategy. This happens in the cases in which
the vertices that are moved concurrently are connected via
an edge. For example, consider two adjacent vertices v and
u belonging to partitions one and two, respectively with
θ({v, u}) being greater than the sum of the weights of the
rest of the edges incident on v and u. In a situation like that,
moving either v or u to the other vertex’s partition, will
improve the edgecut. However, if these two vertices were
assigned to different threads, and each thread decided to
perform the move, then the overall edgecut will not decrease
and depending on the rest of the edges incident on v and u,
it can potentially increase. Fourth, the serial implementation
of the greedy move-based refinement algorithm in KMetis
considers only the vertices that are at the partition boundaries
and precomputes the per-adjacent partition cuts for each
boundary vertex. This information is efficiently updated as
vertices get moved, resulting in an extremely fast and tight
k-way refinement implementation. As a result, the total time
spent in uncoarsening is much smaller than the time spent in
coarsening, making hard to hide parallelization overheads.

To address the above challenges, we developed two
different parallel formulations of the greedy move-based
refinement algorithm. In both approaches, we replaced the
single global priority queue with per-thread priority queues.
Thus, the boundary vertices are divided among the threads,
each thread inserts them in its own priority queue based
on their gain, and then proceeds to process them. Note
that even though an approach like that may not be as
effective as a globally greedy strategy, our experience with
schemes like that in ParMetis has shown that their overall



impact on partitioning quality is minimal. However, the
two formulations differ on how they ensure balance, how
they deal with potential cut degrading moves, and how they
update the refinement-related data-structures.

The first approach attempts to keep all of the partition
information up to date, by performing updates as each move
is made. Once a thread has removed a vertex v from the top
of its priority queue, it finds the best eligible partition to
move v to. A partition Vi is eligible only if its weight plus
the weight of v is under the maximum allowable partition
weight. The best partition is the one to which the sum of
the weight of the edges connecting v to the partition is the
greatest. If the best partition for v is the one it is already
in, or no eligible partition can be found, v is not moved.
Otherwise v and all of its neighbors Γ(v) are locked using
the same hashing technique as in Section IV-A, and both the
partition containing v and partition receiving v are locked as
well. Final checks are then performed to ensure the pending
weight changes will be within the balance constraint, and
that the move will still result in an edgecut reduction. Lock-
ing the partition weights and performing the final check,
ensures the balance of the partitioning is preserved. Locking
v and its neighbors ensures that no moves that increase
the edgecut are made, and that the refinement-related data-
structures are consistent. Finally, once the updates have been
performed, the locks are released. We refer to this approach
as fine-grain refinement.

There are three potential limitations with the above ap-
proach. First it will tend to incur a high synchronization
overhead due to the frequent locking. Second it requires the
number of partitions be greater than the number of threads in
order to keep updating the partition weight from becoming a
bottleneck. Third, since the pre-computed refinement-related
data-structures are updated by multiple threads, it can lead
to false sharing.

To address these issues, the second approach closely
follows the algorithm used in ParMetis. To ensure that two
vertices connected by a sufficiently heavy edge will not swap
partitions and increase the edgecut, vertices are restricted to
moving across partition boundaries in only one direction at
a time. When a thread removes a vertex v from its priority
queue, it decides whether or not to move v following the
same process as fine-grain refinement (described above),
with the added restriction of move direction.

Additionally, each thread has an update buffer for each
other thread. If it decides to move a vertex v, it updates
its local vertices and places updates to adjacent non-local
vertices into its corresponding update buffer. After each
thread has removed a fixed number of vertices from its
priority queue, all threads communicate what the potential
partition weights would be after their moves are committed.
The balance of the k-way partitioning is maintained by
undoing pending moves until the remaining moves would
result in a balanced partitioning. The remaining moves are

then committed and threads update their local vertices’
partition connectivity for the moves made by other threads
by reading from their corresponding update buffers. This is
then repeated until all of the priority queues are emptied.
We refer to this approach as coarse-grain refinement.

For both approaches, a pass ends when the priority queues
of all threads are empty. Refinement terminates when the
maximum number of passes has been reached, or no vertices
were moved in the last refinement pass.

D. Thread Lifetimes

Our discussion so far has focused on algorithmic aspects
related to the frequency of synchronization and task granu-
larity. However, another equally important aspect has to do
with when and for how long spawned threads live, which
we will refer to as thread lifetime. In this work we explore
two different approaches, which we will refer to as fork-join
and thread-persistence.

