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ABSTRACT
Random walks can provide a powerful tool for harvesting the rich

network of interactions captured within item-based models for top-
n recommendation. They can exploit indirect relations between

the items, mitigate the effects of sparsity, ensure wider itemspace

coverage, as well as increase the diversity of recommendation lists.

Their potential however, is hindered by the tendency of the walks to

rapidly concentrate towards the central nodes of the graph, thereby

significantly restricting the range of K-step distributions that can

be exploited for personalized recommendations. In this work we

introduceRecWalk; a novel randomwalk-based method that lever-

ages the spectral properties of nearly uncoupled Markov chains to
provably lift this limitation and prolong the influence of users’

past preferences on the successive steps of the walk—allowing the

walker to explore the underlying network more fruitfully. A com-

prehensive set of experiments on real-world datasets verify the

theoretically predicted properties of the proposed approach and

indicate that they are directly linked to significant improvements

in top-n recommendation accuracy. They also highlight RecWalk’s

potential in providing a framework for boosting the performance of

item-based models. RecWalk achieves state-of-the-art top-n recom-

mendation quality outperforming several competing approaches,

including recently proposed methods that rely on deep neural net-

works.

CCS CONCEPTS
• Information systems → Recommender systems; • Mathe-
matics of computing → Markov processes.
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1 INTRODUCTION
Top-n recommendation algorithms provide ranked lists of items

tailored to the particular tastes of the users, as depicted by their

past interactions within the system. Over the past years they have
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become an indispensable component of most e-commerce applica-

tions as well as content delivery platforms.

Item-based methods are among the most popular approaches for

top-n recommendation [11, 33, 38]. Such methods work by building

a model that captures the relations between the items, which is then

used to recommend new items that are “close” to the ones each user

has consumed in the past. Item-based models have been shown

to achieve high top-n recommendation accuracy [33, 38] while

being scalable and easy to interpret [11]. The fact, however, that

they typically consider only direct inter-item relations can impose

fundamental limitations to their quality and make them brittle to

the presence of sparsity—leading to poor itemspace coverage and

significant decay in performance [3]. Random-walk-based methods
are particularly well-suited for alleviating such problems. Having

the innate ability to relate items that are not directly connected by

propagating information along the edges of the underlying graph,

random walk methods are more robust to the effects of sparsity and

they can afford better coverage of the itemspace. However their

effectiveness in terms of top-n recommendation can be limited by

the tendency of the walks to concentrate probability mass towards

the central nodes of the graph—thus disproportionately boosting the

recommendation scores of popular items in the system. This means

that in order to produce high quality recommendations random-

walk-based techniques are restricted to exploit just the first few

steps of thewalk that are still influenced by the personalized starting

distribution. This is in accordance to the mathematical properties

of random walks and it has also been empirically verified that

when applied to real-world networks, short-length random walks

typically work best [7, 8, 12].

In this work we introduce RecWalk; a novel framework for

top-n recommendations that aims to combine the potential of item-

based models to discern meaningful relations between the items,

with the inherent ability of random walks to diffuse these relations

across the itemspace and exploit the rich network of interactions

they shape. RecWalk produces recommendations based on a random
walk with node-dependent restarts designed to prolong the influence
of the personalized initialization on the successive K-step landing

probabilities of the walk—thereby eliminating the need of clipping

the walks early. Intuitively, this gives the walker “more time” to

harvest the information captured within the item model before suc-

cumbing to the “pull” of central nodes. The advocated random walk

construction leverages the spectral properties of nearly uncoupled
Markov chains [9] in order to enforce a time-scale dissociation of the
stochastic dynamics of the walk towards equilibrium—thus increas-

ing the number of successive landing probabilities that carry person-

alized information useful for top-n recommendation. The properties

of our model are backed by rigorous theoretical analysis of the mix-

ing characteristics of the walk which we empirically verify that are
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indeed intertwined with top-n recommendation accuracy. A com-

prehensive set of experiments on real-world datasets showcase the

potential of the proposed methodology in providing a framework

for boosting the performance of item models. RecWalk achieves

high recommendation quality outperforming state-of-the-art com-

peting approaches, including recently proposed methods relying on

deep neural networks. Open source implementation of the method

is available at: https://github.com/nikolakopoulos/RecWalk.

