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a  b  s  t  r  a  c  t

Multivariate  analysis  of  cell  culture  bioprocess  data  has  the  potential  of unveiling  hidden  process  charac-
teristics  and  providing  new  insights  into  factors  affecting  process  performance.  This  study  investigated
the  time-series  data  of  134  process  parameters  acquired  throughout  the  inoculum  train  and  the  pro-
duction  bioreactors  of  243  runs  at the  Genentech’s  Vacaville  manufacturing  facility.  Two  multivariate
methods,  kernel-based  support  vector  regression  (SVR)  and  partial  least  square  regression  (PLSR),  were
used to  predict  the  final  antibody  concentration  and  the final  lactate  concentration.  Both  product  titer
and  the  final  lactate  level  were  shown  to be  predicted  accurately  when  data  from  the  early  stages  of
the  production  scale  were  employed.  Using  only  process  data  from  the  inoculum  train,  the  prediction
accuracy  of  the  final  process  outcome  was  lower;  the results  nevertheless  suggested  that  the  history  of
the  culture  may  exert  significant  influence  on  the final  process  outcome.  The  parameters  contributing
most  significantly  to the  prediction  accuracy  were  related  to lactate  metabolism  and  cell viability  in both
the production  scale  and  the inoculum  train.  Lactate  consumption,  which  occurred  rather  independently
of  the  residual  glucose  and  lactate  concentrations,  was  shown  to  be a prominent  factor  in  determining

the  final  outcome  of production-scale  cultures.  The  results  suggest  possible  opportunities  to  intervene
in metabolism,  steering  it towards  the  type  with  a strong  propensity  towards  high  productivity.  Such
intervention  could  occur  in  the  inoculum  stage  or in  the  early  stage  of  the  production-scale  reactors.
Overall,  this  study  presents  pattern  recognition  as  an  important  process  analytical  technology  (PAT).  Fur-
thermore,  the  high  correlation  between  lactate  consumption  and  high  productivity  can  provide  a guide
to apply  quality  by  design  (QbD)  principles  to enhance  process  robustness.
. Introduction

In recent years, cell culture bioprocessing has seen a tremendous
rowth in data generation and collection. In modern manufactur-
ng facilities, it is not uncommon to encounter hundreds of process
arameters being monitored and acquired automatically every few
econds throughout the entire production train. This enormous vol-
me  of data further accumulates across multiple campaigns and at
ultiple manufacturing sites. Mining these historical data holds
romise to gain insights into fluctuations in process performance,
ncover hidden characteristics of high-performing cultures, and
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discern process parameters with pivotal contributions to the over-
all process performance.

Cell culture bioprocess data, however, pose significant chal-
lenges to mining practices due to the inherent heterogeneities
in time scale and data type (Charaniya et al., 2008). Yet many
have successfully applied an array of classification and predic-
tion techniques to investigate hidden process patterns. Principal
component analysis (PCA), partial least square regression (PLSR),
and other unsupervised techniques, which have the advantage of
capturing the interactions among process parameters, have been
used for detecting state transitions related to product and lactate
formation, online monitoring, fault detection and diagnosis, scale-
up assessment, process characterization, and root cause analysis
(Bachinger et al., 2000; Gunther et al., 2007; Kirdar et al., 2008;

Ündey, 2004). In other studies, powerful supervised approaches
such as decision tree (DT), artificial neural network (ANN), and
support vector regression (SVR) were used to optimize a control
scheme incorporating time-course data, predict the final process
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http://www.sciencedirect.com/science/journal/01681656
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Table 1
Temporal process parameters used in the analysis: 33 parameters at each of the
inoculum scales (80 L, 400 L, and 2000 L), and 35 parameters at the production scale
(12,000 L).

Offline parameters Online parameters
Ammonium ion concentration Air sparge rate
Dissolved CO2 (pCO2) Air sparge set point
Dissolved O2 (pO2) Backpressure (12,000 L only)
Glucose concentration CO2 sparge rate
Integrated packed cell volume
(IntvPCV) (12,000 L only)

Dissolved oxygen (DO) controller
output

Lactate concentration DO (primary)
Osmolarity DO (secondary)
Packed cell volume (PCV) Flowrate overlay
pH (offline) Jacket temperature
Sodium ion concentration O2 sparge rate
Viability pH controller output
Viable cell density (VCD) pH (online)

Derived parameters Pressure exhaust valve
Specific cell growth rate (�) Reactor weight
Specific glucose consumption rate
(qLac)

Total air sparged

Specific lactate consumption rate
(qGlc)

Total base added

Total CO2 sparged
Total O2 sparged
H. Le et al. / Journal of Biot

utcome, and reveal key parameters (Buck et al., 2002; Charaniya
t al., 2010; Coleman and Block, 2006). Among these multivariate
nalysis approaches, PLSR and SVR appear to be well-suited to han-
le the various challenges associated with bioprocess data, namely
igh-dimensionality and co-linearity between various parameters.

Among the important contributors to differentiating between
igh- and low-productivity runs of a cell culture process are param-
ters related to lactate metabolism, including pH, base addition,
smolarity, dissolved CO2, and lactate concentration (Charaniya
t al., 2010). Excessive lactate accumulation has long been known
o be an impediment to achieving high cell concentration and supe-
ior productivity (Glacken et al., 1986; Hu et al., 1987). Introducing
etabolic shifts (i.e., controlling lactate production at low levels

r, to a further extent, inducing lactate consumption) has been
chieved through various strategies. These approaches include
ynamic feeding to control glucose at low levels (Cruz et al., 1999;
hou et al., 1997), using alternative carbon sources (Altamirano
t al., 2006; Wlaschin and Hu, 2007), knocking down LDH-A (Chen
t al., 2001; Kim and Lee, 2007a),  and enhancing glucose carbon
ux into the TCA cycle (Irani et al., 1999; Kim and Lee, 2007b).
nderstanding the linkage between lactate metabolism and high
roductivity thus offers the opportunity to discover the metabolic
ignatures of these high-performing processes.