In the fork-join approach, threads are started at the begin-
ning of a parallel block of work and stopped at the end. This
is the paradigm around which OpenMP was created. In the
multilevel graph partitioning algorithms we have discussed
so far, this means starting threads at the start of matching
and joining them at the end, and doing the same for each of
contraction, initial partitioning, projection, and refinement.
Note that whether threads are spawned and killed for each
parallel block of work or pulled from an existing thread pool
is implementation dependent.

The thread-persistence approach creates all of the threads
at the start of program execution, similar to MPI, and does
not join them again until the program’s termination. This
approach requires threads to synchronize at the same points
in the multilevel paradigm where threads were spawned and
joined in the fork-join approach.

E. Data Ownership

A design space tightly coupled with thread lifetimes is that
of data ownership. In this context, data ownership refers to
a thread performing work on a fixed set of vertices and their
incident edges. We investigated three approaches to data
ownership: one which assigns work dynamically, one which
assigns works statically at the start of each block of parallel
work, and one for which data ownership persists throughout
the entire execution the multilevel paradigm. The fork-
join model of OpenMP restricts data ownership to within
a parallel block. As a result, for the third approach this
accomplished while using the thread-persistence described
above.

The first approach has no concept of data ownership and
uses dynamic work scheduling. This provides the benefit of
dynamic load-balancing at the cost of increased overhead
for distributing the work. This approach also fails to pre-
serve data locality. For the multilevel paradigm, this means
that threads pull vertices from a shared pool on which to
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Figure 1. The threading and work distribution models for mt-metis-du,
mt-metis-su, and mt-metis, where a line represents a thread and the gray
blocks represent chunks of work.

perform matching, contraction, projection, and refinement as
described in Sections IV-A and IV-C. The initial partitioning
approaches we took in IV-B are unaffected by this design
space. We will refer to this approach as dynamic work-
distribution.

In a second approach to data ownership, threads are given
ownership of data statically at the start of a block of parallel
work. This approach relies on the even distribution of work
at the start of each parallel work block, but does not suffer
from the overhead associated with dynamic load-balancing.
Data locality with this approach is limited to the parallel
work block. In the multilevel graph partitioning paradigm,
this means vertices are divided among the threads at the
start of matching, contraction, projection and refinement for
each of the graphs G0, G1, . . . , Gm. We will refer to this
approach as static work-distribution.

In the third approach, threads are given ownership of
data at the start of the program, and continue to own that
data and all derived data for the duration of the program.
This approach is not possible with the fork-join approach
to thread lifetimes. This approach ensures the locality of
the data worked on by each thread. However, not only does
this approach lack dynamic load-balancing, it also provides
no guarantee that the work will be evenly distributed at the
start of a work block. In the context of the multilevel graph
partitioning paradigm, this means that the vertices of G0

are initially divided among the threads, and in G1 threads
own the coarse vertices they created while contracting the
fine vertices of G0 that they owned. We will refer to this
approach as persistent work-distribution.

For evaluating these data ownership approaches as well
as the associated thread lifetime approaches discussed in
Section IV-D, we developed three OpenMP based implemen-
tations of the algorithms discussed in Sections IV-A, IV-B,
and IV-C. The first, mt-metis-du, uses the fork-join approach
for thread lifetimes and the dynamic work-distribution ap-

Table I
THE FOUR GRAPHS AND THEIR PROPERTIES USED IN THESE

EXPERIMENTS

Name Type # Vertices # Edges
DFEG Dual 988,605 1,947,069
NFEG Nodal 1,118,496 31,255,782
RDMAP Road Network 23,947,347 28,854,312
VLSICRCT VLSI Circuit 49,375,364 76,768,132

proach for data ownership. The second implementation,
mt-metis-su, also uses the fork-join approach for thread
lifetimes, but uses the static work-distribution approach for
data ownership. The third implementation, mt-metis, uses
the thread-persistent approach to thread lifetimes and the
persistent work-distribution approach for data ownership.
These differences are illustrated by Figure 1.

V. EXPERIMENTAL DESIGN

Experiments were performed on four different graphs,
representing three different domains of graph partitioning.
The first two (DFEG & NFEG) correspond to dual and nodal
graphs of 3D meshes used in scientific computing. The third,
RDMAP, corresponds to the road network of the US [23].
The fourth one (VLSICRCT) corresponds to the netlist of a
VLSI circuit. In deriving VLSICRCT, we only kept the nets
corresponding to edges in the original design. The size of
these graphs are shown in Table I.