2 PROPOSED METHOD
Definitions. LetU = {1, . . . ,U } be a set of users andI = {1, . . . , I }
a set of items. Let R ∈ RU×I be the user-item interaction matrix;
i.e. the matrix whose ui-th element is 1 if user u has interacted

with item i , and 0 otherwise. Each user u ∈ U is modeled by a

vector rTu ∈ RI which coincides with the corresponding row of the

user-item interaction matrix R; similarly, each item i ∈ I will be

modeled by a vector ri ∈ RU which coincides with the correspond-

ing column of matrix R. The rows and columns of R are assumed

to be non-zero; i.e. every user has interacted with at least one item,

and for every item there exists at least one user who has interacted

with it. Finally, we use the term item model to refer to a matrix

W ∈ RI×I the ij-th element of which gives a measure of proximity
or similarity between items i and j.

2.1 RandomWalks and Item Models
The fundamental premise of the present work is that combining

random walks and item models allows for more effective utilization

of the information captured in the item model; considering direct as

well as transitive relations between the items, and also alleviating

sparsity related problems. However directly applying randomwalks

on item models can lead to a number of problems that arise from

their inherent mathematical properties and the way these relate to

the underlying top-n recommendation task.

Imagine of a random walker “jumping” from node to node on

an item-to-item graph with transition probabilities proportional to

the inter-item proximity scores depicted by an item model. If the

starting distribution of this walker reflects the items consumed by

a particular user u in the past, the probability the walker “lands”

on different nodes after K steps provide an intuitive measure of

proximity that can be used to rank the nodes and recommend items

to user u accordingly.

Specifically, ifW denotes the itemmodel and S ≜ Diag(W1)−1W
the transition probability matrix of the walk, personalized recom-

mendations for each user u can be produced e.g. by utilizing the

K-step landing probability distributions of a walk rooted on the items

consumed by u:

πT
u ≜ ϕT

uS
K , ϕT

u ≜
rTu
∥rTu ∥1

(1)

or by computing the stationary distribution of a random walk with
restarts on S, using ϕT

u as the restarting distribution. The latter

approach is the well-known personalized PageRank model [34] with

teleportation vector ϕT
u and damping factor p, and its stationary

distribution can be expressed [22] as

πT
u ≜ ϕT

u

∞∑
k=0

(1 − p)pkSk . (2)

Clearly, both schemes harvest the information captured in the K-

step landing probabilities {ϕT
uSk }k=0,1, ... . In the former case, the

recommendations are produced by using a fixedK ; in the latter case
they are computed as a weighted sum of all landing probabilities,

with the K-step’s contribution weighted by (1 − p)pk . But, how
do these landing probabilities change as the number of steps K
increases? For how long will they still be significantly influenced

by user’s prior history as depicted in ϕT
u?

When S is irreducible and aperiodic—which is typically the case

in practice—the landing probabilities will converge to a unique lim-

iting distribution irrespectively of the initialization of the walk [15].

This means that for large enough K the K-step landing probabil-

ities will no longer be “personalized” in the sense that they will

become independent of the user-specific starting vector ϕT
u . Fur-

thermore, long before reaching equilibrium, the usefulness of these

vectors in terms of recommendation will start to decay as more and

more probability mass gets concentrated to the central nodes of

the graph—thereby restricting the number of landing probability

distributions that are helpful for personalized recommendation.

This imposes a fundamental limitation to the ability of the walk to

properly exploit the information encoded in the item model.

Motivated by this, here we propose RecWalk; a novel random-

walk model designed to give control over the stochastic dynamics

of the walk towards equilibrium; provably, and irrespectively of

the dataset or the specific item model onto which it is applied. In

RecWalk the item model is incorporated as a direct inter-item tran-

sition component of a walk on the user-item bipartite network. This

component is followed by the random walker with a fixed proba-

bility determined by a model parameter that controls the spectral
characteristics of the underlying walk. This allows for effective ex-

ploration of the item model while the influence of the personalized

initialization on the successive landing probability distributions

remains strong. Incorporating the item model in a walk on the

user-item graph (instead of the item graph alone) is crucial in pro-

viding control over the mixing properties; and as we will see in

the experimental section of this work such mixing properties are

intimately linked with top-n recommendation accuracy.

