
1

NLMF: NonLinear Matrix Factorization Methods
for Top-N Recommender Systems

Santosh Kabbur and George Karypis
Department of Computer Science, University of Minnesota

Twin Cities, USA
{skabbur,karypis}@cs.umn.edu

Abstract—Many existing state-of-the-art top-N recommenda-
tion methods model users and items in the same latent space and
the recommendation scores are computed via the dot product
between those vectors. These methods assume that the user
preference is consistent across all the items that he/she has rated.
This assumption is not necessarily true, since many users can
have multiple personas/interests and their preferences can vary
with each such interest. To address this, a recently proposed
method modeled the users with multiple interests. In this paper,
we build on this approach and model users using a much richer
representation. We propose a method which models the user
preference as a combination of having global preference and
interest-specific preference. The proposed method uses a nonlin-
ear model for predicting the recommendation score, which is used
to perform top-N recommendation task. The recommendation
score is computed as a sum of the scores from the components
representing global preference and interest-specific preference. A
comprehensive set of experiments on multiple datasets show that
the proposed model outperforms other state-of-the-art methods
for top-N recommendation task.

Keywords-Database Applications, Data mining, Personaliza-
tion, Mining methods and algorithms

I. INTRODUCTION

Recommender Systems are prevelant and are widely used in
many applications. Specifically, top-N recommender systems
are widely used in e-commerce applications to recommend
ranked list of items to users in order to identify the items that
best fit their personal tastes obtained from their feedback. Over
the years many algorithms and methods have been developed
to address the top-N recommender problem (1; 2). These
algorithms make use of the user feedback data available in the
form of purchase, rating or review. The existing methods can
be broadly classified into two groups: collaborative filtering
(CF) based methods and content based methods. User/Item
co-rating is used in collaborative filtering methods to build
models. Typically these methods represent the user ratings on
items in a user-item rating matrix and act on it. One class
of state-of-the-art methods in top-N recommender problem is
based on learning latent factors for users and items. In these
methods, users and items are represented as vectors in common
latent space and the recommendation score for a given user and
item pair is computed as the dot product of the corresponding
user and item latent vectors. Most notable methods rely on
matrix factorization (MF) (2) or singular value decomposition
(SVD) (3) to learn the user and item latent factors. Some
extensions and variations to SVD are also proposed (like

SVD++ (4)). In content based methods, users/items features
are used to build models (5; 6). In this work, we limit our
focus to only CF based methods.

One of the recently developed methods called MaxMF (7),
extends the traditional Matrix Factorization (MF) based ap-
proaches by representing the user with multiple latent vectors,
each corresponding to a different “taste” associated with the
user. These different tastes associated with each user repre-
sentation are termed as interests. The assumption behind this
approach is that, by letting the users to have multiple interests,
it helps to capture user preferences better, especially when the
itemsets or user’s interests is diverse. The authors then propose
a max function based non linear model, which takes the
maximum scoring interest as the final recommendation score
for a given user item pair. It was shown that MaxMF achieves
better recommendation performance than other state-of-the-art
methods. However, one of the limitations of this method is, it
models the users with only interest-specific component. This
can potentially dilute the learnt latent factors for users who
have not provided enough preferences or who do not have
enough diversity in their itemsets due to lack of support (in
terms of number of rated items) for each of the interests.

In this paper, we propose a new method called NLMF
(Non Linear Matrix Factorization), which models the user
as a combination of global preference and interest-specific
latent factors. This representation of user allows NLMF to
effectively capture both the global preference and multiple
interest-specific preference. This approach implicitly allows
the model to strike a balance between the global and interest-
specific components. Our experimental evaluation on multiple
datasets show that NLMF performs better than MaxMF and
other state-of-the-art methods.

