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ABSTRACT

Graph partitioning is an important preprocessing step in ap-
plications dealing with sparse-irregular data. As such, the
ability to efficiently partition a graph in parallel is crucial
to the performance of these applications. The number of
compute cores in a compute node continues to increase, de-
manding ever more scalability from shared-memory graph
partitioners. Furthermore, datasets whose graphical repre-
sentations have skewed degree distributions have gained in
importance and exhibit very different characteristics than
the graphs previously used in scientific computing. In this
paper we present algorithmic improvements to the multi-
threaded graph partitioner mt-Metis. We address issues re-
lated to these new network-style graphs and explore tech-
niques to improve performance and parallel scaling. We ex-
perimentally evaluate our methods on a 36 core machine,
using 20 different graphs from a variety of domains. Our
improvements decrease the runtime by 1.5 — 11.7x and im-
prove strong scaling by 82%.

1. INTRODUCTION

As the parallelism of modern processors increases, getting
performance out of applications with irregular data access
patterns is increasingly challenging. Graph partitioning is
an important pre-processing step for irregular applications
to achieve performance. On shared-memory platforms, graph
partitioning can be used to reduce inter-core communication
and cache misses.

Due to its importance, graph partitioning has received sig-
nificant attention for work distribution in parallel applica-
tions [21] and locality maximization [18]. Modern methods
rely on the multilevel paradigm [9] to find high quality solu-
tions extremely fast [13, 19, 20]. While distributed-memory
parallel partitioners [12, 5, 11] have been in use for almost
two decades, methods [22, 4, 14] that exploit the shared-
memory property of modern multicore processors have only
recently been explored. These shared-memory methods offer
improved performance and partition quality for partitioning
within a compute node.
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The number of cores per compute node has recently in-

creased dramatically, and continues to do so. This demands

that graph partitioners exhibit increased parallelism and ef-

ficiently make use of the cache hierarchy. High-performance

single-node graph partitioners are an important stepping

stone for future highly-scalable multi-node partitioners. Fully
exploiting node-internal parallelism can decrease the degree

of communication operations by one to two orders of mag-

nitude.

The range of graphs needing to be partitioned has also in-
creased. Where the focus used to solely be on mesh-style
graphs with relatively uniform degree distributions, it now
includes a variety of graphs from social and web sciences.
Graphs from these domains tend to have skewed degree dis-
tributions and small diameters. These properties invalidate
many previous assumptions in parallel multilevel graph par-
titioning, and it has been shown that new methods for the
coarsening phase are needed [1, 17].

In this work, we present algorithmic improvements to the
mt-Metis multithreaded graph partitioning framework and
experimentally evaluate their effectiveness. We show that
these modifications significantly improve performance of mt-
Metis on modern architectures and graphs. Specifically, our
contributions are:

e An efficient two-hop matching scheme which works
well on graphs with highly skewed degree distributions
without sacrificing performance or quality on graphs
with more uniform degree distributions (2.0x geomet-
ric mean improvement for graphs with skewed degree
distributions).

e Implementation level coarsening optimizations (1.6x
geometric mean improvement for coarsening).

e An improved initial partitioning parallelization formu-
lation (1.8 geometric mean improvement for initial
partitioning).

e A method of performing parallel refinement that greatly
reduces inter-core communication (2.5x geometric mean
improvement for uncoarsening).

These improvements cumulatively result in speedups of 1.5—
11.7x and a geometric mean improvement of strong scaling
by 82%, while preserving partition quality on 20 graphs from
a variety of domains.



2. DEFINITIONS & NOTATION

Let G = (V, E) denote a simple undirected graph, consisting
of a vertex set V and an edge set V. A pair of unordered
vertices makes up an edge (i.e., e = {v,u} where v,u € V).
The number of vertices in the graph is denoted as n = |V]|
and the number of edges is denoted by m = |E|. Vertices
and edges can have weights associated with them denoted as
n(v) and 6(e) respectively. If no weights are specified, they
are assumed to be one.