2.2 The RecWalk Stochastic Process
We define G ≜ ({U,I}, E) to be the user-item bipartite network; i.e
the network with adjacency matrix AG ∈ R(U+I )×(U+I ) given by

AG ≜
(
0 R
RT 0

)
. (3)

Consider a random walker jumping from node to node on G. Sup-

pose the walker currently occupies node c ∈ U ∪ I. In order to

determine her next step transition she flips a biased coin that yields

heads with probability α and tails with probability (1 − α):

(1) If it turns heads, then:
(a) if c ∈ U, the walker jumps to one of the items rated by

the user corresponding to node c uniformly at random;

(b) if c ∈ I, the walker jumps to one of the users that have

rated the current item uniformly at random;

(2) If it turns tails, then:
(a) if c ∈ U, the walker stays put;
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(b) if c ∈ I, the walker jumps to a related item abiding by

an inter-item transition probability matrix (to be explicitly

defined in the following section).

The stochastic process that describes this random walk is defined

to be a homogeneous discrete time Markov chain with state space

U ∪I; i.e. the transition probabilities from any given node c to the
other nodes are fixed and independent of the nodes visited by the

random walker before reaching c .

2.3 The Transition Probability Matrix
The transition probability matrix P that governs the behavior of

our random walker can be usefully expressed as a weighted sum of

two stochastic matrices H and M as

P ≜ αH + (1 − α)M (4)

where 0 < α < 1, is a parameter that controls the involvement of

these two components in the final model. Matrix H can be thought

as the transition probability matrix of a simple random walk on the

user-item bipartite network. Since every row and column of matrix

R are non zero, matrix H is well-defined and it can be expressed as

H ≜ Diag(AG1)−1AG . (5)

Matrix M, is defined as

M ≜
(
I 0
0 MI

)
(6)

where I ∈ RU×U the identity matrix and MI ∈ RI×I an inter-item

transition probability matrix designed to capture relations between

the items. In particular, given an item model with non-negative

weights W we define this matrix using the following stochasticity

adjustment strategy:

MI ≜
1

∥W∥∞
W + Diag(1 −

1

∥W∥∞
W1). (7)

The first term divides all the elements by the maximum row-sum

ofW and the second enforces stochasticity by adding residuals to

the diagonal, appropriately. The motivation behind this definition

is to retain the information captured by the relative differences of

the inter-item relations in W, ensuring that [W]i j ≥ [W]i′j′ ⇒
[MI ]i j ≥ [MI ]i′j′ for all i , j, i ′ , j ′. This prevents items that

are loosely related to the rest of the itemspace to disproportion-

ately influence the inter-item transitions and introduce noise to the

model.

2.3.1 Choice of the core Item-model. The construction of matrixW
itself can be approached in several ways depending on the available

information, the characteristics of the underlying recommendation

problem, the properties of matrix R, etc. The fact that random walk

methods can achieve naturally item-space coverage allows us to

define this component in a way that enforces locality in the relations

between the items, having also the advantage to be easy to compute.

In particular, we propose the use of a locally restricted variant

of the well-known SLIM method [33] that is forced to consider

only fixed-size neighborhoods when learning relations between

the items. Concretely, for any given item i we find the set of its C
closest neighbors (in terms of cosine similarity between their vector

representations) and we form a matrix Ni ∈ R
I×C

, by selecting the

corresponding columns of the initial matrix R. We then solve for

each item the optimization problem

minimize

x∈RC
1

2
∥ri − Nix∥2 + γ1∥x∥1 + 1

2
γ2∥x∥2

subject to x ≥ 0

(8)

and we fill the corresponding elements in the i-th column of matrix

W. The complete procedure for building the RecWalk model is

given in Algorithm 1.

2.4 Recommendation Strategies
Having defined the RecWalk transition probability matrix we can

produce recommendations by exploiting the information captured

in the successive landing probability distributions of a walk initial-

ized in a user-specific way. Here, we will consider two recommen-

dation strategies; namely

RecWalkK-step: The recommendation score of user u for item

i is defined to be the probability the random walker lands

on node i after K steps, given that she started on node u.
Therefore the recommendation score for item i is given by

the corresponding elements of

πT
u ≜ eTuP

K
(9)

where eu ∈ RU+I is a vector that contains the element 1 on

the position that corresponds to user u and zeros elsewhere.

The computation of the recommendations is presented in

Algorithm 2 and it entails Θ(K nnz(P)) operations, where
nnz(P) is the number of nonzero elements in P.