The key contributions of the work presented in this paper
are the following:

(i) proposes a new nonlinear method, which models the users
multiple interests as a combination of global and interest-
specific preferences;

(ii) proposes two different approaches based on shared and
independent item factors between the global preference
and interest-specific preferences; and

(iii) compares the performance of the proposed method with
other state-of-the-art methods for top-N recommendation
task, and investigates the impact of various parameters
as they relate to number of latent factors and number of

2

interests.
The rest of the paper is organized as follows. Section II
introduces the notations used in this paper. In Section III, we
present the relavant existing methods. Section IV motivates the
need for a better model and constrasts the proposed method
with the existing ones. In Section V, we present the details
of the NLMF methods. Section VI presents the evaluation
methodology, the data sets used along with their character-
istics and the details of the baseline algorithms that we will
be comparing the proposed approach with. In Section VII,
we present the experimental evaluation with the discussion.
Finally, Section VIII provides the concluding remarks.

II. NOTATIONS

In this paper, all vectors are represented by bold lower case
letters and they are row vectors (e.g., p,q). All matrices are
represented by bold upper case letters (e.g., R, W). The ith
row of a matrix A is represented by ai. We use calligraphic
letters to denote sets (e.g., C, D). A predicted and an estimated
value are denoted by having aˆ(hat) over it (e.g., r̂).
C and D are used to denote the sets of users and items,

respectively, whose respective cardinalities are n and m (i.e.,
|C| = n and |D| = m). Matrix R will be used to represent the
user-item implicit feedback (purchase/review) matrix of size
n×m, i.e., R ∈ Rn×m. Symbols u and i are used to denote
individual users and items, respectively. An entry (u, i) in R,
denoted by rui, is used to represent the rating on item i by
user u. R is a binary matrix. That is, if the user has provided
feedback for a particular item, then the corresponding entry in
R is 1, otherwise it is 0. We will refer to the entries for which
the user has provided feedback as rated items and those for
which the user has not provided feedback as unrated items.
For quick reference, all the important symbols used in this
paper, along with their definition is summarized in Table I.

III. REVIEW OF RELEVANT RESEARCH

UserKNN (8; 9) is a classical user based CF method, which
computes k-nearest neighbors for each user, based on their
rating profiles. These nearest neighbors are then used to predict
the rating for a user on an unrated item as the weighted average
of the rating of the nearest neighbors of the user. This method
is nonlinear in terms of the preferences of the user, which are
implicitly captured via the nearest neighbors. However, this
method relies on the co-rating information between the users
to compute the similarity. Thus, it suffers from data sparsity
issue and fails to capture relations between users who do not
have enough co-rated items.

In the recent user-item factorization methods based on MF
(3), the rating matrix R is approximated as a product of two
low-rank matrices P and Q, where P ∈ Rn×k is the users
latent vector matrix, Q ∈ Rm×k is the items latent vector
matrix, k is the number of latent factors and k � n,m. The
recommendation score of a user u for item i is predicted as,

r̂ui = puq
T
i , (1)

where pu is the latent vector associated with the user u and
qi is the latent vector associated with the item i.

TABLE I: Symbols used and definitions.

Symbol Definition

C Set of users.
D Set of items.
u Individual user u.
i Individual item i.
n Number of users.
m Number of items.
k Number of latent factors.
l Number of latent factors for interest-specific

component in NLMFi.
T Number of user interests.
R Binary Rating Matrix, R ∈ Rn×m.
rui Rating by user u on item i.
r̂ui Predicted rating for user u on item i.
P User Latent Factor Matrix, P ∈ Rn×k .
Q Item Latent Factor Matrix, Q ∈ Rm×k .
W User Latent Factor Tensor, W ∈ Rn×k×T .
Y Item Latent Factor Matrix, for interest-specific

component in NLMFi, Y ∈ Rm×k .
λ `F regularization weight.
ρ Sampling factor for learning algorithm.
η Learning Rate for learning algorithm.

A recent method for top-N recommendation task proposed
by Weston et. al. called MaxMF (7) defines T interest latent
vectors per user. The user factors are thus represented by
a tensor P, where P ∈ Rn×k×T . The items factors, Q
remains similar to MF based approaches. Thus, each user u is
represented by pu, where pu ∈ k × T . For a given user u and
item i pair, the predicted recommendation score is calculated
by computing T dot products between each of the T user
vectors and the corresponding item vector. The highest scoring
dot product is taken as the estimated/predicted rating. That is,

r̂ui = max
t=1,...,T

putq
T
i , (2)

where the max function computes the maximum of the set of
dot products between each of put and qi.