The balanced graph partitioning problem is defined as creat-
ing k disjoint sets of vertices (partitions), V =Vi U... UV,
with the constraint that the sum of the weights in any given
set not exceed some threshold e greater than the average
weight of a set:

max; |Vi|
V]

The objective of the partitioning problem is to minimize
the weight of inter-partition edges while not exceeding the
balance constraint:

edgecut = Z Z Z 0{v,u}.

i=1 vEV; ueTl (v),ugV;

k <l+e

When discussing parallel graph partitioning, we refer to the
number of threads as p.

3. BACKGROUND

3.1 Multilevel Graph Partitioning

The most prevalent strategy for developing graph partition-
ing heuristics has been the multilevel paradigm [9]. The
multilevel paradigm works by aggregating vertices together
in the input graph, Go, to form a coarser (smaller) graph
G1. This process repeats until a sufficiently coarse graph
G is formed. This is known as the coarsening phase. Then,
in the initial partitioning phase, a partitioning is found of
the coarsest graph. This partitioning is then applied to the
next finer (larger) graph, Gs_1, and then the partitioning is
refined via a local-improvement technique. This process is
repeated until the partitioning is applied and refined on the
original graph. This is known as the uncoarsening phase.
Bulug et al. [3] provide an overview of state-of-the-art graph
partitioning techniques.

3.2 Multithreaded Graph Partitioning

In this work, we improve the performance of the mt-Metis [14]
multithreaded graph partitioner. The design of mt-Metis fo-
cuses on reducing data movement between processing cores
and memory banks. Each thread is assigned a contiguous
set of vertices and their incident edges a priori, such that the
number of edges per thread is roughly equal. Each thread
is then responsible for operations on their portion of the
graph and subsequently their portions of the graphs gener-
ated throughout the multilevel paradigm (G1,...,Gs). This
maximizes data re-use per thread, and reduces the number
of synchronization primitives required to ensure correct ex-
ecution.

Each level of coarsening is made up of two parts: aggregation
and contraction. In aggregation, each thread selects pairs of
vertices connected by an edge to be merged together. This
is an O((m + n)/p) operation, as each vertex is checked to

Figure 1: A small maximal matching.

see if it has been matched, and if it has not been matched,
it scans its edges to find an eligible neighbor to match with.
A matching vector M is used to keep track of which ver-
tices are unmatched, and which vertices have been matched
together. An unmatched vertex will have an entry of point-
ing to itself M (v) = v, and a matched vertex with have an
entry point to the vertex it matched with, M(v) = u and
M (u) = v. Vertices are also constrained in their maximum
weight such that n(v) 4+ n(u) is small enough so as to allow
sufficient freedom in finding balanced partitioning for the
coarse graph.

At the start of contraction, a fine-coarse vertex mapping
vector C' is generated, such that for two matched vertices v
and u, C(v) = C(u). The entries in C range from zero to the
number of coarse vertices. The adjacency lists of vertices are
mapped through C. Then, for two merged vertices u and
v, their mapped adjacency lists are merged to form the new
adjacency list of their coarse vertex.

Coarsening continues until either the size of the coarsest
graph G5 is below a threshold determined by the number of
partitions k, or its size failed to reduce by a desired amount
|Gs| > a|Gs—1], where 0 < o < 1.

Then, a k-way partitioning is induced on G, using mutlilevel
recursive bisection. This multilevel process differs than the
one used before as the maximum vertex weight constraint
is relaxed, the new target size of coarsest graph is small (20
vertices), and serial FM [8] refinement used. Because the
size of the graph is small, using a serial and more expen-
sive technique at this point increases quality while having a
minimal impact on runtime.

Again, under the assumption that the coarsest graph given
as input for the initial partitioning is small, multiple parti-
tionings of it are generated concurrently, and the best one is
selected. A single thread is used to generate each partition-
ing, so as to avoid the cost of synchronization during these
much smaller levels of the multilevel paradigm.