RecWalkPR: The recommendation score of user u for item i
is defined to be the element that corresponds to item i in the

limiting distribution of a random walk with restarts on P,
with damping factor η and teleportation distribution eu :

πT
u ≜ lim

K→∞
eTu (ηP + (1 − η)1e

T
u )

K . (10)

This can be computed based on the power method as in Al-

gorithm 3. Producing recommendations for a user involves

Θ((log ϵ/logη) nnz(P)) floating point operations for conver-

gence up to a tolerance ϵ [28].

2.5 Theoretical Properties
As we will show in the rest of this section, a key property of the

RecWalk model is that for small values of parameter α the RecWalk

chain is going to be nearly uncoupled into a large number of blocks,

thereby allowing the random walk process dynamics towards equi-

librium to disentangle into a slow-mixing and a fast-mixing com-

ponent. This implies personalized landing probabilities even when

the number of steps gets large.

2.5.1 Nearly UncoupledMarkov Chains. Anearly uncoupledMarkov

chain is a discrete time chain whose transition probability matrix is

almost block diagonal [9, 41]. Formally, let Z ∈ Rn×n be the transi-

tion probabilitymatrix of an irreducible and aperiodicMarkov chain.

Matrix Z can always be written as Z = Z⋆+εC,where Z⋆ is a block-

diagonal matrix of order n, given by Z⋆ = Diag(Z⋆
11
,Z⋆

22
, . . . ,Z⋆LL);

and matrices Z⋆I I are irreducible stochastic matrices of order n(I ).

Hence, n =
∑L
I=1 n(I ) , and because both Z and Z⋆ are stochastic,

the row-sums of C are zero.
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Algorithm 1 RecWalkModel

Input: Implicit feedback matrix R, parameters: α , γ1, γ2, C .
Output: RecWalk transition probability matrix P.
parfor i ∈ I do

Find the C nearest neighbors of item i and form Ni

minimize

x∈RC
1

2
∥ri − Nix∥2 + γ1∥x∥1 + 1

2
γ2∥x∥2

subject to x ≥ 0

Fill the corresponding elements in the i−th column of W.

end parfor
MI ←

1

∥W∥∞
W + Diag(1 − 1

∥W∥∞
W1)

AG ←
(
0 R
RT 0

)
P← α Diag(AG1)−1AG + (1 − α)

(
I 0
0 MI

)

Matrix C and the non-negative real number ε are chosen such

that for all rows

ε = max

mI

∑
J,I

n(J )∑
l=1

ZmI l J (11)

ε
∑
J,I

n(J )∑
l=1

CmI l J =
∑
J,I

n(J )∑
l=1

ZmI l J (12)

where we use ZmI l J to denote the element at the intersection of

them-th row and l-th column of the ZI J submatrix of Z.
Parameter ε is referred to as the maximum degree of coupling

between the blocks. When ε is sufficiently small, the Markov chain

with transition probability matrix Z is called nearly uncoupled into

L blocks [9].

2.5.2 Mixing properties of RecWalk. Since the discrete timeMarkov

chain defined by P is finite and aperiodic,
1
as the number of steps

K increases the landing probabilities of RecWalk will converge to

a limiting distribution. It is well known (see e.g.[42]) that the rate

of convergence to this distribution depends on the modulus of the

subdominant eigenvalue of the transition probability matrix of the

walk. In particular, the asymptotic rate of convergence to the limit-

ing distribution is the rate at which |λ2(P)|k → 0. Intuitively, the

smaller |λ2(P)| is, the sooner the landing probability distributions

will start yielding recommendation vectors that are “unpersonal-

ized,” in the sense that they are the same for all users irrespectively

of the items with which they have interacted.

The following theorem shedsmore light to the spectral properties

of matrix P.

Theorem 2.1. Let P be the RecWalk transition probability matrix
with α ∈ (0, 1) defined over a connected user-item network G, and
also let λ(P) be the set of the eigenvalues of P. Irrespectively of the
item model used to define matrix MI it holds

(a) 1 − 2α ∈ λ(P)
(b) when α is small enough the Markov chain with transition

probability matrix P will be nearly uncoupled into at least
U + 1 blocks.

1
Note that aperiodicity is ensured by the nonzero diagonal ofM (see e.g. [27]).

Algorithm 2 RecWalk
K-step

Input: RecWalk model P, user u ∈ U.