The main intuition behind this approach is that, the user is
represented with T different interests and the interest which
matches the best with the given item is captured using the
max function. In other words, the set of items is partitioned
into T partitions for each user, and this partitioning process
is personalized on the user. For each such item partition, a
different scoring function is used to estimate the rating.

IV. MOTIVATION

Users typically provide ratings to only a handful of items
out of possible thousands or millions of items. Due to limited
preferences given out by users, the user-item rating matrix
becomes sparse. Methods like MaxMF learns only interest-
specific user preferences, by implicitly partitioning the items
rated by the user into multiple subsets and learning a separate
user latent preference vector for each partition. In case of

3

users who have not provided sufficient ratings, learning only
interest-specific preferences will result in lesser support (in
terms of number of items) for each interest. This can poten-
tially affect the learning process and can result in learning
less meaningful (latent) factors for all the item partitions
corresponding to that user.

To overcome this problem, our proposed approach NLMF
learns the user preferences as a combination of global prefer-
ence and interest-specific preference components. The global
preference is learned using all the ratings provided by the
user. Thus, it helps to better estimate the user’s preferences
when the available data is limited. With regularization, this
method allows the model to be flexible, i.e., it implicitly allows
the learning process to strike a balance between the global
preference and interest-specific preference components. Hence
this model is expected to perform better than MaxMF.

V. NLMF - NONLINEAR METHODS FOR CF
In NLMF, given a user u and an item i, the estimated

rating r̂ui is given by the sum of the estimations from global
preference and interest-specific preference components. That
is,

r̂ui = puq
T
i + max

t=1,...,T
f(u, i, t), (3)

where pu is the latent vector associated with user u and qi

is the latent vector associated with item i. Thus, puq
T
i gives

the prediction score from global preference component of the
model and f(u, i, t) is the prediction score from interest-
specific preference component. The final prediction score
is the sum of the predictions from global preference and
interest-specific preference components. Figure 1 illustrates
the overview of the NLMF method.

The selection of the best interest t∗ is done by choosing
the interest which results in the maximum score from the
multiple interests model. The max function is used to compute
the maximum recommendation score for the item amongst all
the interests of the user in the multiple interest function. The
intuition behind this idea is that, for an item to be ranked
higher in the top-N list of the user, at least one of the interests
of the user must provide a high score for that item.

We use squared error loss function to compute and minimize
the loss. That is,

L(·) =
∑
i∈D

∑
u∈C

(rui − r̂ui)2, (4)

where rui is the ground truth value and r̂ui is the estimated
value.

We propose two different methods to represent the interest-
specific preference component, f(u, i, t). First one has inde-
pendent item factors in f(u, i, t) compared to that of global
preference component, whereas the second one shares the item
factors of f(u, i, t) with the global preference component.
These two methods are described in the next two sections.

A. NLMFi - Independent Item Factors
In NLMFi, the interest-specific preference component

f(u, i, t) is given by,

f(u, i, t) = wuty
T
i , (5)

where wut is the user latent vector for u in the interest-
specific preference component corresponding to the interest
t and yi is the item latent vector in the interest-specific
preference component. We can see that, for a given item i,
NLMFi has two independent item factors (qi and yi), each one
corresponding to the global preference and interest-specific
preference components.

The recommendation score r̂ui for a given user u and item
i is computed as,

r̂ui = puq
T
i + max

t=1,...,T
wuty

T
i (6)

where pu and qi are the user and item latent vectors in
the global preference component respectively. Thus, NLMFi
is an additive model which independently learns two non-
overlapping models corresponding to global preference and
interest-specific component and computes their sum as the
final prediction score.

Note that, the number of latent factors for the global
preference component (i.e., puq

T
i) and the interest-specific

component (i.e., wuty
T
i) need not be the same. Thus, this

model has the flexibility of having different number of latent
factors for the two components. We use k to represent the
number of latent factors for the global preference component
(i.e., pu,qi ∈ R1×k) and we use l to represent the number
of latent factors for the interest-specific component (i.e.,
wut,yi ∈ R1×l).