As coarsening has two parts, so does uncoarsening. In pro-
jection, the partition assigned to a coarse vertex is projected
to its fine vertices, using the fine-coarse mapping C. In re-
finement, each thread is responsible for selecting which of its
vertices to move between partitions. As vertices are moved,
updates to their neighboring vertices are communicated be-
tween threads asynchronously, so as use as up-to-date infor-
mation as possible when deciding to move a vertex.

3.3 Skewed Degree Distributions

A graph with a skewed vertex degree distribution has many
vertices of low degree and only a few vertices of high de-
gree. These graphs often have small maximal matchings, as
shown in Figure 1. Other properties of these graphs include
small diameters (the distance of the maximum length short-
est path between any two vertices in the graph), as shortest



paths will often go through these high degree vertices. The
previous assumptions that we could reduce the number of
vertices in the graph by close to half by matching vertices
along edges, and that the coarsest graph will be small, no
longer hold.

If we only find small maximal matching during aggregation,
the size of the next coarser graph will reduce by only a small
faction, and Gj;41 is nearly the same size as G;. Unless
coarsening is terminated early, this could cause a runtime
of O(n? +nm) as we would need O(n) levels of coarsen-
ing, each of which takes O(n 4+ m) time. Furthermore, this
would also like lead to very uneven vertex weights in the
coarsest graph, as high degree vertices would be aggregate
at each level and be of large weight, whereas low degree ver-
tices would be unlikely to have been aggregated and be of
low weight. This greatly restricts creating a balanced initial
partitioning, and often leads to very poor quality and/or
unbalanced partitions.

For graphs with higher diameter, the edge density of the in-
put graph Go tends to be of greater than or equal density
of the coarsest graph Gs. The clusters of vertices (groups
of highly inter-connected vertices) are sparsely connected in
these graphs, which is what causes them to have high di-
ameters. As a result, once the clusters get contracted, only
the few inter-cluster edges are left exposed. However, for
graphs with small diameters, the density of G, increases.
For the diameter to be small, the longest-shortest path can
only pass through a small number of clusters. Thus, the in-
terconnection of the clusters must be relatively dense, and
the number of exposed edges in G, must be high. This
means that the amount of computation associated with cre-
ating a partitioning for G is dramatically higher, and can
exceed that of coarsening and uncoarsening.

Abou-Rjeili and Karypis [1] studied several techniques for
aggregating more than two vertices together per level to
overcome the reduced size of maximal matchings in graphs
with skewed degree distributions. Meyerhenke et al. [17]
used sized-constrained label propagation to select small clus-
ters of vertices to aggregate together per level. They showed
that this could lead to greatly reduced runtime as well as im-
proved partition quality.

4. ALGORITHMIC IMPROVEMENTS

4.1 Two-Hop Matching

Traditionally, vertices are aggregated together by finding
maximal independent sets of edges to contract. This works
well because it reduces the number of exposed edges on the
graph (and subsequently exposed edge weight), and keeps
the size of any coarse vertex from growing much faster than
others. However, graphs with highly skewed degree distri-
butions often contain only small maximal independent sets
of edges. This causes the next coarser graph to be of similar
size, and can cause many vertices to not grow in size at all
between successive graphs.

To address this issue, we relax the constraint that two ver-
tices being aggregated together must be connected via an
edge. Instead, we allow two vertices to be aggregated to-
gether if they have a common neighbor. That is, if they
are two-hops away on the graph. This has been investigated
before in the context of finding vertex separators [7, 10] (to
preserve sparsity in direct sparse methods) and graph clus-

tering [2, 15].

To ensure we do not disrupt the quality achieved by tra-
ditional matching methods, we use two-hop matching as a
secondary pass over the vertices after a maximal matching
has been found. Our method assumes that each vertex in
the graph has been visited, and that for each unmatched ver-
tex, there exists no neighbor of that vertex for with which
it is eligible to match. We group these unmatched vertices
that are two-hops from each other into three classes: leaves,
twins, relatives.