Output: Recommendation vector πu .
πT
u ← eTu

for k ∈ 1, . . . ,K do
πT
u ← πT

uP
end for

Algorithm 3 RecWalk
PR

Input: RecWalk model P, user u ∈ U, damping factor η.
Output: Recommendation vector πu .
xT
(0)
← eTu

k ← 0

repeat
k ← k + 1
xT
(k ) ← ηxT

(k−1)P + (1 − η)e
T
u

Normalize xT
(k )

until ∥xT
(k ) − x

T
(k−1)∥1 < tol

πu ← x(k )

Proof. When G is connected, matrix H is irreducible [22]. Fur-

thermore, since the graph is bipartite a simple random walk on G

results in a periodic Markov chain with period d = 2. Therefore,

from the Perron-Frobenius theorem [15] we get that

λ1(H) = 1, and λ2(H) = e2iπ /d = eiπ = −1.

The so-called Perron eigenvalue λ1(H) is associated with the right

eigenvector 1; whereas eigenvalue λ2(H) with a right eigenvector

which we denote v.
The special structure of H makes it easy to guess the form of

the eigenvector v as well as to verify that it actually denotes an

eigenvector of matrix M too. In particular, we have

v ≜ [

|U | user nodes︷                 ︸︸                 ︷
1 1 1 · · · 1

|I | item nodes︷                     ︸︸                     ︷
−1 − 1 · · · − 1].

It is easy to see that v is indeed an eigenvector of both matrices H
and M. In particular, we have

Hv =
(
0 H12

H21 0

) (
1U
−1I

)
=

(
−1I
1U

)
= −v (13)

from which we get that (−1, v) is an eigenpair of matrix H; and

Mv =
(

1U
−MI1I

)
= v (14)

which implies that (1, v) is an eigenpair of matrix M.

Now consider a non-singular matrix, Q ≜
(
1 v X

)
, which

contains in its first two columns the eigenvectors 1 and v. Also let

Q−1 ≜
©«
yT
1

yT
2

YT

ª®®¬ . (15)
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By definition it holds Q−1Q = I, which can be usefully written as

©«
yT
1
1 yT

1
v yT

1
X

yT
2
1 yT

2
v yT

2
X

YT1 YTv YTX

ª®®¬ =
©«
1 0 0
0 1 0
0 0 I

ª®®¬ . (16)

Now, if we consider the similarity transformation of the RecWalk

transition probability matrix,Q−1PQ, also taking into consideration
(13), (14) and the identities (16), we have

Q−1PQ = Q−1 (αH + (1 − α)M)Q = · · · =

=
©«
1 0 αyT

1
HX + (1 − α)yT

1
MX

0 1 − 2α αyT
2
HX + (1 − α)yT

2
MX

0 0 αYTHX + (1 − α)YTMX

ª®®¬ (17)

from which we directly establish that 1 − 2α is an eigenvalue of

matrix P, and the first part of the theorem is proved.

To prove the second part it suffices to show that there exists

a partition of the state space into blocks such that the maximum

probability of leaving a block upon a single transition is upper-

bounded by α [41]. In particular, consider the partition

A ≜ {{u1}, {u2}, . . . , {uU },I}. (18)

By definition, in the RecWalk model the probability of leaving u is

equal to α , for all u ∈ U. Concretely,

Pr{jump from u ∈ U to any j , u} =
∑
j,u

Puj =
∑
j,u

αHuj = α .

Similarly, the probability of leaving block I upon a transition is

Pr{jump from i ∈ I to any ℓ < I} =
∑
ℓ<I

Piℓ =
∑
ℓ<I

αHiℓ = α .

Therefore, the RecWalk chain can always be decomposed accord-

ing to A such that the maximum degree of coupling between the

involved blocks is exactly equal to α . Hence, choosing α to be suffi-

ciently small ensures that the chain will be nearly uncoupled into

(at least) U + 1 blocks. □

Theorem 2.1 asserts that the proposed random walk construc-

tion ensures the existence of an eigenvalue equal to 1 − 2α . This
means that the modulus of the eigenvalue that determines the rate

of convergence to the limiting distribution will be at least 1 − 2α .
Hence, choosing α allows us to ensure that the RecWalk process

will converge as slow as we need to increase the number of landing

probability distributions that can still serve as personalized recom-

mendation vectors in our model—irrespectively of the particular

user-item network or the chosen item model upon which it is built.