Each run was repeated 50 times with a different starting
random seed, and the average time and edgecut were taken.
An imbalance tolerance of 3% was used for all partitionings,
all of which were 64-way. Run times are only for the three
phases of multilevel partitioning, and not for IO. We used
the k-way partitioning portion (referred to in this paper
as KMetis) of Metis 5.0.2, ParMetis 4.0.2, and PT-Scotch
5.1.2. The default settings were used for both KMetis and
ParMetis. Both the scalability and speed flags were used
when running PT-Scotch.

Speedup is measured with respect to the runtime of
KMetis. Where speedups are aggregated for all four graphs,
the geometric mean has been taken of their speedup with
respect to KMetis. Edgecut is measured relative to KMetis.
Where edgecuts are aggregated for all four graphs, their
geometric mean has been taken relative to KMetis.

Three systems were used for these experiments: an HP
ProLiant BL280c G6 with 2x 8-core Xeon E5-2670 @ 2.6
GHz, a Dell PowerEdge R815 with 4x 8-core Opteron 6220
@ 3.0 GHz, and a Sun Fire X4600 with 8x 4-core Opteron
8356 @ 2.3 GHz. Codes were compiled using Intel’s ICC
compiler version 11.1 on the 8x 4-core Opteron system, and
11.2 on the 2x 8-core Xeon and 4x 8-core Opteron systems,
all with O3 optimizations enabled. Regarding the thread
lifetimes discussed in Section IV-D, Intel’s implementation
of OpenMP, as used in these experiments, makes use of
thread pooling [24]. We were not able to produce reliable
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Figure 2. Coarsening

results when utilizing all 32 cores of the 4x 8-core Opteron
system for any of the partitioners, and as a result we only
report using up to 28 cores here.

VI. RESULTS

Our experimental evaluation consists of three parts. First
we evaluate the impact of the various algorithmic choices for
the various phases of the multilevel paradigm as it relates to
task granularity and synchronization frequency. Second, we
evaluate the impact of thread lifetime and data ownership.
Finally, we evaluate the performance of the best performing
OpenMP formulation of KMetis against the performance
achieved by two MPI-based parallel multilevel algorithms,
ParMetis and PT-Scotch.

A. Granularity of Parallelism

To study the effect of the various algorithmic choices
for coarsening, initial partitioning, and refinement, we per-
formed a series of experiments in which the various al-
gorithms were implemented and evaluated using the mt-
metis-du framework as described in Section IV-E. Due to
space constraints we only present results for the smallest
and largest graphs in our dataset, DFEG and VLSICRCT,
on the 2x 8-core Xeon system; however the results on the
other systems were similar.
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Figure 3. Initial Partitioning

1) Coarsening: The results of the three coarsening ap-
proaches: fine-grain matching, multi-pass matching, and
unprotected matching are shown in Figure 2. The results
show that the unprotected approach outperformed the other
two. The better performance of the fine-grain approach over
the multi-pass approach can be attributed to the following
to reasons. First, the fine-grain approach did not suffer from
lock contention because the number of locks was much
greater than the number of threads. Second, the overhead as-
sociated with acquiring and releasing a lock per matching in
the fine-grain approach was slightly less than that of the extra
memory accesses required by the request buffer used by the
multi-pass approach. The unprotected approach avoids these
overheads and using 16 threads achieved a speedup of 8.7 for
DFEG and 11.4 for VLSICRCT, compared to the speedups
of 5.5 and 8.3 achieved by the multi-pass approach and the
speedups of 5.7 and 9.4 achieved by the fine-grain approach
respectively.

2) Initial Partitioning: The results of the two approaches
for initial partitioning, parallel bisectioning and parallel k-
sectioning, are shown in Figure 3. The parallel k-sectioning
approached scaled near linearly when the number of threads
was a power of two. This is a result of the 16 partitionings
being evenly divided and each partitioning being generated
independently. It suffered a slight decrease in speed when us-
ing twelve threads because four of the threads still generated
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Figure 4. Uncoarsening

two partitionings causing the other eight threads that each
only generated one partitioning to wait. Parallel recursive
bisectioning did not scale as well because of the increased
number of synchronization points. However, because of the
finer grain task decomposition, parallel recursive bisection-
ing still had a balanced work distribution when using twelve
threads.

3) Uncoarsening: The results of the two approaches for
uncoarsening, fine-grain refinement and coarse-grain refine-
ment, are shown in Figure 4. From these results we can
see that the coarse-grain approach outperforms the fine-grain
approach. The fine-grain approach manages to gain a small
speedup of 2.5 for DFEG and 2.8 for VLSICRCT using eight
threads, and moves up to a speedup of 2.6 for DFEG and 3.1
for VLSICRCT using 16 threads. This plateau is likely the
result of lock contention for modifying the partition weights.
The coarse-grain approach however, steadily gained speedup
as the number of threads increased, with a speedup of 3.5
for DFEG and 5.1 for VLSICRCT using eight threads, and a
speedup of 5.6 for DFEG and 7.8 for VLSICRCT using 16
threads. The greater speedup for the large graph compared
to the small graph is because the majority of the work in
the uncoarsening phase is only on border vertices, which
account for a small fraction of the total vertices in the graph,
and as a result the parallel overheads are not as well hidden
while performing refinement on the smaller graph.
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Figure 5. Mean speedup of the threading approaches on the three different
systems.

