
Efficient Nested Dissection for Multicore
Architectures

Dominique Lasalle and George Karypis

Department of Computer Science & Engineering,
University of Minnesota,

Minneapolis, MN 55455, USA
{lasalle,karypis}@cs.umn.edu

Abstract. Sparse matrices are common in scientific computing and ma-
chine learning. By storing and processing only the non-zero elements of
a matrix containing mostly zeros, sparse matrix algorithms often reduce
computation and storage requirements of operations by an order of com-
plexity. The order of the rows and columns of the matrix can have a
significant impact on the efficiency of sparse direct methods. For exam-
ple, in a Cholesky decomposition, it is desirable to re-order the input
matrix so as to reduce the number of non-zeros in the factors. One of the
most effective methods for producing a good ordering nested dissection,
where vertex separators are recursively found in the graph representation
of the matrix and used to re-order the rows and columns. In this work we
investigate the creation of vertex separators on shared memory parallel
architectures and their use in nested dissection. We introduce a new ef-
fective scheme for refining a vertex separator in parallel, and a specialized
parallel task scheduling scheme for the nested dissection problem. These
algorithms have been implemented in the mt-Metis1 framework. Our
experiments show that mt-Metis is 1.5× faster than ParMetis and PT-
Scotch while producing orderings with 3.7% fewer non-zeros and 14.0%
fewer operations.

1 Introduction
Sparse matrices are used in a variety of scientific computing and machine learn-
ing applications. Because sparse matrices do not store the zero-valued elements
which make up the majority of their entries, their use results in significant savings
of storage space as well as computation. Fill reducing orderings are permutations
on the input matrix which decrease the number of non-zero elements (fill-in) in
the output matrix of direct sparse methods [6]. For a Cholesky decomposition, we
want to find a re-ordering such that the Cholesky factor will have as little fill-in
as possible. One of the most effective methods for creating a fill reducing order-
ing is that of nested dissection [9, 10]. In nested dissection, balanced minimum
vertex separators are recursively found in the graph representing the non-zero
pattern of the sparse matrix. The quality of the resulting ordering depends upon
the size of the vertex separators used.

1 The mt-Metis software is available at http://cs.umn.edu/~lasalle/mtmetis

The problem of finding minimum balanced vertex separators is known to be
NP-Hard [2]. Heuristic multilevel methods have been developed to find small
vertex separators in near linear time [12, 16, 17, 5]. Many of these approaches in-
clude scalable distributed memory algorithms. While these algorithms work well
when each processor has its own memory hierarchy, their execution on modern
multicore systems result in large degrees of memory contention and duplication.
For generating edge separators, it has been shown that shared-memory parallel
algorithms can result in significant runtime and memory usage improvements [5,
4, 19].

Vertex separators pose several additional challenges to parallelism beyond
those of edge separators. Whereas most applications for edge separators demand
that the partitioning be generated quickly and place only moderate importance
on the quality of the separator, nested dissection places a much higher impor-
tance on quality. While the higher levels of recursion in nested dissection are
independent tasks, they are still bounded by memory bandwidth on multicore
systems and are often unbalanced in their associated work. An effective approach
must effectively balance these tasks while having high cache utilization.

In this paper, we present shared memory parallel algorithms for generating
vertex separators and using those vertex separators to generate a fill reducing
ordering via nested dissection in parallel. Our contributions build on the previ-
ous work for creating edge separators using the multilevel paradigm on shared
memory architectures [19]. We adapt these algorithms for vertex separators and
introduce a new method for refining a vertex separator in parallel while mak-
ing minimal sacrifices in terms of separator size. We introduce specialized task
scheduling to maximize cache efficiency for the nested dissection problem. We
achieve up to 10× speedup on 16 cores, while producing orderings with only
1.0% more fill-in and requiring only 0.7% more operations than the serial ND-
Metis. This is 1.5× faster, 3.7% less fill-in, and 14.0% fewer operations than
either ParMetis [16] or PT-Scotch [5].

This paper is organized into the following sections. Section 2 introduces the
notation used throughout this paper. Section 3 discusses relevant prior work on
the generation of minimum vertex separators and nested dissection. In Section
4, we describe our methods for generating vertex separators in parallel, and ap-
plying this method to nested dissection. Section 5 describes the conditions of our
experiments. We present our results for generating vertex separators and per-
forming nested dissection in Section 6. Finally, we summarize the contributions
of this work in Section 7.