In NLMFi, the martices P, Q, W and Y are learned by
minimizing the following regularized optimization problem:

minimize
P,Q,W,Y

1

2

∑
u,i∈R

‖rui − r̂ui‖2F +
λ

2
(‖P‖2F + ‖Q‖2F+

‖W‖2F + ‖Y‖2F), (7)

where λ is the l2-regularization constant for latent factor
matrices. l2 regularization is used to prevent overfitting.

The optimization problem in Equation 7 is solved using
a Stochastic Gradient Descent (SGD) algorithm (10). Algo-
rithm 1 provides the detailed procedure and the gradient update
rules for the learning algorithm. Initially the matrices P, Q
and Y, and tensor W are initialized with small random values
as the initial estimate. Then, in each iteration the parameter
values are updated based on the gradients computed w.r.t. the
parameter being updated. This process is repeated until the
error on validation set does not decrease further or the number
of iterations has reached a predefined threshold.

Note that the gradient updates for model paramters are
computed for both rated and non-rated entries of R. This
is in accordance with common practice followed for top-
N recommendation problem (3; 11; 12). This is in contrast
with rating prediction problem, where only the rated items
are typically used for computing gradient updates. In order to
reduce the computational complexity of the learning process,
the zero entries corresponding to non-rated items are sampled
and used along with all the non-zero entries (corresponding to
rated items) of R. Given a sampling constant ρ and nnz(R),
the number of non-zeros in R, ρ · nnz(R) zeros are sampled
and used for optimization in each iteration of the learning

4

Preferences

Learned User
Preferences

Interest-1

Interest-2

Interest-3

Learning

Item-1 Item-2 Item-3 Item-n

Interest-Specific ComponentGlobal Component

Global Preference

Personalized Item ClusteringAll Preferences

Fig. 1: NLMF Method Overview.

algorithm. Our experimental results indicate that a small value
of ρ (in the range 3−5 is sufficient to produce the best model.
This sampling strategy makes NLMF methods computationally
efficient and scalable.

Algorithm 1 NLMFi:Learn.

1: procedure NLMFI LEARN
2: η ← learning rate
3: λ← `F regularization weight
4: ρ← sample factor
5: iter ← 0
6: Init P, Q, W and Y with random values in (-0.001,

0.001)
7:
8: while iter < maxIter or error on validation set

decreases do
9: R′ ← R ∪ SampleZeros(R, ρ)

10: R′ ← RandomShuffle(R′)
11:
12: for all rui ∈ R′ do
13: r̂ui ← puq

T
i + max

t=1,...,T
wuty

T
i

14:
15: t∗ ← interest corresponding to max score
16: eui ← rui − r̂ui
17: pu ← pu + η · (eui · qi − λ · pu)
18: qi ← qi + η · (eui · pu − λ · qi)
19: wut∗ ← wut∗ + η · (eui · yi − λ ·wut∗)
20: yi ← yi + η · (eui ·wut − λ · yi)
21: end for
22:
23: iter ← iter + 1
24: end while
25:
26: return P,Q,W,Y
27: end procedure

B. NLMFs - Shared Item Factors

In NLMFs, the interest-specific component f(u, i, t) is
given by,

f(u, i, t) = wutq
T
i , (8)

where wut is the user latent vector for u in the interest-specific
component corresponding to the interest t and qi is the shared
item latent vector between the global preference and interest-
specific components. By using the shared item latent vectors,
this model has the ability to transfer the learning between the
global preference and interest-specific components. Contrast
this with NLMFi model, which has independent item factors
(qi and yi) for global preference and interest-specific compo-
nents.

The recommendation score r̂ui for a given user u and item
i is computed as,

r̃ui = puq
T
i + max

t=1,...,T
wutq

T
i (9)

where pu is the user latent vector for u in the global preference
component.