In this study, we employed support vector regression (SVR) and
artial least square regression (PLSR) methods to predict the final
rocess outcome using process data from 243 production runs at

 Genentech manufacturing facility. This dataset comprises 134
emporal parameters acquired online and offline throughout the
noculum train (80 L, 400 L, and 2000 L) and the production-scale
ioreactors (12,000 L). Parameters pivotal to prediction accuracy
ere assessed based on two criteria: the frequency of occurrence

f) in the best parameter sets for SVR models and the magnitude of
he regression coefficient (ˇ) in the optimal PLSR models. Among
hese pivotal parameters, various aspects of the lactate consump-
ion phenomenon at the production scale in high-titer runs were
urther investigated.

. Methods

.1. Data pre-processing and organization

Process data from 243 production runs of a recombinant IgG
olecule, produced using the same Chinese hamster ovary (CHO)

ell line, were used for analysis. The same batch process was applied
or all seed cultures (80 L, 400 L, and 2000 L). At the production
cale (12,000 L), a fed-batch mode with glucose and medium feed-
ng was used. Across these scales, temperature, pH, and dissolved
xygen were maintained at 37 ◦C, 7.0, and 30% of air saturation,
espectively. A temperature shift to 33 ◦C at approximately 70 h
ost-inoculation was performed at the 12,000 L scale.

The data were pre-processed as described previously (Charaniya
t al., 2010) with minor modifications. Briefly, online data acquired
t each of the four scales (80 L, 400 L, 2000 L, and 12,000 L) were
moothed using a moving window average method with a time
indow of 100 min. Offline data were linearly interpolated and/or

xtrapolated every 20 h. Furthermore, specific rates of lactate
roduction, glucose consumption, and cell growth were derived
rom these measured parameters and smoothed using third-order
olynomials. In total, time-series data of 134 temporal process
arameters across all scales, including 33 parameters at each of the
hree inoculum scales and 35 parameters at the production scale,

ere used (Table 1).

Process data from all scales were organized into eight individual
nd seven cumulative datasets as shown in Table 2. The first dataset
omprised process data from the 80 L scale bioreactors. The second
Total gas sparged
Vessel temperature

dataset contained data from the next scale of 400 L, and so on. Since
the run time at the production scale (260 h) was  much longer com-
pared to that at each of the inoculum scales (70 h), it was segregated
into several stages: up to 70 h, 120 h, 170 h, 220 h, and 260 h. In
addition to these eight individual datasets, process data were also
accumulated across scales with the largest dataset compiling data
from 80 L, 400 L, 2000 L, and up to 260 h of the 12,000 L scale.

2.2. Model training and evaluation using 10-fold cross-validation

A 10-fold cross-validation scheme as shown in Fig. 1 was used
for training and evaluation of both support vector regression (SVR)
and partial least square regression (PLSR) models. Process data from
243 runs in each of the 15 datasets described above were randomly
divided into ten subsets of approximately equal sizes. During each
round of cross-validation, nine of the ten subsets were used as the
training set on which model optimization was performed. The best
performing model on each training set was  used to predict process
outcome of runs in the corresponding, unseen test set (the 10th
subset). This process was  repeated 10 times on different pairs of
training and test subsets. Model performance was evaluated using
the Pearson’s correlation coefficient (r) r and the root mean square
error (ε) between the predicted and the actual final process out-
come:

r =
∑n

i=1yif (xi) − (
∑n

i=1yi

∑n
i=1f (xi))/n√

(
∑n

i=1y2
i

− (
∑n

i=1yi)
2
/n)(

∑n
i=1f (xi)

2 − (
∑n

i=1f (xi))
2
/n)

(1)

ε =
√∑n

i=1(yi − f (xi))
2

n
(2)

where n is the number of runs, and yi and f(xi) are the actual and
the predicted titer values of run i, respectively. The model perfor-
mance was averaged across the 10 folds. As a baseline for evaluating

model performance, a random predictor with one million simula-
tions of randomized final process outcome was  generated.

To get a better estimate of the generalization error of the con-
structed models, model optimization (i.e. selection of model and
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Table 2
Prediction accuracy of PLSR and SVR models using process data acquired at different stages, evaluated as the Pearson’s correlation coefficient (r) and the root mean square
error  (ε) between the predicted and the actual final process outcome.

Dataset Final antibody concentration (titer) Final lactate concentration

PLSR SVR PLSR SVR

r ε r ε r ε r ε

80 L 0.42 0.10 0.40 0.10 0.44 4.18 0.43 4.15
400  L 0.21 0.12 0.43 0.10 0.33 4.79 0.43 4.15
2000  L 0.28 0.11 0.35 0.10 0.28 4.63 0.37 4.30
12,000 L up to 70 h 0.73 0.07 0.73 0.07 0.72 3.18 0.77 2.93
12,000 L up to 120 h 0.80 0.06 0.77 0.07 0.85 2.41 0.78 2.84
12,000 L up to 170 h 0.88 0.05 0.86 0.06 0.95 1.47 0.92 1.98
12,000 L up to 220 h 0.92 0.04 0.91 0.04 0.97 1.09 0.96 1.56
12,000 L up to 260 h 0.92 0.04 0.92 0.04 0.97 1.13 0.98 1.33
80  L+400 L 0.41 0.10 0.47 0.09 0.50 3.97 0.48 4.00
80  L+400 L+2000 L 0.45 0.09 0.48 0.09 0.45 4.10 0.50 3.94
80  L+400 L+2000 L+12,000 L up to 70 h 0.71 0.07 0.68 0.08 0.73 3.13 0.68 3.39
80  L+400 L+2000 L+12,000 L up to 120 h 0.77 0.07 0.72 0.08 0.76 2.94 0.73 3.24
80  L+400 L+2000 L+12,000 L up to 170 h 0.88 0.05 0.83 0.06 0.90 1.97 0.87 2.65
80  L+400 L+2000 L+12,000 L up to 220 h 0.91 0.04 0.91 0.05 0.97 1.18 0.95 2.00