2 Definitions & Notation

In this work we deal with a simple undirected graph G = (V,E), consisting of a
set of vertices V , and a set of edges E. Each edge is composed of an unordered
pair of vertices (i.e., v, u ∈ V).

We will denote the size of the vertex set by the scalar n = |V |, and the size
of the edge set by the scalar m = |E|. Vertices and edges can have non-negative
integer weights associated with them. The weight of a vertex v is denoted by η(v),

and the weight of an edge e is denoted by θ(e). If there are no weights associated
with the edges, then their weights are assumed to be one. The neighborhood of
a vertex v, that is the set of vertices adjacent to v, is denoted by Γ (v).

A vertex separator is a set of vertices of the graph S ⊂ V , such that when
removed it leaves two components A and B. Finding a vertex separator is of-
ten subject to a balance constraint, ε. That is, we want to minimize |S| while
satisfying:

2
max(|A|, |B|)
|A|+ |B|

≤ 1 + ε.

3 Background
For over two decades multilevel methods have been used with great success
for graph partitioning. These methods have been shown to be both extremely
fast and produce results of high quality [11, 15, 21, 23]. These methods work
by generating multiple levels of increasingly coarser graphs, G1, . . . , Gs, from
the original graph G0. This process is known as the coarsening phase. Next, in
the initial partitioning phase, a partitioning of the coarsest graph Gs, is made
via some direct partitioning algorithm (e.g., spectral bisection [22] or KL [18]).
This initial solution is then projected through the multiple graph levels, and is
refined at each level as the degrees of freedom are increased. This is known as
the uncoarsening phase. Buluç et al. [3] provide a thorough overview of modern
multilevel approaches to graph partitioning.

The use of threads to exploit shared memory parallelism has recently been
used to decrease runtimes and memory usage compared to that of traditional
parallel distributed memory codes. Chevalier and Pellegrini [5] presented PT-
Scotch, a parallel partitioning library exploiting both shared and distributed
memory parallelism. Threads are used to parallelize the coarsening phase, which
provides significant speedup even with refinement and several other steps being
performed serially. Çatalyürek et. al. [4] similarly explored parallelizing the coars-
ening of hypergraphs via shared memory parallelism. LaSalle and Karypis [19]
investigated methods for effectively parallelizing all three phases of the multilevel
paradigm.

Originally proposed by George [9, 10], nested dissection is a recursive al-
gorithm for generating fill reducing orderings of sparse matrices. The algorithm
works by recursively partitioning the graph representation of a symmetric sparse
matrix via vertex separators, ordering the rows and columns with partition A
first, B second, and S last. This new ordering can greatly reduce the required
memory and number of computations for performing Cholesky factorization. Be-
cause at each level the vertex separators induce two disconnected components, A
and B, parallelism can efficiently be extracted by ordering A and B in parallel.

As such, the creation of vertex separators for nested dissection can be paral-
lelized by processing A and B independently. The popular parallel partitioning
packages ParMetis [16] and PT-Scotch [5], both follow similar multilevel ap-
proaches to performing nested dissection. All p processors work cooperatively
to create the first log p levels of separators in parallel, before each processor
performs nested serial dissection on its subgraph.

4 Methods

This paper builds upon the previous work for multi-threaded multilevel graph
partitioning [19]. We use the same parallelization and coarsening strategies, as
follows. Each thread is assigned a set of vertices and their associated edges. Each
thread allocates its own CSR for storing these vertices, and is responsible for the
computations on them.

4.1 Coarsening

The coarsening phase consists of two steps: matching and contraction. During
matching, each vertex is either paired with a neighbor vertex, or itself. During
contraction, paired vertices are merged together to form coarse vertices in the
next coarser graph Gi+1.

The matching scheme we use is known as Heavy Edge Matching (HEM) [16].
Each thread iterates over its set of vertices in ascending order of degree. For
each vertex v, the unmatched vertex u ∈ Γ (v) connected via the heaviest edge
is selected. Then, in a matching vector M , the matches of both v and u are
recorded, M(v) = u and M(u) = v.

As this matching is done without locks, it is possible for race conditions
to exist in determining whether a vertex is eligible for matching. To resolve
this issue, the strategy proposed by Çatalyürek et al. [4] is used. Each thread
re-iterates over its set of vertices, and any vertex for which M(M(v)) 6= v, is
matched with itself (M(v) = v). Because the number of vertices is orders of
magnitude greater than the number of threads, the number of broken matchings
is extremely small.