In NLMFs, the martices P, Q and W are learned by
minimizing the following regularized optimization problem:

minimize
P,Q,W

1

2

∑
u,i∈R

‖rui − r̂ui‖2F +
λ

2
(‖P‖2F + ‖Q‖2F

+ ‖W‖2F), (10)

where the common terms mean the same as in Equation 7.

Similar to NLMFi, the optimization problem in Equation 10
is solved using a SGD based algorithm. The details of the
procedure is presented in Algorithm 2. The learning algorithm
and details are similar to Algorithm 1, except the gradient
update rules.

5

Algorithm 2 NLMFs:Learn.

1: procedure NLMFS LEARN
2: η ← learning rate
3: λ← `F regularization weight
4: ρ← sample factor
5: iter ← 0
6: Init P, Q and W with random values in (-0.001,

0.001)
7:
8: while iter < maxIter or error on validation set

decreases do
9: R′ ← R ∪ SampleZeros(R, ρ)

10: R′ ← RandomShuffle(R′)
11:
12: for all rui ∈ R′ do
13: r̂ui ← puq

T
i + max

t=1,...,T
wutq

T
i

14:
15: t∗ ← interest corresponding to max score
16: eui ← rui − r̂ui
17: pu ← pu + η · (eui · qi − λ · pu)
18: qi ← qi + η · (eui · (pu +wut∗)− λ · qi)
19: wut∗ ← wut∗ + η · (eui · qi − λ ·wut∗)
20: end for
21:
22: iter ← iter + 1
23: end while
24:
25: return P,Q,W
26: end procedure

C. Scalability

The optimization algorithm used in the training phase of
NLMFs and NLMFi is based on SGD algorithm. The gradient
computations and updates for SGD can be parallelized. Hence,
these algorithms can be efficiently applied to larger datasets.
In (13), a distributed SGD is proposed. A similar algorithm
with modifications can be used to scale the NLMF methods to
larger datasets. Software packages like Spark1 can be used to
execute SGD based algorithms on a large cluster of processing
nodes.

VI. EXPERIMENTAL EVALUATION

A. Data Sets

We evaluated the performance of NLMF methods on two
different real datasets, namely Netflix and Flixster. Netflix is
a subset of data extracted from Netflix Prize Dataset2 and
Flixster is a subset of data extracted from publicly available
data set collected from Flixster3. For both the datasets, we
removed the top 5% of the frequently rated items. All the
ratings were binarized, i.e., converted to 1. The characterisitcs
of all the datasets is summarized in Table II.

1http://spark.apache.org/
2http://www.netflixprize.com/
3http://www.flixster.com/

TABLE II: Datasets.

Dataset #Users #Items #Ratings Rsize Csize Density

Netflix 5,403 2,933 2,197,096 406.64 749.09 13.86%

Flixster 4,627 3,295 1,184,817 256.06 359.58 7.77%

The “#Users”, “#Items” and “#Ratings” columns are the
number of users, items and ratings respectively, in each of the
datasets. The “Rsize” and “Csize” columns are the average
number of ratings for each user and for each item (i.e., row
and column density of the user-item matrix), respectively, in
each of the datasets. The “Density” column is the density of
each dataset (i.e., density = #Ratings/(#Users × #Items)).

B. Evaluation Methodology

To evaluate the performance of the proposed model, we
employ a 5-fold Leave-One-Out-Cross-Validation (LOOCV)
method similar to the one employed in (11; 12). Training and
test set is created by randomly selecting one item per user
from the dataset and placing it in the test set. The rest of the
data is used as the training set. This process is repeated to
create five different folds. Training set is used to build the
model and the trained model is used to generate a ranked list
of size-N items for each user. The model is then evaluated by
comparing the ranked list of recommended items with the item
in the test set. N is equal to 10, for all the results presented
in this paper.

The recommendation quality is measured using Hit Rate
(HR) and Average Reciprocal Hit Rank (ARHR) (14). HR is
defined as,

HR =
#hits

#users
,

where #hits is the number of users for which the model
was successfully able to recall the test item in the size-N
recommendation list and #users is the total number of test
users. The ARHR is defined as,

ARHR =
1

#users

#hits∑
i=1

1

posi
,

where posi is the position of the test item in the ranked
recommendation list for the ith hit. ARHR represents the
weighted version of HR, as it measures the inverse of the
position of the recommended item in the ranked list.