0.92
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80  L+400 L+2000 L+12,000 L up to 260 h 0.92 0.04 

or a random predictor: r = 0.00, ε = 0.17 and r = 0.00, ε = 7.79 when the final titer an

rocess parameters) was further performed on each training set,

lso using 10-fold cross-validation, as shown in the shaded box
n Fig. 1. Model optimization was performed for each round of
he 10-fold cross-validation. This involved further partitioning of

ig. 1. Scheme of 10-fold cross-validation with model optimization which was used for bo
ere  randomly separated into 10 equal subsets. Nine were used as the training set on 

redict the outcome of runs in the 10th subset (test set). Model optimization involved fu
sed  to train a model with a certain set of parameters (for SVR approach) or PLS factor
roup  (validation set). This process was repeated 10 times to obtain the average perform
arameter/factor set that resulted in the best predictive (optimized) model. The shaded b
 0.05 0.97 1.14 0.96 1.82

final lactate concentration was used as the objective function, respectively.

the training set randomly into 10 smaller groups of about equal

sizes. The model was  trained on nine groups using a different set
of parameters for SVR approach or PLS factors for PLSR approach.
The performance of the resulting model was subsequently tested

th multivariate approaches: SVR and PLSR. All n process runs (n = 243 in this study)
which model optimization was  performed, and the optimized model was used to
rther random separation of the training set into 10 equal groups. Again, nine were
s (for PLSR approach), and the performance of this model was tested on the 10th
ance for each set of parameters/factors, which was later compared to identify the
ox contains all steps in model optimization.
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n the 10th group, called the validation set. This procedure was
epeated 10 times for each set of parameters or PLS factors. The
verage performance of the model over these inner 10 folds was
sed to determine the optimal set of parameters or PLS factors for
ach round of the outer 10-fold cross-validation. Subsequently, the
est model was selected and used to predict the outcome of runs

n the corresponding, unseen test set.

.3. Construction of partial least square regression (PLSR) models

Partial least square regression (PLSR) models were constructed
sing the SIMPLS algorithm (Chong and Jun, 2005; de Jong, 1993).
ime-series data for each process parameter were extracted every
0 h, resulting in multiple discrete “variables” originating from the
ame parameter. These variables were concatenated over the run
ime of each scale into a data matrix (X). Data in each column of this

atrix were further autoscaled to a mean of zero and a standard
eviation of one to give a new matrix X0.  A similar transforma-
ion was also performed on the response vector (y) to obtain the
utoscaled final process outcome (y0) (either antibody titer or lac-
ate concentration at the end of the 12,000 L cultures).

The autoscaled data matrix (X0) was projected onto mutually
rthogonal PLS factors (XS), each of which is a weighted linear com-
ination of the original variables in X0.  A set of these PLS factors can
e used to construct a regression function to predict the autoscaled
nal process outcome in y0.  The SIMPLS algorithm for a univariate
esponse in y0 can be simplified in the following equations:

Sn×a = X0n×p · Wp×a (3)

0n×p = XSn×a · XLT
p×a + XEn×p (4)

0n×1 = XSn×a · ˇa×1 + yen×1 (5)

such that the covariance between X0 and y0 is maximized.
In these equations, XS,  X0,  and W are the matrix of ortho-

onal PLS factors, the autoscaled data matrix, and the matrix of
LS weights, respectively. The matrices XL and XE contain loadings
f the PLS factors and the residuals when factorizing X0 into a prod-
ct of XS and XLT, respectively. The vectors y0,  �, and ye comprise
he autoscaled response, the regression coefficients of y0 using XS,
nd the residuals when regressing y0 using XS,  respectively. The
ariables n, p, and a are the number of process runs, the number
f variables (in this case, a product between the number of process
arameters m and the number of time points t), and the number of
LS factors used for regression, respectively.

The plsregress subroutine, an implementation of the SIMPLS
lgorithm in the Matlab’s statistics toolbox, was used for construc-
ing the PLSR models. For each of the 15 datasets, a PLSR model
as constructed and optimized as described in model training and

valuation using 10-fold cross-validation. The number of PLS fac-
ors in each model was varied from one to the maximum possible
which is the rank of the data matrix X0). For each fold of the outer
0-fold cross-validation, an optimal set of PLS factors, and thus vari-
bles, could be identified. Furthermore, as each original parameter
as discretized into multiple variables, the average magnitude of

he regression coefficients of all variables which originated from
he same parameter was used to assess the importance of that
arameter.

.4. Construction of support vector regression (SVR) models

LIBSVM (Chang and Lin, 2001), an implementation of the SVR
lgorithm in C, was used to construct �-SVR models as described

reviously (Charaniya et al., 2010) with several modifications. For
ach individual parameter, the Euclidean distance between any
wo runs i and j was computed and scaled to a range from 0 to
. This scaled distance (dij) was converted into a similarity value
ogy 162 (2012) 210– 223 213

(sij = 1 − dij) and organized into a matrix for all pairwise compar-
isons of runs (n × n, where n is the number of runs). The similarity
matrices of all parameters were linearly combined to form a final
similarity matrix, which was used as a pre-defined kernel in the
�-SVR algorithm. Upon combination, each parameter was either
given equal weights of 1/m (where m is the number of process
parameters) or weighted according to how well it correlates to
the final process outcome as described previously (Charaniya et al.,
2010). Thus all entries in the final similarity matrix were main-
tained between 0 and 1. The objective function (y), either the final
titer or the final lactate concentration, was also scaled to the same
range of 0–1.