Contraction is an inherently parallel process, as each coarse vertex in Gi+1

can be independently constructed given Gi and M . When vertices from two
different threads are matched together, determining which of the two threads
owns the coarse vertex is done via hashing. This process repeats until Gi is
sufficiently small for the initial partitioning phase.

4.2 Vertex Separators

The generation of vertex separators differs from edge separators in the initial
partitioning and uncoarsening phases. Below we outline the methods we use for
generating and refining the vertex separators.

Initial Separator Selection A widely used method of generating a vertex
separator from an edge separator is to find a vertex cover of the set of cut
edges [22]. Because we apply refinement to the separator, we instead take all
boundary vertices as the initial separator of the coarsest graph Gs, and let
refinement thin the separator and possibly move it away from the boundary
set of vertices. We repeat this process several times and select the minimum
balanced separator. As these separators are generated and refined independently,
the process in inherently parallel. As the input graph is the same across the
generation of different separators, waiting until Gs is sufficiently small so as to
fit into shared cache is desirable.

Separator Refinement After the current separator is projected from Gi to
Gi−1, it is refined. Refinement of a vertex separator consists of moving vertices
from the separator S into either partition A or partition B. If a vertex being
moved is connected to vertices on the opposite side of the separator, those ver-
tices are then pulled into the separator. The reduction in separator size from
moving vertex v ∈ S to A is

gain = η(v)−
∑

u∈Γ (v),∈B

η(u). (1)

FM Refinement: The Fidducia Mattheyses refinement (FM) algorithm [7],
as applied to the vertex separator problem [12], works as follows. First, priority
queues for moving vertices out of the separator to either partition are initialized
and filled with vertices in S. The priority of vertices in these queues is determined
by equation (1). Vertices are selected from either priority queue in order of gain,
except when one partition is overweight, in which case the vertex at the top
of the priority queue for the lower weight partition is selected. Once a vertex
is selected, it is moved out of the separator, and its neighbors in the opposite
partition are pulled into the separator. If the neighbors being pulled into the
separator have not been moved yet in this refinement pass, they are added to
the priority queue. Once both priority queues are emptied, the best observed
state is restored. To reduce runtime, this process is terminated early if a certain
number of moves past the best state have been made.

Keeping track of the best state and reverting to it, makes the FM algorithm
inherently serial. As it works only on the separator, which should be a small
fraction of the total number of vertices in the graph, a feasible solution for small
numbers of threads is to execute the rest of the multilevel paradigm in parallel,
and serialize the refinement step in order to maximize quality.

Greedy Refinement: The greedy algorithm moves vertices through the
separator to one side at a time. This is done so that at any given moment,
the current state of the separator is valid. First, the lowest weight side of the
separator is selected as the side to which all moves will be made in the first pass.
Then, each thread adds the vertices it owns that are part of the separator to
its own priority queue, using equation (1) for the priority. Each thread makes
a local copy the current partition weights which it uses to keep track of moves
and enforce the balance constraint. These weights are periodically synchronized
with the global weights as moves are made. While this makes it possible for
refinement to violate the balance constraint if enough vertices are moved before
partition weight is synchronized, it is unlikely as it is desirable for the balance
constraint on vertex separators in nested dissection to be large [13]. In practice
we have not observed Greedy refinement to cause imbalance.

Each thread then extracts vertices from its priority queue. If the vertex can
be moved out of the separator without violating the balance constraint, and has
a positive gain associated with it, it is moved. The neighboring vertices that
the thread owns have their connectivity information updated and are added to

the separator as applicable. Messages are sent to the threads owning the remote
vertices to notify them of the move.

Once the queue is empty, or the gain associated with moving the top vertex
is negative, the thread waits for the other threads to finish. The thread then
reads its messages, and updates its vertices accordingly. Finally, the threads
synchronize once more, and the process repeats with the other side selected.
While efficient, this method often results in lower quality than the serial FM
algorithm as it does not support hill climbing and can easily become stuck in
local minima.

Segmented FM Refinement: Because we want to incorporate hill climbing
into our refinement scheme, one possible solution is to allow threads to perform
hill climbing on internal vertices (vertices which are not connected vertices owned
by another thread). We call this the Segmented FM algorithm (SFM), which
for these vertices, works the same as the serial FM algorithm and allows us
to perform hill climbing in parallel. External vertices, those that have neighbors
belonging to other threads, are prevented from moving out of the separator. This
ensures that as long as each thread maintains a valid separator for its vertices,
the global separator will also be valid. Each thread saves its best locally observed
state, and independently reverts back to it at the end of each pass.