B. Thread Lifetimes and Data Ownership

The best granularity strategies for coarsening, initial par-
titioning, and uncoarsening as determined by the outcome of
these experiments, were used in the multi-threaded imple-
mentations to explore the thread lifetime and data ownership
design space discussed in Sections IV-D and IV-E. That is,
for matching we used the unprotected matching approach
described in Section IV-A, for initial partitioning we used
the parallel k-sectioning method described in Section IV-B,
and for uncoarsening we used the coarse-grain refinement
described in Section IV-C.

The mean speedup across all four graphs on each of the



three systems for these three implementations can be seen in
Figure 5. On the 2x 8-core Xeon system we can see that the
three multi-threaded implementations performed relatively
similarly, with mt-metis taking a slight lead when using 16
threads. On the two systems with higher core counts, mt-
metis has a prominent lead over mt-metis-du and mt-metis-
su when using more than 16 threads. This performance gap
exists because mt-metis-du and mt-metis-su are not designed
to preserve data ownership across synchronization points
(i.e., transitioning from matching to contraction, projection
to refinement, and moving between levels in coarsening and
uncoarsening). When one of these synchronization points are
encountered, a thread may work on a different part of the
graph than it had previously. Data ownership is preserved
by mt-metis, so when the active level of the graph is small
enough such that the portion assigned to a thread fits within
its cache, it performs the majority of its memory accesses
from cache where mt-metis-du and mt-metis-su are still
accessing the slower DRAM the majority of the time. As
the number of threads increases, the portion of the graph
assigned to each thread decreases and a larger level of the
graph can fit within the cache. This increased data locality
enables mt-metis to outperform mt-metis-du and mt-metis-su
in both coarsening and uncoarsening for a large number of
threads.

The better utilization of the aggregate available cache also
explains the relative performance of mt-metis over the other
methods on the three different architectures. Specifically, mt-
metis achieved the best relative performance on the 4x 8-core
Opteron system that has 1MB of L2 cache/core, its second
best performance on the 8x 4-core Opteron system that has
512KB of L2 cache/core, and its worst relative performance
(though still better) on the 2x 8-core Xeon system that has
only 256KB of L2 cache/core.

C. Comparison with Other Partitioners

We have compared our best multi-threaded implemen-
tation, mt-metis, with two publicly available distributed
memory partitioners, ParMetis [8] and PT-Scotch [10].

1) Speedup: The mean speedup for partitioning the four
graphs can be seen for each system in Figure 6. In all three
of the figures, it can be seen that mt-metis averaged over
twice the speedup of both ParMetis and PT-Scotch when
using more than four cores on each of the three systems.

The speedups achieved partitioning the individual graphs
on each system are shown in Table II, and the run times
are shown in Table III. The achieved speedups are largely
dependent on the graph, and to a lesser extent, the system.
The worst that mt-metis performed relative to the other par-
titioners, was partitioning DFEG on the 4x 8-core Opteron
system. ParMetis reached a speedup of 6.9 compared to the
8.9 speedup of mt-metis. On the same system however, mt-
metis saw its largest lead in performance with a speedup of
17.9 compared to ParMetis’s speedup of 2.9 and PT-Scotch’s
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Figure 6. Mean speedups of the distributed memory partitioners and mt-
metis on the three different systems.

speedup of 1.5 when partitioning VLSICRCT. As mt-metis
and ParMetis implement similar algorithms, a great deal
of the difference in their runtimes can be attributed to the
overheads of message passing. Furthermore, as coarsening
is the most time consuming stage of multi-level graph
partitioning, mt-metis’s unprotected matching provides a
significant advantage over the request based scheme of
ParMetis.