Leaf vertices are of degree one, and if they share the same
parent, they are desirable to aggregate together. They are
a subclass of twin vertices, but due to their prevalence in
social networks and web graphs, using a special method to
detect and match them is beneficial. Twin vertices are ver-
tices which have identical neighbor lists. Relative vertices
are vertices which are two hops away but do not have iden-
tical sets of neighbors. Relative vertices are the least desir-
able class to collapse, as doing so can hide good cuts in the
coarser graphs. For these reasons we conditionally find and
match each of these classes in the same order. If we have
successfully matched over 75% of the vertices in the, we per-
form no two-hop matching. If after matching leaf vertices
we still have not matched over 75%, we then perform twin
matching. Finally, if this still does not yield a sufficiently
large matching, we the match relatives. Below we show that
finding all three classes takes at most O(nlogn), but is often
linear in the number of unmatched vertices.

4.1.1 Finding Leaves

To find leaves to aggregate together in linear time, we iterate
over our set L of unmatched vertices of degree one. For
each vertex in L, we add its neighbor to the set of root
vertices R. For each root vertex r, we keep track of all the
unmatched leaf vertices L, C L we have processed that are
incident to r (i.e., for each root vertex, L, is the set of leaf
vertices attached to it). Then for each root vertex r, we
can match pairs of leaves in the list L,, as we know they
are two-hops from each other. As the sum the size of the
set of unmatched leaf vertices L plus the size of the set of
root vertices R cannot exceed the number of vertices in the
graph, matching leaf vertices takes at most O(n) time.

4.1.2 Finding Twins

Twin vertices are the most expensive vertices to aggregate
together. To minimize this cost, we limit the maximum de-
gree of vertices we consider for twins to 64 (though different
values may be more desirable depending on graph charac-
teristics and computational resources). We first sort all of
our prospective twin vertices into buckets by degree. As we
know this degree is of a bounded range (2 through 64), this
sorting can be done in linear time via radix sort. We then
sort each bucket using the vertices’ neighborhoods as keys.
As we have bounded the size degree of these vertices, we
can compare two adjacency lists in linear time, giving us a
O(nlogn) complexity. During this sorting process we re-
move and match two vertices when their adjacency lists are
equal. To further speedup this process, we first generate a
hash of each vertex’s adjacency list, and only perform the
comparison based sort on vertices with equal hashes.

4.1.3 Finding Relatives



Finding pairs of relative vertices to match can be done using
the same process as finding leaf vertices. However, because
these vertices can be of degree larger than one, the size of the
set of the root vertices is no longer bounded by the number
of candidates, but by the number of edges incident to our
candidates and also still bounded by the total number of
vertices in the graph. This makes the complexity of finding
relative vertices of O(n).

4.2 Coarsening Optimizations

During contraction we must translate adjacency lists to point
at the new coarse vertices, and merge adjacency lists of ver-
tices that have been aggregated together. From a matrix
standpoint, this involves merging columns and rows of the
adjacency matrix together. In our previous work [14], the
approach here was to use a hash table to accumulate val-
ues for each coarse adjacency list. This ensured that when
perform random accesses into the hash table, it resided in
cache and reduced latency. For graphs with large maximum
degree, a dense vector was used instead to avoid collisions in
the hash table, but incurring the cost of latency associated
with DRAM accesses.

For graphs with skewed vertex degree distributions, this is
undesirable as the majority of the vertices have adjacency
lists which can be merged in a hash table with few collisions.
We can determine how many coarse vertices we will generate
during aggregation. We then do a pass over the coarse ver-
tices to be generated and calculate an upper bound on the
degree of each coarse vertex (the sum of the degrees of fine
vertices). We assign low degree vertices numbers increas-
ing from zero, and high degree vertices numbers decreasing
from the number of coarse vertices. This ensures then dur-
ing contraction, that we can use a hash table for the set of
low degree vertices, and a dense vector the set of high degree
vertices where it is actually necessary.

During both aggregation and contraction, most of the mem-
ory accesses are through indirection arrays. In order to re-
duce the effects of latency, we use software prefetching. In
aggregation, this consists of prefetching the locations of the
match vector for neighbor vertices. During contraction, we
prefetch the location of the coarse vertex mapping for the
vertices in the adjacency lists.