For this method to be effective, each thread must have a large number of
internal vertices and few external vertices. To accomplish this, as a pre-processing
step, we create a k-way edge separator of the graph using the method described
in [19]. While this increases the runtime, it is a parallel step and scales well.
Furthermore, this pre-partitioning improves data locality, which is particularly
beneficial for nested dissection where we can use a single pre-partitioning for
the entire process. We select a value for k that is several times larger than the
number of threads and assign partitions to threads via hashing so that each
thread owns vertices in several locations of the graph. This is done so that many
of the threads will own vertices that will be part of the separator, and the work
during refinement will be distributed across multiple threads.

While the hill climbing capability of this method allows us to find high quality
local separators, the inability to move external vertices prevents the separator
from moving significantly. For more than a few threads, this can have a significant
impact on separator size as is shown in Section 6.

Greedy with Segmented FM Refinement: Both Greedy refinement and
SFM refinement have their advantages and disadvantages. Greedy refinement’s
ability to move both internal and external vertices allows it to move the sepa-
rator freely, but without hill climbing it cannot move past local minima. SFM
refinement’s hill climbing capabilities allow it to escape local minima and find
small separators for a thread’s local vertices, however, external vertices anchor
the separator in place, limiting the improvement. As quality is one of our pri-
mary concerns, these disadvantages make both Greedy and SFM refinement
unattractive options on their own.

For this reason, we propose the hybrid refinement strategy of overlapping
Greedy and SFM refinement passes. The first greedy pass will thin the separator

Algorithm 1 Parallel Nested Dissection

1: function ND(G)
2: if Number of threads is greater than 1 then
3: A,B, S ← vertex separator of G, in parallel
4: PA ← half the threads call ND(A)
5: PB ← half the threads call ND(B)
6: else
7: A,B, S ← vertex separator of G, serial
8: Add ND(A) to work pool
9: Add ND(B) to work pool

10: Wait for ND(A) and ND(B) to finish
11: end if
12: return {PA, PB , S}
13: end function

and move it a local minima. Then, the next SFM pass moves the sections of the
separator on internal vertices out of the local minima. The next Greedy pass
then allows the external vertices to catch up with the moved internal ones. This
process then repeats, until neither the Greedy pass nor the SFM pass move any
vertices. This provides an effective refinement scheme that both hill climbs and
moves external vertices in parallel, without leading to an invalid separator.

4.3 Nested Dissection

Our parallel nested dissection algorithm is described in Algorithm 1. At the first
level, all threads call the function ND. The threads then induce a vertex separator
cooperatively, and use this to split the graph into parts A and B. The threads
then split into two groups, with one group recursing on A and the other recursing
on B. This repeats until each thread group contains only a single thread. Each
thread then spawns tasks for processing A and B, and adds them to the work
pool, Once both A and B have been ordered, the ordering of G is computed by
placing A first, B second, and S last. When |A| is small enough, it is ordered
via the Multiple Minimum Degree algorithm [20]. This is omitted due to space
constraints from Algorithm 1.

Task Scheduling Splitting the recursive calls on the graph parts A and B into
parallel tasks, guarantees us a relatively balanced computational load. However,
we need to effectively utilize the cache to overcome memory bandwidth restric-
tions. The task tree of nested dissection has several properties that we want to
keep in mind when scheduling the tasks. 1) The lower a task is on the tree (the
earlier it is generated), the larger the graph that is associated with it. 2) The
graph associated with a given task is a subgraph of the graph associated with
its parent’s task, thus the best cache use is achieved by having a task processed
immediately after its parent.

To maximize our cache use, we propose a task scheduling scheme specifically
for the nested dissection problem, that takes advantages of these properties.
Our scheduling scheme operates on two levels. Each thread maintains a local

Table 1: Graphs Used in Experiments
Graph # Vertices # Edges Graph # Vertices # Edges

auto 448,695 3,314,611 delaunay n24 16,777,216 50,331,601

NLR 4,163,763 12,487,976 large fe 7,221,643 83,149,197

med fe 1,752,854 20,552,976 nlpkkt240 27,993,600 373,239,376

list of tasks that it generates. It processes the tasks in its list in Last-In First-
Out order to ensure that whatever subgraph is currently cached is used by the
next scheduled task as often as possible. When a thread runs out of tasks in its
own list, it steals tasks from neighboring threads in First-in First-out order (the
largest tasks). This not only ensures stolen tasks have enough work associated
with them to achieve cache re-use, also ensures that the stolen tasks are the ones
least likely to have their associated graph resident in another thread’s cache.
In Section 6.3 we compare this scheduling scheme against the generic scheme
implemented in the OpenMP runtime.