Note that PT-Scotch uses recursive bisection to generate
a k-way partitioning [10], causing it to go through the
multilevel process several times. On the other hand ParMetis
and mt-metis only use recursive bisectioning to generate the



Table II
SPEEDUP ON INDIVIDUAL GRAPHS (VS KMetis)

2x 8-core Xeon 4x 8-core Opteron (28 cores) 8x 4-core Opteron
Graph ParMetis PT-Scotch mt-metis ParMetis PT-Scotch mt-metis ParMetis PT-Scotch mt-metis
DFEG 3.395 0.677 6.56 5.195 0.856 7.888 6.862 1.314 8.924
NFEG 2.466 0.366 7.57 3.273 0.479 10.535 3.142 0.470 12.036
RDMAP 3.703 1.500 11.658 5.681 2.078 14.886 4.689 2.197 14.733
VLSICRCT 3.909 1.491 12.755 4.633 1.411 15.8962 2.881 1.534 17.891

Table III
TIME ON INDIVIDUAL GRAPHS (SECONDS)

2x 8-core Xeon 4x 8-core Opteron (28 cores) 8x 4-core Opteron
Graph ParMetis PT-Scotch mt-metis ParMetis PT-Scotch mt-metis ParMetis PT-Scotch mt-metis
DFEG 0.233 1.168 0.121 0.281 1.697 0.185 0.585 3.057 0.450
NFEG 1.421 9.566 0.463 1.892 12.921 0.588 6.746 45.146 1.761
RDMAP 7.401 18.276 2.351 6.884 18.817 2.627 24.445 52.155 7.779
VLSICRCT 17.416 45.653 5.337 19.387 63.671 5.651 96.578 181.391 15.553

Table IV
MEMORY USAGE (MB)

Cores
Name 1 2 4 8 16 32
KMetis 522 - - - - -
ParMetis 522 1,218 1,501 1,895 2,899 4,691
PT-Scotch 593 742 1,019 1,241 2,251 5,001
mt-metis 665 680 700 696 742 752

initial partition, and as a result only go through the multilevel
process once. This contributed to its higher runtime seen in
our experiments.

2) Memory Usage: In Table IV, we present the aggregate
memory usage of these partitioners for creating k-way par-
titioning of DFEG. Memory usage was measured using the
GNU time utility. It can be seen that all three of the parallel
partitioners increase their memory usage with the number of
cores utilized. However, where both ParMetis and PT-Scotch
use over eight times the amount of memory of KMetis on 32
cores, mt-metis only uses 44% more than KMetis, and only
13% more than it did running serially. Thread private data
structures used during coarsening and uncoarsening account
for the slight increase in memory usage by mt-metis as the
number of threads increases. The large difference in memory
usage between mt-metis and the MPI based partitioners is
in large part because mt-metis stores information for each
vertex only once, where PT-Scotch and ParMetis need to
communicate and store the information of remote neighbor
vertices.

3) Partition Quality: To ensure a valid comparison, we
studied the average and minimum number of cut edges of the
partitions of the four graphs generated by the partitioners.
Each partitioner generated 50 partitionings of each graph.
The geometric mean of both the average edgecut and mini-
mum edgecut relative to KMetis are shown in Tables V and
VI. The tables show that the quality of partitionings created

Table V
GEOMETRIC MEANS OF AVERAGE CUTS SCALED RELATIVE TO KMetis

Cores
Name 1 2 4 8 16 32
KMetis 1.000 - - - - -
ParMetis 1.000 1.131 1.221 1.116 1.113 1.108
PT-Scotch 1.111 1.113 1.113 1.089 1.102 1.100
mt-metis 1.075 1.072 1.076 1.085 1.104 1.102

Table VI
GEOMETRIC MEANS OF MINIMUM CUTS SCALED RELATIVE TO KMetis

Cores
Name 1 2 4 8 16 32
KMetis 1.000 - - - - -
ParMetis 1.000 1.063 1.060 1.056 1.049 1.047
PT-Scotch 1.037 1.039 1.037 1.042 1.029 1.033
mt-metis 1.033 1.041 1.040 1.031 1.050 1.048

by mt-metis does not diverge from that of ParMetis and PT-
Scotch.

VII. SUMMARY AND FUTURE WORK

In this paper we explored the design space of multi-
threaded graph partitioning, specifically using OpenMP, and
demonstrated the performance improvement it can offer
over traditional MPI codes on multi-core/multi-processor
machines. Our final implementation, mt-metis, is on average
over twice as fast as ParMetis and PT-Scotch. This speedup
is due to a combination of avoiding message passing over-
heads and modifying the existing parallel algorithms used
in ParMetis. Specifically the unprotected matching scheme
significantly reduces the runtime of the most time consuming
phase of multilevel graph partitioning. Beyond the improved
speedup, mt-metis also uses significantly less total memory
than either ParMetis or PT-Scotch. This reduced memory
footprint plays an important role in enabling the partitioning



of large graphs on modern machines that have a decreasing
memory to processing element ratio.
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