4.3 Cache Oriented Initial Partitioning

The past approach for creating the initial partitioning relied
on the fact that the coarsest graph was relatively small, and
thus the amount of work required to create a partitioning
was small. In this case, it is better to let several threads
create initial partitionings via recursive bisection indepen-
dently, avoiding synchronization overheads. However, this
limited parallelism in the initial partitioning phase to the
number of partitionings we wished to create.

Our new method instead conditionally chooses to split the
threads into independent groups to reduce inter-core com-
munication. If the coarsest graph is large enough with re-
spect to the number of threads, the threads will cooper-
atively work together to create the initial bisection. The
threads will then split into two groups and recursively par-
tition each half of the graph.

However, if the size of the coarsest graph is small enough
with respect to the number of threads, the threads then
break up into several groups, and each group independently

Figure 2: The different shades vertices are assigned to different
threads. The original assignment is shown in (a), where vertices
in the boundary of the same partition may be assigned to many
different threads. The migrated assignment is shown in (b), where
boundary vertices of each partition have been assigned to a single
thread.

generates a partitioning of the graph. We create our groups
based on thread IDs which we bind to CPU cores, with the
goal of creating groups that do not cross processor bound-
aries, thus making good use of shared caches and minimizing
communication distance.

4.4 Boundary Migration

Vertices are statically assigned to threads during refinement,
despite the load imbalance this can cause, for two reasons.
First, is that we do multiple iterations of refinement, mak-
ing it beneficial for threads to operate on the same set of
boundary vertices in each iterations to promote data re-use.
Second, is that the task size is exceedingly small, just a single
vertex, and the overhead of task scheduling would dominate
the runtime (using a larger task size would not guarantee
that more than one vertex in a task would be on the bound-
ary and require work).

In our previous work [14], threads performed refinement on
the vertices they were assigned at graph generation (or input
for the first level). This resulted in significant core-to-core
communication. As seen in Figure 2a, boundary vertices can
be scattered among threads. Any time a vertex is moved,
vertices owned by other threads must be updated. Han-
dling these updates asynchronously means a lot of time is
wasted processing small messages from other threads dur-
ing refinement and handling these updates in large batches
or synchronously at the end of each iteration can result in
extra work being performed in the form of suboptimal or
discarded moves.

To address this issue, we introduce the notion of boundary
migration. During the projection step of uncoarsening, we
change the thread assignment of boundary vertices, so that
rather than each thread owning vertices scattered through-
out the boundary, each thread owns a relatively continuous
chunk of boundary vertices as seen in Figure 2b. We change
the assignment of only boundary vertices so as to minimize
the cost of this migration. Partitions are assigned to threads
via hashing, and the boundary vertices are migrated to the
threads to which their partitions were assigned.

To perform this migration, we create t buckets to place ver-
tices in, where each bucket corresponds to the partitions
assigned to each of the ¢ threads. Each thread counts the
number of boundary vertices that it owns at the start of
projection destined for each bucket. A global prefixsum is
computed such that each thread knows the starting index at
which to insert its boundary vertices into the buckets. This
is then followed by the threads copying their boundary ver-
tices into the buckets. Once all threads have finished copying
their boundary vertices into the buckets, each thread then
retrieves the boundary vertices in the bucket corresponding



Table 1: Graphs

Graph Vertices Edges | Max Deg
333SP 3,712,815 | 11,108,633 28
AS365 3,799,275 | 11,368,076 14
NLR 4,163,763 | 12,487,976 20
asia.osm 1,1950,757 | 12,711,603 9
hugetrace-00020 | 16,002,413 | 23,998,813 3
road_usa 23,947,347 | 28,854,312 9
Serena 1,391,349 | 31,570,176 248
audikwl 943,695 | 38,354,076 344
dielFilterV3real 1,102,824 44,101,598 269
delaunay_n24 16,777,216 | 50,331,601 26
europe.osm 50,912,018 54,054,660 13
Flan_1565 1,564,794 | 57,920,625 80
nlpkkt240 27,993,600 | 373,239,376 27
flickr 820,878 6,625,280 10,891
eu-2005 862,664 | 16,138,468 68,963
soc-pokec 1,632,803 22,301,964 14,854
wikipedia-2007. 3,566,908 | 42,375,912 187,671
soc-LiveJournall 4,847,571 42,851,237 20,333
com-orkut 3,072,441 | 117,185,083 33,313
uk-2002 18,520,486 | 261,787,258 194,955

to the partitions it was assigned.