�-SVR models were constructed and optimized for each of the
eight individual datasets as described in model training and evalua-
tion using 10-fold cross-validation and in Section 2.5.  For the seven
cumulative datasets, due to computational constraints imposed by
the large number of parameters, SVR models were built using the
best performing sets of parameters obtained for the correspond-
ing individual datasets. In addition, a simple grid search within the
range of 0–1 with 0.1 intervals was  performed on the cost func-
tion. The best value was used in the subsequent step of model
optimization to identify pivotal process parameters.

2.5. Identification of pivotal process parameters using SVR
approach

A greedy parameter selection approach based on the wrapper
feature-selection method (Liu and Hiroshi, 1998) was used to find
the best performing set of parameters for the SVR models. This
approach determined the suitability of a set of features (i.e., pro-
cess parameters) by first building an SVR model using these features
and then assessing its performance on a subset of the data that was
not used for training (i.e., validation set). The set of features whose
model achieved the best performance on the validation set became
the set of selected parameters. Since each of the eight individual
datasets contains either 33 parameters at the inoculum scales or
35 parameters at the production scale, a direct application of the
wrapper feature-selection method will require an evaluation of
233 − 1 or 235 − 1 (excluding the null set) possible parameter sub-
sets, which is prohibitively large. For this reason, we employed a
greedy strategy that only considers a substantially smaller number
of parameter subsets.

In this approach, the different parameter subsets were orga-
nized into a lattice structure, whose ith level contained all the
subsets of size (m − i) where m is the number of parameters. All
nodes at each level were connected to the nodes of the preceding
level that were its supersets. The algorithm started by evaluating
the performance of the subsets at levels 0 and 1 (i.e., the entire set
of m parameters and the m subsets that were obtained by remov-
ing one parameter, respectively). Among the m subsets at level 1,
N subsets whose models achieved the best performance on the
validation set were retained. The algorithm then proceeded to eval-
uate the performance of subsets at level 2 that are descendants
of at least one of the N nodes retained at level 1. Among those
subsets, it also retained the N best performing ones. This process
continued until the last level of the lattice. Note that, by setting
N to a small value (in our experiments, N = {5, 15, 25, 35}) and by
considering only subsets whose supersets were among the N best
performing subsets of the previous level, the total number of sub-
sets being considered became computationally feasible. In addition,
since the subsets that were pruned are those that did not perform

well, this approach could still identify good performing parameter
subsets.

Since 10-fold cross-validation was  performed, each fold gener-
ated an optimal set of parameters. Thus the occurrence frequency
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Fig. 2. Differences in process performance as indicated by the final antibody concentration (titer), viable cell density (VCD), and lactate concentration across 243 production
runs.  (a) Distribution of the final titer (normalized such that the average across all runs is 1.00). Roughly 20% of runs have final titers greater than 1.10 (top 20%—in blue);
20%  of runs have titers less than 0.90 (bottom 20%—in red); and 60% of runs have titers between 0.90 and 1.10 (middle 60%—in gray). (b) Variation in viable cell density at
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his  figure legend, the reader is referred to the web  version of this article.)

f) of each parameter over all 10 folds can be used as an estimate of
ts contribution to the overall model performance.

. Results

.1. High- and low-performing runs exhibit distinct process
haracteristics

The 243 production runs investigated in this study exhibited
onsiderable variation in a number of process parameters and out-
ome as shown in Fig. 2. The pre-harvest recombinant antibody
oncentration (final titer), previously normalized to an average of
.00, varied across a wide range from 0.70 to 1.25 (Fig. 2a). These
uns were categorized into three classes: top 20% (in blue), mid-
le 60% (in gray), and bottom 20% (in red), with their final titer
pproximately over 1.10, between 1.10 and 0.90, and below 0.90,
espectively. Because of measurement error of recombinant anti-
ody concentration, it is possible that runs within the middle 60%
lass have a high degree of similarity. In contrast, comparison of
he top 20% and the bottom 20% runs should reveal distinct char-
cteristics of high-titer cultures.

As shown in Fig. 2b, both the top and bottom 20% cultures started
ith a similar range of cell concentration in the production-scale

ioreactors. There was a substantial spread of cell concentration
t peak growth and at the end of the culture, even among runs
ithin the top or bottom 20% class. In general, the top 20% runs

eached higher peak cell concentrations (between 100 and 150 h)
lthough the range was rather wide. It is apparent that more runs
f the bottom 20% class had lower peak cell concentrations, and all

ottom 20% runs had lower viable cell concentrations at the end of
he production run.

The lactate concentration profiles also showed profound differ-
nces between the top 20% and bottom 20% runs (Fig. 2c). Although
 in lactate concentration at 12,000 L scale between runs in the top 20% (blue) and
 and the final titer across all runs. (For interpretation of the references to colour in

lactate concentrations were in similar ranges in all cultures initially,
by the time cell concentration reached the peak, they had become
higher in the bottom 20% runs. Despite a period between 100 and
130 h during which lactate production subsided, all bottom 20%
runs proceeded to return to the lactate production state whereas
nearly all top 20% runs switched to the lactate consumption state.
Many of these top 20% runs resulted in complete exhaustion of lac-
tate previously produced during the exponential growth stage. As
expected, the final lactate concentration was found to be highly
correlated to the product yield in all runs with a Pearson’s corre-
lation coefficient of −0.87 (Fig. 2d), indicating a close connection
between cellular metabolic activities and product titer.

3.2. Process outcome is predicted accurately using multivariate
models

Two multivariate regression approaches, support vector regres-
sion (SVR) and partial least square regression (PLSR), were
employed. Time-series process data were acquired for 134 online,
offline, and derived parameters throughout the inoculum train
(80 L, 400 L, and 2000 L) and the production-scale bioreactors
(12,000 L). To investigate the importance of these parameters at
each scale, process data were organized into 15 different datasets
as shown in Table 2. In addition to the final titer, the final lactate
concentration was also used as an objective function because of
the indication of its being an attribute of a culture’s performance.
The prediction accuracy of these models was  assessed based on
the Pearson’s correlation coefficient (r) and the root mean square
error (ε) as described in model training and evaluation using 10-fold

cross-validation.