We chose HR and ARHR as evaluation metrics since they
directly measure the performance of the model on the ground
truth data i.e., what users have already provided feedback for.

C. Comparison Algorithms

We compare the performance of NLMF against that
achieved by UserKNN (14), PureSVD (3), BPRMF (15),
SLIM (11) and MaxMF (7). This set of methods constitute the
current state-of-the-art for top-N recommendation task. Hence
they form a good set of methods to compare and evaluate our
proposed approach against.

6

VII. RESULTS

The experimental evaluation consists of three parts. First,
we assess the effect of various model parameters of NLMF
on the recommendation performance. These include how the
number of latent factors and the number of interests affect the
top-N performance. Second, we present the top-N performance
comparison with the MaxMF method, which is also a non-
linear method based on modeling user with multiple interests.
Due to lack of space, we present these studies only for
the Netflix dataset. However the same trend in results and
conclusions carry over to the Flixster dataset as well. In the
third part of the results, we present the comparison with other
competing state-of-the-art methods (Section VI-C).

A. Effect of Number of Latent Factors

Figure 2 shows the effect of varying the number of latent
factors (k) on the performance of the NLMFs model. For this
experiment, the number of interests was set to 2 (i.e., T =
2). We can see that the hit-rate gradually increases with the
increasing number of latent factors and reaches the peak when
k = 192 and then it starts to decline. The possible reason for
this is that, the model starts to overfit the training data due to
large number of latent factors.

0.175

0.180

0.185

0.190

0.195

0.200

32 64 96 128 160 192 224

H
R

K

Fig. 2: NLMFs - Effect of Number of Latent Factors.

For NLMFi, Figure 3 shows the effect of varying number of
latent factors. Since NLMFi model can have different number
of latent factors for global preference (k) and interest-specific
preference (l) components, the figure shows multiple line
graphs, each corresponding to a different value of k. For a
given value of k, l is varied and the performance is presented
in this figure. Similar to NLMFs, the performance for NLMFi
initially increases with l and then either plateaus out or starts
declining due to overfitting. For this experiment, the number
of interests was set to 2 (i.e., T = 2)

B. Effect of Number of Interests

In this study, we compare the effect of number of interests
(T) on the recommendation performance. Figure 4 shows
the results for both NLMFs and NLMFi models for two
different values of k. For NLMFi model, we have set l to be

0.184

0.186

0.188

0.190

0.192

0.194

0.196

0.198

32 64 96 128 160

H
R

L

K = 32

K = 64

K = 96

K = 128

Fig. 3: NLMFi - Effect of Number of Latent Factors.

same as k. We can see that in both models, the performance
initially increases with increasing T and reaches a peak value
when T = 3 or T = 4. This indicates that, modeling the
users with three or four distinct interests provides the best
recommendation performance. Further increasing the value of
T , the performance starts to decrease. This is possibly due to
the fact that, the support for each interest in terms of number
of items decreases, thus leading to learning less meaningful
user preferences for different interests.

0.184

0.186

0.188

0.190

0.192

0.194

0.196

1 2 3 4 5

H
R

#Interests

NLMFs K = 64

NLMFs K = 128

NLMFi K = 64

NLMFi K = 128

Fig. 4: Effect of Number of Interests.

C. Comparision with MaxMF

As discussed in Section III, MaxMF is an existing method
which also employs a non-linear method based on max
function to learn multiple interest preferences for users. In this
study, we compare the performance of NLMF methods with
MaxMF for different number of latent factors (k) and interests
(T). The results of this study are presented in Figure 5. We
can see that both NLMF methods outperform MaxMF for
different values of k, with NLMFi performing better than
NLMFs. It is interesting to note that, for some values of
k, one interest model of MaxMF performs better than the

7

two interests one. Whereas, for NLMF methods, two interests
model performs better than one interest model for all values
of k. This is possibly due to the reason that, MaxMF learns
only the interest-specific user preference, which can potentially
lead to decrease in the support for each interest in terms of
number of items. On the other hand, NLMF methods balance
the interest-specific preference with the global preference by
learning a combined model with both the global preference
and interest-specific components.