Throughout all iterations of the current level of refinement
a thread is responsible for moving and updating the vertices
which it was received in this process. When a vertex is
pulled into the boundary, it is assigned to the that owns the
partition in which it resides.

For the case where the number of threads is significantly less
than the number of partitions, we assign multiple threads to
a partition. We can then assign a vertex on the boundary in
this partition to one of the partition’s threads based on the
opposing partition to which the vertex is most connected.
When a vertex internal to a partition is pulled into the
boundary (e.g., one of its neighbors was moved to another
partition) it is assigned to one of the partition’s threads via
hashing. This hashing is done rather than assigning the ver-
tex to the thread that pulled it into the boundary, as two
or more threads may concurrently pull the same vertex into
the boundary by moving its neighbors.

S. EXPERIMENTAL METHODOLOGY

The graphs used in our experiments are listed in Table 1.
They are divided into two groups: those with normal de-
gree distributions, and those with skewed degree distribu-
tions. The group of graphs with normal degree distributions
are from the University of Florida Sparse Matrix Collection
(UFSMC) [6]. These graphs are a combination of scientific
meshes, road networks, and non-linear programming matri-
ces.

The group of graphs with skewed degree distribution are
from UFSMC and the Stanford Large Network Dataset Col-
lection [16]. These are a combination of web and social
networks. For networks that were originally directed, we
converted them to undirected weighted graphs via A + AT
(where A is the directed version of the adjacency matrix).
These graphs with skewed degree distributions have maxi-
mum degrees several orders of magnitude larger than those
with normal degree distributions.

The runtimes presented in the following sections are the
mean of ten runs of the partitioners using different random
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Figure 3: Two-hop matching and KaHIP’s LP-based aggregation
compared to mt-Metis, run serially and k = 64.

seeds.

We used an Intel® Xeon®! E5-2699 v3 processor based sys-
tem for the experiments. The system consists of two pro-
cessors, each with 18-cores running at 2.3 GHz (a total of
36 cores) with 45 MB L3 cache and 64GB memory. The
system is based on the Haswell microarchitecture and runs
Redhat Linux (version 6.5). All our code is developed using
C and is compiled using the GNU GCC version 4.8.3, using
the -O3 optimization flag. For comparison we used KaHIP
version 0.71c from http://algo2.iti.kit.edu/documents/
kahip/index.html, PT-Scotch version 6.0.4 from http://
gforge.inria.fr/projects/scotch/, and ParMetis version
4.0.3 from http://cs.umn.edu/ "metis.

6. RESULTS

In this section we first evaluate our algorithmic improve-
ments individually. We then evaluate net effect of our algo-
rithmic improvements. We will refer to mt-Metis with these
algorithmic improvements from Section 4 as mt-Metis-opt in
the following experiments. Finally, we compare mt-Metis-
opt to other parallel partitioners.

6.1 Coarsening

6.1.1 Aggregation

Figure 3 shows results of running mt-Metis serially with two-
hop matching and KaHIP using the fastsocial configura-
tion which uses size-constrained label propagation based ag-
gregation. The runtimes are normalized to that of mt-Metis
without two-hop matching running serially. As can be seen,
allowing two-hop matching significantly reduces runtime, up
to 7.0x for uk-2002, and a geometric mean for these seven
graphs of 2.0x, as it allows the number of vertices in the
graph to reduce by almost half at each level. This impacts
not only the amount of work done in coarsening, but also the
amount of work done in uncoarsening as well. The amount
of time spent in initial partitioning is also reduced, as the
size of the coarsest graph, G, is smaller due to coarsening
not exiting early.