In constructing SVR models, a grid search of the cost function
in the range of 0–1 with 0.1 intervals yielded an optimal value of
1, which was used for constructing subsequent SVR models. Both
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ifferential and equal weighting schemes as described in Section

.4 were employed to combine all similarity matrices. Since the
qual weighting scheme resulted in slightly better model perfor-
ance (data not shown), it was used for the subsequent step of

eature selection. A wrapper-based feature selection algorithm as

ig. 3. SVR models’ prediction accuracy of the final titer using different datasets. The corr
ase.  The dashed lines indicate the separation of the top 20%, middle 60%, and bottom 20%
op  20% class based on the actual titer are colored in blue; runs in the middle 20% class ar
b)  2000 L scale. (c) Up to 70 h of 12,000 L scale. (d) Up to 260 h of 12,000 L scale. (e) The pr
he  bottom 20% runs. (For interpretation of the references to colour in this figure legend, 
ogy 162 (2012) 210– 223 215

described in Section 2.5 was  further employed to identify the opti-

mal  combination of parameters that result in the lowest root mean
square error (ε). The top 35 nodes (i.e., N = 35) were expanded at
each level. Three additional values of N = {25, 15, 5} were also eval-
uated, and resulted in similar performances for the 8th dataset

elation coefficient (r) between the predicted and the actual titer is shown for each
 of runs based on the predicted titer (y-axis) or the actual titer (x-axis). Runs in the

e colored in gray; and runs in the bottom 20% class are colored in red. (a) 80 L scale.
ogression of predicted titer is shown over the course of the cultures for the top and
the reader is referred to the web version of this article.)
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Fig. 4. Variation of validation error as a function of the number of parameters. (a)
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12,000 L up to 260 h). Thus, for the other individual datasets, the
aximum number of nodes to be expanded at each level was  fixed

t 35.
Similarly, in constructing PLSR models, a 10-fold cross-

alidation scheme (Fig. 1) was used to find the optimal number
f PLS factors to be incorporated in each model that gives the best
redicted final process outcome. As described in model training
nd evaluation using 10-fold cross-validation, the number of PLS
actors was varied from one to the rank of the data matrix X0.  The
ptimized number of PLS factors in each training set was used to
onstruct a PLSR model for the corresponding test set.

It is interesting that prediction trends across different datasets
ere considerably similar irrespective of the multivariate approach

s shown in Table 2. Overall, PLSR approach appeared to result in
lightly better models than those constructed using SVR approach.
owever, when the input data were noisy (400 L and 2000 L), these
LSR models failed to maintain good performances whereas SVR
odels built using the same datasets were still robust. Further-
ore, similar correlations between the predicted and the actual

nal process outcome were observed across all datasets regard-
ess of whether the final titer or the final lactate concentration was
sed as the objective function. This result indicates that product
ield and cellular metabolic activities are indeed closely inter-
onnected, confirming the high correlation between these two
haracteristics as previously shown in Fig. 2d. Due to this con-
iderable similarity in prediction accuracy, results are presented
or SVR models predicting the final titer herein. It is noteworthy
hat a random predictor generates a root mean square error of
.17 and 7.80 for the final titer and the final lactate concentration,
espectively, and a Pearson’s correlation coefficient of zero in both
ases.

Data acquired at the smallest scale of the inoculum train (80 L)
ere moderately indicative of the final titer with a correlation

oefficient (r) of 0.40 and a root mean square error (ε) of 0.10
Fig. 3a). The SVR model constructed using data from the next scale
f 400 L performed slightly better with r = 0.43 and ε = 0.10. Data
rom 2000 L scale bioreactors, surprisingly, were less informative
han data from the two smaller scales. The correlation coefficient
ropped to 0.35 and the error remained at 0.10 as shown in Fig. 3b.
his reduced performance appeared to be circumvented by con-
atenating data across these scales. The SVR model built upon data
oncatenated from 80 L and 400 L scales exhibited a slight improve-
ent compared to those built using data from each individual scale

r = 0.47, ε = 0.09). Similarly, cumulative data across all three scales
f the inoculum train resulted in a correlation coefficient of 0.48
nd an error of 0.09.

When data from the first 70 h of the production scale was used,
he prediction accuracy increased sharply to 0.73 with a root mean
quare error of 0.07 (Fig. 3c). By the time most runs reached peak
rowth at 120 h, the performance improved to r = 0.77 and ε = 0.07.
s the runs approached the end, the final titer could be predicted
ith higher correlation coefficients of 0.86 (ε = 0.06) by 170 h, and

.92 (ε = 0.04) upon completion at 260 h (Fig. 3d). Interestingly, the
egression models built upon data acquired at the production scale
lone were slightly more predictive compared to those with the
ddition of data from the inoculum train. Concatenating data from
he inoculum train to the first 70 h of the production scale actually
educed the prediction accuracy from r = 0.73 and ε = 0.07 to r = 0.68
nd ε = 0.08. At around peak growth (∼120 h), addition of inoculum
ata did not result in a better model (r = 0.72, ε = 0.08 compared to

 = 0.77, ε = 0.07). Similarly, concatenating inoculum data with data
rom the late stage of the production scale also did not improve

rediction accuracy. The model built upon concatenating all data
howed little to no improvement (r = 0.92, ε = 0.05) over the model
uilt on data from the production scale only (r = 0.92, ε = 0.04). This
esult suggests that the inoculum data are rather noisy relative to
Final titer as the objective function. (b) Final lactate concentration as the objective
function.

the production-scale data and incorporation of these data may not
help increase model prediction accuracy.