5 Experimental Methodology

The experiments in this paper were run on a HP ProLiant BL280c G6 with
2x 8-core Xeon E5-2670 @ 2.6 GHz system with 64GB of memory. We used
Intel C Compiler, version 13.1, and the GNU GCC compiler 4.9.2. The algo-
rithms evaluated here are implemented in mt-Metis 0.4, which is available from
http://cs.umn.edu/~lasalle/mtmetis. We will refer to the new vertex sep-
arator and nested dissection functionality as mt-ND-Metis in the following ex-
periments. For comparison, we also used Metis [16] version 5.1.0 (referred to in
the experiments as ND-Metis) from http://cs.umn.edu/~metis, ParMetis [17]
version 4.0.3 from http://cs.umn.edu/~metis, and PT-Scotch [5] version 6.0.3
from http://www.labri.fr/perso/pelegrin/scotch.

Table 1 details the graphs used for evaluation in Section 6. We opted to
use these graphs for varying sizes and domains. The auto, NLR, delaunay n24,
and nlpkkt240graphs were obtained from the 10th DIMACS Implementation
Challenge [1]. The graphs med fe and large feare 3D finite element meshes used
in physics simulations.

6 Results

In this section, we first evaluate the effectiveness of the vertex separator re-
finement schemes and our algorithm for finding vertex separators in parallel as
a whole. In the second part of this section we evaluate how this fits with our
parallel nested dissection algorithm.

6.1 Vertex Separators

Table 2 shows the effect on separator size of the different refinement schemes. We
compare the three parallel methods run with 16 thread to that of serial FM. SFM
refinement resulted in large separators compared to that of serial FM, due to its
inability to move external vertices. Greedy refinement did much better, finding
separators only 6.1% larger than serial FM. The refinement scheme combining

Table 2: Size of Vertex Separators
auto NLR med fe delaunay n24 large fe nlpkkt240

FM (serial) 2133 1811 2166 3507 6421 156564

Greedy 2277 1918 2281 4167 6717 148665

SFM 2985 2264 5882 4302 12430 262243

Greedy+SFM 2205 1821 2071 3492 6024 146523

Table 3: Refinement Time in Seconds
auto NLR med fe delaunay n24 large fe nlpkkt240

FM (serial) 0.044 0.178 0.104 0.898 0.336 3.183

Greedy 0.048 0.091 0.071 0.130 0.181 1.251

SFM 0.030 0.069 0.068 0.115 0.185 1.153

Greedy+SFM 0.050 0.101 0.062 0.147 0.134 2.678

both Greedy and SFM refinement passes, produced separators much closer in
size to serial FM, only 1.9× larger on average. The number of external vertices
that are prevented from being moved during hill climbing in this scheme is quite
small due to our pre-partitioning.

Table 3 shows the effect on runtime of the different refinement schemes. The
runtime of serial FM is included for comparison against the other three refine-
ment schemes run with 16 threads. None of the parallel refinement schemes
exhibit significant speedup over FM consistently. There are two reasons for this.
First, refinement operates on a small portion of the graph, and requires frequent
synchronization. Secondly, the parallel refinement schemes make more passes be-
fore they settle on a separator. This also explains why the Greedy+SFM scheme
is sometimes is faster than the SFM and Greedy schemes. It performs more work
per pass than either Greedy or SFM, but settles on a separator in fewer passes.