The speedup from two-hop matching also brought with it
an improvement in quality, decreasing the geometric mean
of the number of cut edges by 3.2%. KaHIP’s label propaga-
tion based aggregation allows it to detect a larger structures
while coarsening, and does a better job leaving low-cut areas

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.
and/or other countries.
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Figure 5: Cache oriented initial partitioning compared with in-
dependent initial partitioning (geometric mean for all 20 graphs),
using 36 threads and k = 64.

of the graph uncontracted. This resulted in a 14.4% lower
geometric mean edgecut for the seven graphs than two-hop
matching. This is largely a result of KaHIP finding good
partitionings of uk-2002 with half the edgecut of mt-Metis.
The graph uk-2002 has a strong cluster structure (few inter-
cluster edges), and being able to detect those edges was
crucial to finding small cuts on this graph. However, the
amount of work associated with just a few iterations of la-
bel propagation far exceeds that of matching (and two-hop
matching), causing KaHIP to have a geometric mean run-
time 4.4x higher than mt-Metis with two-hop matching.

6.1.2 Implementation Level Optimizations

The results of our coarsening optimizations are shown in
Figure 4, for the ten graphs on which they had the largest
impact. The geometric mean for all 20 graphs is shown on
the right. Our optimizations resulted in a geometric mean
speedup of 1.6x for all 20 graphs. Software prefetching re-
sulted in large gains for the denser mesh-style graphs where
we had a sufficient number of edges per vertex with which
to look ahead. For the larger network style graphs, our two
part contraction using both a hash table and a dense vector,
played a large role in achieving near 2x speedups.

6.2 Initial Partitioning

The runtime of the new parallel formulation of initial parti-
tioning for ten graphs is shown in Figure 5, and the geomet-
ric mean for all 20 graphs is shown on the right. The mean
reduction in runtime was 45%, or a 1.8 x speedup. While the
semi-cooperative creation of initial partitionings means an
increase in overhead, the increased parallelism more than
made up for it. While the largest decrease in initial par-
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Figure 6: Uncoarsening runtime using boundary migration com-
pared to static assignment (geometric mean is for all 20 graphs),
using 36 threads and k = 64.

titioning time was achieved on the sparse graphs as using
all 36 threads did not result in cache conflicts, the largest
impact on total running time was for the case where the
coarsest graph was relatively dense. For example, for com-
orkut which had a relatively dense coarsest graph, the total
runtime decreased by 21%, and for Flan_1565, which had a
relatively sparse coarsest graph, the total runtime decreased
by less than 4%.

6.3 Uncoarsening

In Figure 6, we show the effects on runtime of migrating
boundary vertices on ten of the graphs. The geometric mean
for all 20 graphs is shown on the right. The time spent in re-
finement dramatically decreases when vertices are migrated,
the geometric mean decreased by 2.5x. This is because the
amount of updates that need to be communicated between
threads dramatically decreases, and decisions regarding ver-
tex movement are more likely to up to date and not be
undone in a later iteration.

Projection however, because it now includes the time it takes
to migrate the boundary vertices, had its geometric mean
runtime increase by 10%. This changed the percentage of
time spent in projection from making up 36% of uncoarsen-
ing, to 61%. The net effect of boundary migration reduced
the geometric mean runtime of the uncoarsening phase when
using 36 threads by 35%, and by up to 60% for the road
network, europe.osm. Because road networks tend to have
very sparse cuts, the cost of communication between threads
plays a significant role in the runtime of refinement where
there is little useful work done. By migrating boundary ver-
tices (of which there are very few), we minimize this com-
munication, which has a large impact on the runtime.

6.4 Overall Improvements

We present the net effects of our improvements in Figure 7,
where we compare the runtime of our algorithmic improve-
ments in mt-Metis-opt with mt-Metis. The geometric mean
reduction in runtime was 49%, or a speedup of 1.96x.