Moreover note that the spectral “fingerprint” of nearly uncoupled

Markov chains is the existence of a set of subdominand eigenvalues

that are relatively close (but not equal) to 1 [9]. In our case, for

small values of α these eigenvalues are expected to be clustered

close to the value 1 − α (cf. (17)). The number of these eigenvalues

depicts the number of blocks of states into which the chain is nearly

uncoupled. Therefore, subject to α being small the RecWalk chain

will have at least U + 1 eigenvalues “clustered” around the value 1,

which means that matrix P can be expressed as

P = 1πT + T
slow
+ T

fast
(19)

where πT
is the stationary distribution of the walk, T

slow
is a slow

transient component, and T
fast

is a fast transient component (see

[41] for details). AsK gets large the fast transient termwill diminish

while the elements of the slow transient term will remain large

enough to ensure that the recommendation vectors are not com-

pletely dominated by 1πT
. Of course, as K gets larger and larger

the relative influence of the first term will become stronger and

stronger, up to the point where each user is assigned the exact

same recommendation vector πT
; however this outcome will be

delayed by the existence of the slow transient term T
slow

. Note that

in a simple random walk on W such time-scale dissociation of the

stochastic dynamics of the walk is typically absent; and certainly it

cannot be guaranteed in advance. On the contrary, the proposed

random walk construction in RecWalk provides a clear mechanism

to ensure such property, and as we will see in the experimental

section of this paper this property alone can lead to significant

improvements in top-n recommendation quality compared to what

one would get by using the item model directly.

3 RELATEDWORK
Over the past decade a vast number of algorithms have been pro-

posed to tackle the top-n recommendation task. These include

neighborhood-based methods [11, 33]; latent-space methods [10,

18, 21, 31, 43]; graph-based methods [7, 8, 20]; and more recently

methods relying on deep neural networks [17, 23, 44]. Recom-

mendation methods relying on random walks have also been de-

ployed in several large-scale industrial settings with remarkable

success [12, 14, 16]. RecWalk combines item-models with random

walks, and therefore lies at the intersection between neighborhood-

and graph-based methods; the inter-item transition component cap-

tures the neighborhoods of the items which are then incorporated

on a random walk framework to produce recommendations.

The construction of RecWalk is inspired by the properties of

nearly uncoupled Markov chains. The analysis of nearly uncoupled

systems—also referred to as nearly decomposable systems—has been

pioneered by Simon [40], who reported on state aggregation in

linear models of economic systems. However, the universality of

Simon’s ideas has permitted the theory to be used with significant

success in the analysis of complex systems arising in social sciences

and economics [4, 35, 37], evolutionary biology [39], cognitive sci-

ence [24, 25], administrative sciences and management [45, 46], etc.

The introduction of these ideas in the fields of computer science and

engineering can be traced back to Courtois [9] who applied Simon’s

theory in the performance analysis of computer systems. More re-

cently near decomposability has been recognized as a property of

the Web [19] and it has inspired the development of algorithms

for faster computation of PageRank [6, 47] (building on a large

body of related research in the field of numerical linear algebra; see

e.g. [26, 41, 42]) as well as the development of new network central-

ity measures [13, 29, 32]. In the field of recommender systems the

notion of decomposability has inspired the development of methods

for incorporating meta-information about the items [30] with the

blocks chosen to highlight known structural/organizational proper-

ties of the underlying itemspace. Here, on the contrary, we exploit

decomposability in the “time-domain” with the blocks defined to

separate the short-term from the long-term temporal dynamics of

the walk in order to effect the desired mixing properties that can

lead to improved recommendation performance.

Session 3: Recommendation and Temporal Trends WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

154



4 EXPERIMENTAL SETTING
4.1 Datasets
Our experimental evaluation is based on three real-world pub-

licly available datasets; namely (i) the movielens dataset (obtained

from [1]) which contains the ratings of 6,040 users for 3,706 movies

and it has been used extensively for the evaluation of top-n rec-

ommendation methods; (ii) the yahoo dataset (obtained from [31])

which is a subset of the Yahoo!R2Music dataset [2] containing the

ratings of 7,307 users for 3,312 songs; and (iii) the pinterest dataset
(obtained from [17]) which captures the interactions of 55,187 users

regarding 9,916 images where each interaction denotes whether

the user has “pinned” the image to her own board. For all datasets

we consider only implicit feedback.

4.2 Evaluation Methodology and Metrics
To evaluate the top-n recommendation performance, we adopted

the widely used leave-one-out evaluation protocol [17, 31, 33, 36].