Furthermore, as evident from Fig. 3a and b, using data from the
80 L and 2000 L scales, only a few runs predicted to be in the top 20%
class (above the horizontal grid line of y = 1.05) actually fell to the
bottom 20% class of the actual titer (on the left of the vertical grid
line of x = 0.90). Similarly, the number of runs predicted to be in
the bottom 20% class (below the horizontal grid line of y = 0.95)
that ended up in the top 20% class (on the right of the vertical
grid line of x = 1.10) was also small. Once data from the produc-
tion scale, even as early as the first 70 h, was used, this class switch
was not observed in any runs (Fig. 3c and d). This result indicates
that process characteristics at the early stage of the production
scale are already indicative of the final outcome, and no runs are
inclined to switch between the top and the bottom classes after this
stage.

We next examined those few runs which switched classes by
tracking their performance over the course of the run. The perfor-
mance as judged by titer predicted using each of the eight individual
datasets is shown in Fig. 3e. For better visualization, the titer val-
ues predicted using each dataset were linearly scaled such that they
were in the same range as the actual titer values throughout. Again
red and blue colors indicate the bottom and the top 20% of runs,
respectively. It is interesting to note that class switch occurred rel-
atively gradually over different stages of the inoculum train (80 L,
400 L, and 2000 L). By 70 h of the production scale, switching has
virtually completed. The results suggest that intervention may  be
carried out prior to that time point of the production scale to influ-
ence the outcome.

3.3. Majority of pivotal parameters are related to cell growth and
lactate metabolism

The contribution of each parameter to the prediction of the
final process outcome was assessed using two  criteria: the magni-
tude of the regression coefficient (ˇ) in the optimized PLSR models
and the frequency of occurrence (f) in the selected parameter sets
for SVR models. As described in Section 2.5,  a wrapper-based fea-

ture selection algorithm was  employed to identify the minimum
combination of parameters that results in an SVR model with the
lowest validation error. Shown in Fig. 4 is this error as a function
of the number of parameters incorporated into SVR models at each
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ig. 5. Contribution of process parameters to prediction accuracy of the final titer ( 

s  evaluated using: (a) magnitude of regression coefficient (|ˇ|) of each parameter i
VR  models.

cale. Initially, the SVR models appeared to perform better with
he gradual removal of parameters, indicating that most of these
arameters are indeed redundant or even noisy. In most cases, the
est model was constructed using a set of six to eight parame-
ers as indicated by the valley in the validation error profile. The
mmediate, sharp rise of error following the removal of parame-

ers in this selected set from the model suggests that they play

 pivotal role in model prediction accuracy. Thus the occurrence
requency (f) of each parameter in all selected sets represents its
elative contribution to the SVR models’ performance.
d the final lactate concentration ( ) using data acquired at 80 L scale bioreactors
ized PLSR models. (b) Frequency of occurrence (f) of each parameter in optimized

As shown in Section 3.2,  class switch appeared to occur either
during the inoculum train or by 70 h of the production scale. We
thus focused on identifying pivotal parameters at these two stages
to search for possible hints of intervention. Fig. 5 shows the relative
importance of 33 process parameters acquired at the smallest scale
of the inoculum train (80 L) using PLSR and SVR approaches. Both

criteria of  ̌ and f led to a common conclusion that the majority of
parameters pivotal to prediction of the final titer appeared to be
related to cell growth and lactate metabolism by different degrees.
These parameters include viable cell density, viability, specific cell
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Fig. 6. Time profiles of several pivotal parameters at 80 L scale. Runs in the top 20% are colored in blue; those in the bottom 20% are in red. (a) Viable cell density (VCD). (b)
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olour  in this figure legend, the reader is referred to the web version of this article.)

rowth rate, specific lactate production rate, total base added, lac-
ate, and osmolarity. It is noteworthy that when the final lactate
oncentration was used as the objective function, similar parame-
ers were identified as pivotal, supporting the notion that product
ield and cellular metabolism are indeed strongly correlated.

The time profiles of several pivotal parameters in the top 20%
nd bottom 20% runs at the 80 L scale are shown in Fig. 6. Although
he differences between runs in these two classes were rather mod-
st, a general trend could still be discerned. Runs in both classes
ppeared to be inoculated at similar cell concentrations, yet cells
n most top 20% runs grew at relatively faster rates, giving rise to
onsistently higher viable cell density in these runs (Fig. 6a and b).
ell viability also largely remained high (>90%) in these cultures
Fig. 6c). Surprisingly, the majority of the top 20% runs experienced
omewhat higher lactate concentration at this scale as shown in
ig. 6d. However, the specific lactate production rate was lower
Fig. 6e) and less base was added to maintain a constant pH (Fig. 6f).

It is interesting that these pivotal parameters identified at the
eginning of the inoculum train continued to be critical during the
arly stages of the production scale as evident from Fig. 7. Further-
ore, the subtle differences between runs in the top and bottom

0% classes observed at the 80 L scale were significantly magni-

ed at the production scale (Fig. 8). As early as 60 h, a number of
igh-titer runs already had a metabolic shift to lactate consump-
ion as indicated by negative specific lactate consumption rates,
hereas most low-titer runs continued to produce lactate (Fig. 8a).
roduction rate (qLac). (f) Total base added. (For interpretation of the references to

The majority of runs in the top 20% class eventually shifted to the
lactate-consuming state. In contrast, runs in the bottom 20% class
produced lactate at elevated rates, resulting in substantially high
lactate concentrations in most cultures (Fig. 2c).

Specific glucose consumption rates also differed significantly
between the two  classes (Fig. 8b). High-titer runs consumed glu-
cose at much reduced levels throughout the cultures compared to
those with low titer. Thus, high-titer runs did not appear to require
multiple additions of glucose after the main feed at 70 h (Fig. 8c).

The low lactate concentration in the top 20% runs reduced or
even eliminated the need for base addition whereas large amounts
of base were added to the bottom 20% runs (Fig. 8d). This base
addition in turn led to accumulation of sodium ion to significantly
higher concentrations (Fig. 8e), and therefore osmolarity (data not
shown), in these low-titer runs. The difference in lactate concentra-
tion between the two classes was  also reflected in the pH controller
output as shown in Fig. 8f. The opposing behaviors of parameters
related to lactate metabolism in the two  classes further strength-
ened the findings that this set of parameters played an important
role in predicting the final process outcome.