0.16

0.17

0.18

0.19

0.20

32 64 96 128 160

H
R

Factors

MaxMF (T = 1)

MaxMF (T = 2)

NLMFs (T = 1)

NLMFs (T = 2)

NLMFi (T = 1)

NLMFi (T = 2)

Fig. 5: Comparison with MaxMF.

D. Comparision with Other Approaches

Table III shows the overall recommendation performance
of NLMF methods in terms of HR and ARHR in comparison
to other state-of-the-art methods (Section VI-C). For all the
results presented, the number of top-N items chosen is 10 (i.e.,
N = 10). Following parameter space was explored for each of
the methods and the best performing model in that parameter
space in terms of HR is reported. For UserKNN, PureSVD and
BPRMF, parameter k was selected from the range 2 to 800.
Learning rate for BPRMF was selected from the range 10−5

to 1.0, with a multiplicative increment of 10. For SLIM, the
regularization constants were selected from the range 10−5

to 20. For MaxMF and NLMF methods the regularization
constants were selected from the range 10−5 to 5 and learning
rate was selected from the range 10−5 to 1.0.

The results in Table III show that NLMF methods perform
better than the rest of the competing methods for all the
datasets. The performance gains of NLMF methods compared
to the next best performing baseline method are of the order
of 6% and 10% for Netflix and Flixster respectively. Note
that, contrary to the results presented in (7), the MaxMF
model does not outperform PureSVD for the datasets con-
sidered in this study. In terms of the two proposed NLMF
methods, independent item factors model (NLMFi) achieved
better performance than shared item factors model (NLMFs).
The reason for this could be that, NLMFi has the ability to
learn the global preference and interest-specific components
independently, as the items factors are not overlapping, thereby
resulting in learning better respresentation of users and items.
This allows the model to strike a better balance between the

two components compared to NLMFs, which shares the item
factors during the learning process.

VIII. CONCLUSION

In this paper we presented a non-linear matrix factorization
based method (NLMF) for the top-N recommendation task.
NLMF models the users preference using a richer repre-
sentation using a nonlinear model for predicting the recom-
mendation score to perform top-N recommendation task. The
recommendation score is computed as a sum of the scores
from the components representing the global preference and
interest-specific user preference. For modeling the interest-
specific component, we presented two different approaches.
First approach learns the item factors independently in the
global preference and interest-specific components, whereas
the second approach shares the item factors between the
global preference and interest-specific components. The results
showed that the proposed method outperforms rest of the
state-of-the-art methods in terms of top-N recommendation
performance. As future work, we plan to evaluate this method
on multiple datasets at different sparsity levels to measure how
NLMF methods perform relative to other methods when the
training data gets sparser. We also plan to extend this work
for rating prediction task.

ACKNOWLEDGEMENTS

This work was supported in part by NSF (IIS-0905220,
OCI-1048018, CNS-1162405, IIS-1247632, IIP-1414153, IIS-
1447788), Army Research Office (W911NF-14-1-0316), Intel
Software and Services Group, and the Digital Technology
Center at the University of Minnesota. Access to research and
computing facilities was provided by the Digital Technology
Center and the Minnesota Supercomputing Institute.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 17, no. 6,
pp. 734–749, 2005.

[2] F. Ricci, L. Rokach, B. Shapira, and P. Kantor, “Rec-
ommender systems handbook,” Recommender Systems
Handbook:, ISBN 978-0-387-85819-7. Springer Sci-
ence+ Business Media, LLC, 2011, vol. 1, 2011.

[3] P. Cremonesi, Y. Koren, and R. Turrin, “Performance
of recommender algorithms on top-n recommendation
tasks,” in Proceedings of the fourth ACM conference on
Recommender systems, 2010, pp. 39–46.