Figure 1a shows the strong scaling of mt-ND-Metis generating vertex separa-
tors using up to 16 cores. The time shown includes the cost of pre-partitioning the
graph, which is why there is a slowdown observed between one and two threads.
The speedup achieved is largely dependent upon the size of the graph, and how

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p

auto
NLR

med_fe

delaunay_n24
large_fe

nlpkkt240

(a) Vertex Separator Generation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p

auto
NLR

med_fe

delaunay_n24
large_fe

nlpkkt240

(b) Nested Dissection

Fig. 1: Strong Scaling of mt-ND-Metis on 16 Cores

Table 4: Improvement over OpenMP Task Scheduling

auto NLR med fe delaunay n24 large fe nlpkkt240

ICC OMP 68.9% 38.3% 48.7% 30.4% 39.9% 25.9%

GCC OMP 62.2% 39.0% 60.2% 25.6% 40.0% 23.0%

effectively the amount of work between synchronization points can hide the par-
allel overhead. Looking beyond two threads, the larger graphs achieve speedups
nearing 6× overall. Discounting the pre-partitioning time, the largest and third
largest graphs exhibit super linear scaling with speedups over 17×. This is due
to improved locality that comes from the pre-partitioning, and the extra cache
available on the second processor. This shows the importance of having a well
distributed graph, even on shared memory architectures.

6.2 Task Scheduling

Table 4 shows the percent improvement of our nested dissection task schedul-
ing scheme, over that of the implementation schemes provided by ICC [14] and
GCC [8]. Our scheme was on average 41.1% faster than the ICC scheduler and
40.6% faster than the GCC scheduler. This is because these schedulers are de-
signed to handle tasks with varying properties, where as our specialized scheduler
takes advantage of the nature of the nested dissection task tree.

6.3 Nested Dissection

Figure 1b shows the strong scaling of mt-ND-Metis performing nested dissection.
For the smallest graph, auto, the achieved speedup is limited to 3.3×, as the
parallel overhead plays a significant role in the runtime. For the larger graphs,
the different graph operations performed dominate the runtime and hide the
parallel overhead. As a result, speedup of 6–10× is achieved on the other five
graphs. We see a greater speedup here than on just vertex separators as the cost
of performing nested dissection is significantly greater than that of creating a
k-way edge separator, and better hide its added cost.

Table 5 compares the orderings of mt-ND-Metis with that of ND-Metis,
ParMetis, and PT-Scotch, in terms of number of non-zeros in the Cholesky fac-
tor and the operations required to compute it. The runtimes to generate these
orderings are also included (excluding I/O, but including preprocessing). Making
efficient use of the multicore system, mt-ND-Metis was on average 1.5× faster
than the other two parallel methods, and 10.1× faster than the serial ND-Metis.
The number of operations required by orderings produced by mt-ND-Metis were
only 0.7% higher than those required by mt-ND-Metis, and 14.0% lower than
those required by ParMetis or PT-Scotch. The hybrid refinement of mt-ND-
Metis enables these high quality results, close to that of ND-Metis. The high-
speed parallel vertex separator generation during the low levels of the nested
dissection tree coupled with the specialized task scheduling in the higher levels
enables mt-ND-Metis to produce orderings the fastest for all datasets except the
smallest.

Table 5: Comparison of Nested Dissection
auto NLR med fe delaunay n24 large fe nlpkkt240

ND-Metis

Fill-in 2.22e+08 2.05e+08 2.88e+08 7.24e+08 1.61e+09 1.98e+11

Operations 4.53e+11 1.25e+11 3.83e+11 7.39e+11 4.57e+12 1.93e+16

Time (s) 7.94 51.82 39.26 248.83 184.58 1148.52

mt-ND-Metis 16 Threads

Fill-in 2.31e+08 2.06e+08 2.87e+08 7.30e+08 1.55e+09 2.07e+11

Operations 5.06e+11 1.28e+11 3.71e+11 7.46e+11 3.94e+12 2.04e+16

Time (s) 1.44 4.67 4.44 17.85 16.34 93.80

ParMetis 16 Processes

Fill-in 2.29e+08 2.13e+08 3.10e+08 7.58e+08 1.60e+09 2.17e+11

Operations 4.94e+11 1.52e+11 4.98e+11 9.40e+11 4.51e+12 2.30e+16

Time (s) 1.60 6.21 6.43 29.52 31.17 169.84

PT-Scotch Processes

Fill-in 2.52e+08 2.73e+08 3.84e+08 9.72e+08 1.93e+09 2.62e+11

Operations 5.89e+11 3.39e+11 8.70e+11 2.00e+12 8.57e+12 2.79e+16

Time (s) 1.12 5.83 7.46 26.82 39.33 678.65

7 Conclusion

In this work we presented new shared-memory parallel methods for producing
minimal balanced vertex separators and fill reducing orderings of sparse matri-
ces. Specifically, we introduced a new parallel refinement scheme that implements
localized hill climbing, and exhibits only minor degradation in separator quality.
We also introduced a task scheduling scheme specifically designed for the nested
dissection problem that outperforms OpenMP task schedulers by 40.8%. We im-
plemented these algorithms in mt-ND-Metis, and show that produces orderings
1.5× faster than ParMetis [16] and PT-Scotch [5], and 10.1× faster than ND-
Metis [16]. The orderings produced by mt-ND-Metis result in only 1.0% more
fill-in and require only 0.7% more operations than those of ND-Metis.