3.4. Lactate consumption at production scale emerges as process

indicator

The analysis presented so far indicates a high correlation of
cell growth and lactate metabolism to the final titer. The majority
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Fig. 7. Contribution of process parameters to prediction accuracy of the final titer ( ) and the final lactate concentration ( ) using data acquired up to 70 h of 12,000 L
s  of ea
p

o
p
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cale  bioreactors as evaluated using: (a) Magnitude of regression coefficient (|ˇ|)
arameter in optimized SVR models.

f parameters identified as pivotal for prediction of the final
rocess outcome, using data from the inoculum train or the early
tage of the production scale, are related to cell growth and
actate metabolism (Figs. 5 and 7). Runs with high viable cell
oncentration and low final lactate concentrations or consumed

actate at the production scale yielded high levels of recombinant
ntibody (Figs. 2c and 8a). Runs with low lactate production rates
nd high cell growth rates at the beginning of the inoculum train
ften had high final titer (Fig. 6). Indeed, when specific lactate
ch parameter in optimized PLSR models. (b) Frequency of occurrence (f) of each

production rate was  plotted against viable cell concentration or
specific glucose consumption rate at 80 L scale (Fig. 9), two clusters
of the top and the bottom 20% runs could be seen, albeit with
a high degree of overlap. These metabolic indicators of the final
process outcome thus hint at possible means to intervene with the

process as early as the inoculum stage.

To gain more insights into the metabolic shift occurring at the
production scale, which is highly correlated to hyper-productivity,
the specific rates of lactate production, glucose consumption, and
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ig. 8. Time profiles of several pivotal parameters at 12,000 L scale. Runs in the top 

ate  (qLac). (b) Specific glucose consumption rate (qGlc). (c) Glucose concentration. 

eferences to colour in this figure legend, the reader is referred to the web  version o

ell growth in the top and bottom 20% of runs at the late stage of
he production scale (from 120 to 240 h with 10 h intervals) were
urther analyzed as shown in Fig. 10.  In low-titer runs, specific
actate production rate spanned over a wide range from a very
ow value to as high as 0.6 mmol/109 cells/h (Fig. 10a). In con-
rast, specific lactate production rate in high-titer runs spanned

 much narrower range from 0.05 to −0.05 mmol/109 cells/h

consumption). Lactate consumption at the production scale,
trikingly, occurred even when lactate was almost depleted in the
ultures. This suggests that once cells start to consume lactate,

ig. 9. Relationship between several parameters related to cell growth and lactate metab
ach  data point represents one time point from 20 h to 70 h of 80 L cultures with 10 h inte
s. specific glucose consumption rate (qGlc). (For interpretation of the references to colou
e colored in blue; those in the bottom 20% are in red. (a) Specific lactate production
tal base added. (e) Osmolarity. (f) pH controller output. (For interpretation of the

 article.)

they have a propensity to continue consuming it regardless of the
low level of this metabolite. Likewise, cells in a lactate-producing
culture appeared to remain in that state despite the extensive
accumulation of lactate. In other words, high concentration of
lactate alone is not sufficient to trigger lactate consumption, nor
does it completely inhibit lactate production.

Interestingly, glucose concentration does not dictate lactate

metabolism; both lactate production and consumption can occur
over the same wide range of glucose concentration (Fig. 10b). In
other words, the abundant presence of glucose does not deter

olism for runs in the top 20% (blue) and the bottom 20% (red) classes at 80 L scale.
rvals. (a) Specific lactate production rate (qLac) vs. viable cell density (VCD). (b) qLac

r in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Relationship among several parameters related to cell growth and lactate metabolism for runs in the top 20% (blue) and the bottom 20% (red) classes in the late stage
of  the production scale. Each data point represents one time point from 120 h to 240 h of 12,000 L cultures with 10 h intervals. The dashed line represents qLac = 0. (a) Specific
lactate  production rate (qLac) vs. lactate concentration. (b) qLac vs. glucose concentration. (c) qLac vs. specific glucose consumption rate (q ). (d) q vs. glucose concentration.
( erenc
a

l
o
0
m
t
a
F
c
l
b
t
K

s
i
g
c
m
c
v
t
c
g
c

e)  qLac vs. specific cell growth rate (�). (f) qGlc vs. �. (For interpretation of the ref
rticle.)

actate consumption. It is evident that lactate consumption occurs
nly when the specific glucose consumption rate is low (below
.07–0.1 mmol/109 cells/h) (Fig. 10c). There also seems to be a
inimum specific glucose consumption rate that cells sustain, as

he value never reaches zero. Furthermore, glucose concentration
lone does not determine glucose consumption, as can be seen in
ig. 10d. There is virtually no difference in the range of glucose
oncentration between metabolically shifted cultures (qLac ≤ 0 and
ow qGlc) and “typical” cultures (high qLac and high qGlc). It should
e noted that the glucose concentrations in all cultures were main-
ained at more than 3 g/L, substantially higher than the reported
m of the GLUT1 transporter for glucose (approximately 0.18 g/L).

It is interesting to observe that lactate consumption is not
trongly dependent on how much cell growth slowed down dur-
ng the late stage of the production scale (Fig. 10e). The specific
rowth rate spans over a wide and similar range for both lactate-
onsuming and lactate-producing cultures, although somewhat
ore frequent occurrence of slower growth rates is seen in lactate-

onsuming cultures. Likewise, the glucose consumption rate can
ary greatly regardless of specific cell growth rate (Fig. 10f). Taken

ogether, these observations indicate that the potential of cells to
onsume lactate in the late stage is largely a function of reduced
lycolytic flux rather than of glucose or lactate concentration or
ell growth.
Glc Glc

es to colour in this figure legend, the reader is referred to the web version of this

4.  Discussion

The immense volume of cell culture bioprocess data in historical
archives certainly holds valuable insights into manufacturing pro-
cesses and product characteristics. This resource has begun to be
explored to generate process insights using multivariate data anal-
ysis tools. This study employed two  such tools, SVR and PLSR, to
investigate process data from more than two hundred production-
scale cultures. Both methods could predict process performance
with similar high accuracies if data from the production bioreac-
tors were used with the objective function being either the final
titer or the final lactate concentration.