[4] Y. Koren, “Factorization meets the neighborhood: a mul-
tifaceted collaborative filtering model,” in Proceeding
of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2008, pp.
426–434.

[5] R. J. Mooney and L. Roy, “Content-based book rec-
ommending using learning for text categorization,” in
Proceedings of the fifth ACM conference on Digital
libraries. ACM, 2000, pp. 195–204.

8

TABLE III: Comparison of performance of top-N recommendation algorithms with NLMF

Method Netflix Flixster

Params HR ARHR Params HR ARHR

UserKNN 100 - - - 0.1412 0.0515 100 - - - 0.1013 0.0295
PureSVD 50 - - - 0.1821 0.0807 100 - - - 0.1273 0.0494
BPRMF 400 0.01 - - 0.1890 0.0813 200 0.01 - - 0.1165 0.0437
SLIM 0.001 0.1 - - 0.1888 0.0872 0.01 1.0 - - 0.1303 0.0502
MaxMF 192 2 0.0005 0.0005 0.1743 0.0704 160 2 0.0001 0.0005 0.1345 0.0493
NLMFs 192 2 0.01 0.0005 0.1975 0.0870 256 2 0.01 0.005 0.1401 0.0532
NLMFi 256/160 2 0.008 0.001 0.1999 0.0835 288/192 2 0.01 0.001 0.1441 0.0546

Columns corresponding to “params” indicate the model parameters for the corresponding method. For UserKNN
method, the parameter is the number of neighbors. For PureSVD method, the parameter is the number of latent factors.
For BPRkNN method, the parameters are the number of latent factors used and the learning rate. For SLIM method,
the parameters correspond to the `2 and `1 regularization constants. For MaxMF and NLMFs methods, the parameters
correspond to the number of latent factors, number of interests, regularization constant and learning rate. For NLMFi
method, the parameters correspond to number of latent factors for global preference and interest-specific preference
components, number of interests, regularization constant and learning rate. The columns corresponding to HR and
ARHR represent the hit rate and average reciprocal hit rank metrics. Underlined numbers represent the best performing
model measured in terms of HR for each dataset.

[6] M. Pazzani and D. Billsus, “Content-based recommen-
dation systems,” The adaptive web, pp. 325–341, 2007.

[7] J. Weston, R. J. Weiss, and H. Yee, “Nonlinear latent
factorization by embedding multiple user interests,” in
Proceedings of the 7th ACM conference on Recommender
systems. ACM, 2013, pp. 65–68.

[8] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,
L. R. Gordon, and J. Riedl, “Grouplens: applying collab-
orative filtering to usenet news,” Communications of the
ACM, vol. 40, no. 3, pp. 77–87, 1997.

[9] U. Shardanand and P. Maes, “Social information fil-
tering: algorithms for automating word of mouth,” in
Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM Press/Addison-Wesley
Publishing Co., 1995, pp. 210–217.

[10] L. Bottou, “Online algorithms and stochastic
approximations,” in Online Learning and Neural
Networks, D. Saad, Ed. Cambridge, UK: Cambridge
University Press, 1998, revised, oct 2012. [Online].
Available: http://leon.bottou.org/papers/bottou-98x

[11] X. Ning and G. Karypis, “Slim: Sparse linear methods for
top-n recommender systems,” in Data Mining (ICDM),
2011 IEEE 11th International Conference on. IEEE,
2011, pp. 497–506.

[12] S. Kabbur, X. Ning, and G. Karypis, “Fism: factored
item similarity models for top-n recommender systems,”
in Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2013, pp. 659–667.

[13] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sisma-
nis, “Large-scale matrix factorization with distributed
stochastic gradient descent,” in Proceedings of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2011, pp. 69–77.

[14] M. Deshpande and G. Karypis, “Item-based top-n recom-
mendation algorithms,” ACM Transactions on Informa-
tion Systems (TOIS), vol. 22, no. 1, pp. 143–177, 2004.

[15] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
thieme, “Ls: Bpr: Bayesian personalized ranking from
implicit feedback,” in In: Proceedings of the 25th Confer-
ence on Uncertainty in Artificial Intelligence (UAI, 2009.