In particular, for each user we randomly select one item she has

interacted with and we create a test set T . The rest of the dataset is

used for training themodels. Formodel selectionwe repeat the same

procedure on the training data and we create a validation setV; and

for each method considered we explore the hyperparameter space

to find the model that yields the best performance in recommending

the items inV , and then we evaluate its out-of-sample performance

based on the held-out items in T . For the evaluation we consider

for each user her corresponding test item alongside 999 randomly

sampled unseen items and we rank the 1000 item lists based on the

recommendation scores produced by each method.

The evaluation of the top-n recommendation performance is

based on three widely used ranking-based metrics; namely the hit
ratio (HR@n), the average reciprocal hit rank (ARHR@n), and the

truncated normalized discounted cumulative gain (NDCG@n) over
the set of users (due to space constraints we refer the reader to [23,

31] for a detailed definition). For each user, all metrics compare the

predicted rank of the held-out item with the ideal recommendation

vector which ranks the held-out item first among the items in each

user’s test-set list. For all competing methods we get the predicted

rank by sorting the recommendation scores that correspond to

the items included in each user’s test-set list. While HR@n gives

a perfect score if the held-out item is ranked within the first n,
ARHR@n and NDCG@n use a monotonically increasing discount

to emphasize the importance of the actual position of the held-out

item in the top-n recommendation list.

5 EXPERIMENTAL RESULTS
5.1 Effect of Parameter α
The theoretical analysis of our method suggests that parameter α
controls the convergence properties of the RecWalk process and

it can be chosen to enable a time-scale dissociation of the stochas-

tic dynamics towards equilibrium that ensures a larger number

of personalized landing distributions. Here we verify experimen-

tally
2
the predicted properties and we evaluate their effect on the

recommendation quality of the K-step landing probabilities.

2
Due to space constrains we report results on the movielens dataset; similar patterns

arise using the other datasets as well.

We build the item model W that yields the best performance

on the validation set (γ1 = 10,γ2 = 10,C = 0.1|I |) and we use it

to create matrix MI as in (7). We then build the RecWalk model,

we run it for different values of α ranging from 0.005 to 0.5, and

we report: (i) the performance in terms of average NDCG@n (for

n = 10) across all users for values of steps K up to 30 (Fig.1-A); (ii)

the spectra of the corresponding transition probability matrices P
(Fig.1-B); (iii) the peak performance per parameter α along with the

step for which it was achieved (Fig.1-C); and (iv) the performance of

RecWalk with respect to using the base model W directly (Fig.1-D).

We find that as the value of α gets smaller the top-n recom-

mendation quality increases and stabilizes for α < 0.01. Similarly

the number of steps that yield the best performance increase (see

Fig.1-C). The spectrum of the corresponding transition probability

matrices reflects the theoretically predicted properties of the model.

Indeed for very small values of α we observe that the subdomi-

nant eigenvalues cluster near the value 1, thus forming the slowly

varying component of matrix P, which ensures that the succes-

sive landing probabilities of the random walk are influenced by

the initial state for longer. Furthermore, we find that the proposed

methodology entails a significant increase in performance with re-

spect to what one would get by using the proposed base item-model

directly. In particular the recommendation performance of the K-
step landing probabilities of RecWalk overpasses the performance

of the base model (see Fig.1-D) for a wide range of steps up to a

maximum increase of 39.09% for K = 18 steps.

Our results suggest that the mixing properties of the RecWalk

chain are indeed intertwined with the top-n recommendation qual-

ity and can lead to a significant boost in performance. This justifies

the intuition that motivated the particular design of the walk.

5.2 RecWalk as a Framework
In the definition of the inter-item transition probability matrix we

proposed a particular strategy for constructing matrix W that was

designed to promote locality on the direct inter-item transitions

while being easy to compute. Instead of this particular matrix W
one could use any model that captures inter-item relations. But does

our approach offer any benefit with respect to performing simple

random walks on the corresponding item-model or to simply using

the item model directly?

Here we explore this question by empirically evaluating two

commonly used item models. Namely:

(1) a cosine similarity model Wcos defined such that its ij-th
element is given by rTi rj/(∥ri ∥∥rj ∥);

(2) a SLIM model which learns a matrix Wslim by solving an

ℓ1, ℓ2 regularized optimization problem (see [33] for details).