Acknowledgment

This work was supported in part by NSF (IIS-0905220, OCI-1048018, CNS-
1162405, IIS-1247632, IIP-1414153, IIS-1447788), Army Research Office (W911NF-
14-1-0316), Intel Software and Services Group, and the Digital Technology Cen-
ter at the University of Minnesota. Access to research and computing facilities
was provided by the Digital Technology Center and the Minnesota Supercom-
puting Institute.

References

1. David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner, ed-
itors. Graph Partitioning and Graph Clustering - 10th DIMACS Implementation
Challenge Workshop, Georgia Institute of Technology, Atlanta, GA, USA, Febru-
ary 13-14, 2012. Proceedings, volume 588 of Contemporary Mathematics. American
Mathematical Society, 2013.

2. Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge
partitions is np-hard. Information Processing Letters, 42(3):153 – 159, 1992.

3. Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. Recent advances in graph partitioning. CoRR, abs/1311.3144, 2013.

4. Ümit V Çatalyürek, Mehmet Deveci, Kamer Kaya, and Bora Ucar. Multithreaded
clustering for multi-level hypergraph partitioning. In Parallel & Distributed Pro-
cessing Symposium (IPDPS), 2012 IEEE 26th International, pages 848–859. IEEE,
2012.

5. Cédric Chevalier and François Pellegrini. Pt-scotch: A tool for efficient parallel
graph ordering. Parallel Computing, 34(6):318–331, 2008.

6. Timothy A Davis. Direct methods for sparse linear systems, volume 2. Siam, 2006.
7. C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network

partitions. In Design Automation, 1982. 19th Conference on, pages 175 –181, june
1982.

8. Free Software Foundation. The GNU OpenMP Implementation, 2014.
9. Alan George. Nested dissection of a regular finite element mesh. SIAM Journal

on Numerical Analysis, 10(2):345–363, 1973.
10. Alan George and Joseph WH Liu. An automatic nested dissection algorithm for ir-

regular finite element problems. SIAM Journal on Numerical Analysis, 15(5):1053–
1069, 1978.

11. Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning
graphs. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing ’95, New York, NY, USA, 1995. ACM.

12. Bruce Hendrickson and Edward Rothberg. Effective sparse matrix ordering: Just
around the bend. In Proc. of 8th SIAM Conf. Parallel Processing for Scientific
Computing. Citeseer, 1997.

13. Bruce Hendrickson and Edward Rothberg. Improving the run time and quality of
nested dissection ordering. SIAM Journal on Scientific Computing, 20(2):468–489,
1998.

14. Intel. Intel OpenMP Runtine Library, 2014.
15. George Karypis and Vipin Kumar. Multilevel graph partitioning schemes. In ICPP

(3), pages 113–122, 1995.
16. George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, December
1998.

17. George Karypis and Vipin Kumar. A parallel algorithm for multilevel graph parti-
tioning and sparse matrix ordering. Journal of Parallel and Distributed Computing,
48(1):71–95, 1998.

18. B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell system technical journal, 49(1):291–307, 1970.

19. Dominique LaSalle and George Karypis. Multi-threaded graph partitioning. In
Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Sympo-
sium on, pages 225–236. IEEE, 2013.

20. Joseph WH Liu. Modification of the minimum-degree algorithm by multiple elim-
ination. ACM Transactions on Mathematical Software (TOMS), 11(2):141–153,
1985.

21. François Pellegrini and Jean Roman. Scotch: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In Proceedings
of the International Conference and Exhibition on High-Performance Computing
and Networking, HPCN Europe 1996, pages 493–498, London, UK, UK, 1996.
Springer-Verlag.

22. Alex Pothen, Horst D Simon, and Kang-Pu Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications,
11(3):430–452, 1990.

23. Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning
algorithms. In Camil Demetrescu and Magns Halldrsson, editors, Algorithms -
ESA 2011, volume 6942 of Lecture Notes in Computer Science, pages 469–480.
Springer Berlin / Heidelberg, 2011.