Data acquired at the inoculum train alone (80, 400 and 2000 L
reactors) were somewhat less predictive of the final process
outcome compared to the production-scale data. The difference in
prediction accuracy between these two sets of data is largely due
to the difference in their culturing mode. The duration in each seed
train reactor is shorter (3–4 d) and the cell concentration achieved
is lower when compared to the production culture. The values of
process parameters which can be used for prediction are lower,

and so are the differences in parameter values between high-
and low-performing runs. Thus, data acquired from the seed train
are not as accurate in predicting the final titer as the production
data. Although the seed run data do not provide a highly accurate
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Table 3
Number of runs predicted to be in one of the three classes using data at 80 L scale:
top  20%, middle 60%, and bottom 20%. The actual class each of these runs belonged
to at the end of the 12,000 L scale was also shown.

Predicted at 80 L Actual titer at production scale

Total Top 20% Middle 60% Bottom 20%

Top 20% 43 13 28 2

p
o
i
b
a
t
a
f
c
s
s
c
a
t

a
a
m
s
a
s
l
o
c

i
o
a
v
r
i
4
i
a
r
t
p
o

c
g
t
p
m
2
m
g
s
t
l

t
a
h
o

Middle 60% 148 33 95 20
Bottom 20% 52 3 22 27

rediction of the final titer, they do provide valuable information
n the “class”, i.e., high productivity and low productivity runs. This
s illustrated in Table 3. Among the 52 runs predicted to be in the
ottom 20% class using data obtained from the 80 L cultures, 52%
ctually turned out to be in the bottom 20% class regarding the final
iter. Another 42% became middle titer runs. It is worth noting that
ny intervention would be targeted towards those low-titer runs,
or which there is indeed a good class prediction using the seed
ulture data. Even if only those runs can be rectified by employing
ome remedial procedure, the overall increase in productivity is
ubstantial. The key issue will be which intervention procedure
an be applied. Although data mining can only yield correlations
nd rarely reveals causal relationships, one can gain insights from
he key factors that contributed to the prediction.

The pivotal parameters identified both at the inoculum train
nd at the production scale are mostly associated with cell growth
nd lactate metabolism, indicating the prominent role of cellular
etabolism in determining product titer. Previous analysis of a sub-

et of runs used in this study (Charaniya et al., 2010) and data from
nother manufacturing process (Kirdar et al., 2008) also led to a
imilar conclusion. The results from this study further indicate that
actate consumption at the production scale serves as an indicator
f high productivity. However, the conditions that induce lactate
onsumption in the high titer runs at this scale are still unknown.

The observed implication that the inoculum train possibly
mparts a longer lasting effect on the process outcome reiterates
ur previous findings (Charaniya et al., 2010) and the results from
nother study (Ündey et al., 2010). It may  hint at possible inter-
ention during inoculum train operation to steer the low titer
uns to higher productivity. A possible approach of intervention
s the selective use of 80 L runs for subsequent inoculation into
00 L runs, although this will certain impose major constrains

n reactor scheduling and increased cost of operation. A more
cceptable approach might be identifying the cause and taking
emedial actions. The prominence of glucose consumption and lac-
ate production as important factors at the 80 L scale points to the
ossibility of reducing lactate production by metabolic intervention
r by other means of lactate removal during the inoculum train.

A key correlated factor of low lactate production and lactate
onsumption at the production scale appears to be low specific
lucose consumption. Thus, controlling glycolytic flux seems to be
he key to modulating lactate metabolism and therefore the final
roduct yield. Such a conclusion has also been reached through a
etabolic study in conjunction with modeling (Mulukutla et al.,

012), which showed that the switch to the lactate consumption
ode could be attributable to a moderate attenuation of glycolytic

enes’ expression and differential activities of the Akt and p53
ignaling pathways. Indeed, inhibition of the Akt pathway by addi-
ion of its inhibitors in the late growth stage was shown to facilitate
actate consumption.

Remedial corrective measures at the production scale will need

o focus on manipulating cell metabolism prior to 70 h, the point
t which the correlation between predicted and actual titer still
ints at some flexibility in the outcome. Many possible approaches
f suppressing glucose metabolism and eliciting metabolic shift
ogy 162 (2012) 210– 223

to lower lactate production or lactate consumption have been
reported, including reducing glucose concentration (Cruz et al.,
1999; Zhou et al., 1997), employing alternative sugars (Altamirano
et al., 2006; Wlaschin and Hu, 2007), supplementing copper ion
(Qian et al., 2011), and adding inhibitors of the Akt pathway
(Mulukutla et al., 2012). Conceivably interventive measures can
be taken by then if necessary. Whether those possible interven-
tions will be effective can only be answered by experimentation.
Whether the intervention methods, if proven effective, should be
implemented in a manufacturing setting will largely depend on the
operating protocols of each individual plant and the nature of the
interventions.

With the increasing emphasis on the concept of Quality by
Design (QbD) in the production of therapeutic biologics, we  foresee
such practices of mining bio-manufacturing data being extended
to analyze Critical Quality Attributes (CQAs). Recently, clustering
of glycosylation profiles of an antibody product has revealed a high
correlation between product quality attributes and process char-
acteristics (Le et al., 2011). As both process and product quality
data continue to accumulate, the likelihood of identifying pro-
cess characteristics which affect product quality will also increase.
Harnessing the power of data mining will greatly strengthen
our capability to produce high quality products through high-
productivity processes.
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