For the 20 graphs a range of speedups of 1.5 — 11.7x was
observed. The top of this range was achieved on uk-2002.
This is largely due to the improved coarsening from two-
hop matching, but was also influenced by large gains from
our coarsening optimizations and restructured initial parti-
tioning. The geometric mean cut for the twenty graphs re-
mained relatively unchanged with our algorithmic improve-
ments (0.7% higher for mt-Metis-opt, due to higher edgecuts
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Figure 8: Comparison of strong scaling of mt-Metis-opt with mt-Metis, using 36 threads and k = 64.

on the road networks).

Our improvements not only made a significant difference in
runtime, but also in terms of strong scaling, as shown in
Figure 8. Where previously mt-Metis achieved a geomet-
ric mean speedup of 6.3x using 36 threads, held back in
part by poor scaling on skewed degree distribution graphs,
with our changes mt-Metis-opt scales to 11.4x. This is an
improvement of 82%. For the skewed degree distribution
graphs, two-hop matching help shift much of the runtime
into the coarsening phase, which tends to scale the best as
large amount of work per thread with little synchronization
required. Furthermore, our changes to initial partitioning
and uncoarsening, increased the scalability of the remaining
time. This is evident when looking at the still substantial
speedups for the graphs with non-skewed degree distribu-
tions.

In Figure 9, we compare the mt-Metis-opt with ParMetis
and Pt-Scotch. The graphs graphs wikipedia-20070206 and
uk-2002 are not included in this experiment as ParMetis and
Pt-Scotch ran out of memory while attempting to partition
them. A parallel version of the KaHIP partitioner has not
been released, and as such we do not compare against it
here.

The geometric mean runtime of mt-Metis-opt was 2.9x lower
than ParMetis for the 18 graphs. Pt-Scotch’s geometric
mean runtime was 7.6 x higher than that of ParMetis, largely
due to its use of recursive bisection, which requires roughly
log k iterations through the multilevel paradigm (which is

six for k = 64).

The largest difference of runtime between mt-Metis-opt and
the distributed partitioners was on the graph eu-2005, where
mt-Metis-opt was 8.7x faster than ParMetis. This large dif-
ference in runtime was due to ParMetis’ inability to coarsen
the graph. ParMetis was forced to stop coarsening at 344,515
vertices, where as mt-Metis-opt coarsened eu-2005 down to
6,779 vertices before starting the recursive bisection in ini-
tial partitioning. The smallest difference was on the graph
asia.osm, where mt-Metis-opt was 2.0 faster than ParMetis.
This graph is very sparse with an average degree of just only
slightly more than two, and has an extremely small bound-
ary on 64-way partitions (only 0.01% of the vertices were
on the boundary). As a result of these properties, 90% of
the time was spent in coarsening and the projection step
of uncoarsening, and our coarsening optimizations were tar-
geted at graphs where the work associated with the edges
was much greater than that of the work associated with the
vertices. For the denser mesh-style graphs, dielFilterV3real
and Flan_1565, mt-Metis-opt was 3.1x faster than ParMetis,
largely due to our coarsening optimizations and the much
smaller refinement time resulting from boundary migration.

7. CONCLUSION

Multilevel graph partitioning is a complex process, with
several different sub-processes involving highly irregular ac-
cess patterns. Achieving high performance on modern par-
allel architectures over a variety of inputs is a significant
challenge. In this paper we presented several modifications
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Figure 9: Comparison of modified mt-Metis with other partitioners, using 36 threads/processes and k = 64. Runtimes are relative with
respect to the runtime of mt-Metis-opt. Absolute runtimes in seconds are shown above the corresponding bars.

to the shared-memory parallel graph partitioner mt-Metis.
These modifications resulted in performance increases of 1.5—
11.7x, and increased strong scaling by 82%, while preserv-
ing partition quality. Our modifications include an efficient
method for performing two-hop matchings, a new parallel
formulation of initial partitioning, a method for reducing
communication during uncoarsening, and implementation
level optimizations for coarsening.
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