We consider the respective base models alongside six approaches

based on random walks; namely (i) SRW, which recommends us-

ing the K-step distribution of a simple random walk on W with

transition probability matrix S initialized with ϕT
u as in (1); (ii)

PR, which produces recommendations based on S as in (2); (iii-iv)

RecWalkK-step and RecWalkPR with transition matrix P constructed

using the respective item models for the definition of the inter-item

transition probability component; (v) RecWalk[MI ]K-step which

produces recommendations as in (1) but using the RecWalk inter-

item transition probability matrix introduced in (7) instead of S;
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Figure 1: Fig (A) reports the performance of RecWalk in terms of NDCG@10 as a function of the steps for different values of the
parameter α . Fig (B) plots the spectrum of the RecWalk transition probability matrix for different values of α . Fig (C) reports
the peak performance for the different values of α , as well as the number of steps for which it is achieved (on top of each bar).
Fig (D) reports RecWalk performance (with α fixed at 0.005) for different number of steps compared to the performance one
would get using the item model directly (blue dashed line).

and (vi) RecWalk[MI ]PR, which produces recommendations as in

(2) using RecWalk’s MI instead of S.

Table 1: Top-n Recommendation Quality under Different
RandomWalk Constructions

Method COS SLIM

Base model 17.61 27.28

SRW 17.82 25.37

PR 18.11 25.37

RecWalkK-step 20.52 31.87

RecWalkPR 20.33 31.80

RecWalk[MI ]K-step 17.85 31.41

RecWalk[MI ]PR 20.27 31.78

Hyperparameters: SRW: K∈ {1, . . . , 50}; PR: p ∈ {0.1, . . . , 0.9};
SLIM: λ, β ∈ {0.1, 0.5, 1, 3, 5, 10, 20}; RecWalk: α = 0.005 and

S ∈ {1, . . . , 30} for RecWalkK-step and η ∈ {0.1, 0.2, . . . , 0.9}
for RecWalkPR .

We run all models on the movielens dataset and in Table 1 we

report their performance on the NDCG@n metric. We see that

RecWalkK-step and RecWalkPR were able to boost the performance

of both item models (up to +16.52% for COS and +16.82% for SLIM)
with the performance difference between the two variants being

insignificant. Applying simple randomwalks (SRW) or randomwalks

with restarts (PR) directly to the row-normalized version of the

item graph does not perform well (+2.84% in case of COS and -7% in

case of SLIM). In particular in the case of SRW we observed a rapid

decay in performance (after the first step for SLIM and after the

first few steps for COS); similarly in case of PR the best performance

was obtained for very small values of p—enforcing essentially the

K-step landing probabilities after the first few steps to contribute

negligibly to the production of the recommendation scores (cf. (2)).

Using RecWalk’s inter-item transition probability matrix alone on

the other hand performed very well especially when we use the

SLIM model as a base.

To gain more insight of the observed differences in performance

of the walks on the item graphs, we also plot the spectra of the

transition probability matrices MI , alongside the spectra of the

respective matrices S (Fig. 2). We see that in case of S the magni-

tude of the eigenvalues cause the walks to mix very quickly. In

case of matrix MI on the other hand, the eigenvalues decay more

gracefully and on the SLIM graph in particular, there appears to be

a large number of eigenvalues near 1, which delay the convergence

of the landing probabilities distributions towards equilibrium. This

effect is not as pronounced in case of COS which is reflected in the

small increase in performance in case of RecWalk[MI ]K-step.
Again our experiments reveal a clear connection between the

mixing properties of the walks and their potential in achieving
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Table 2: Top-n Recommendation Quality of the Competing Approaches in Terms of HR, ARHR and NDCG

movielens yahoo pinterest

Method HR [%] ARHR [%] NDCG [%] HR [%] ARHR [%] NDCG [%] HR [%] ARHR [%] NDCG [%]

EigenRec 45.21 20.44 26.35 48.12 23.30 29.23 33.81 13.51 18.41

PureSVD 44.14 19.33 25.36 38.68 18.30 22.62 30.97 11.85 16.30

RP3b 34.87 15.02 19.66 41.51 17.82 22.94 27.01 8.07 12.45

SLIM 46.34 21.39 27.28 52.44 26.15 32.35 34.17 13.63 18.57

Mult-DAE 44.06 18.97 24.83 45.37 21.46 27.07 35.03 13.79 18.77

Mult-VAE 44.35 19.50 25.31 45.09 21.22 26.80 35.13 13.73 18.71

RecWalkK-step 50.28 27.20 33.13 55.02 28.94 35.10 35.38 14.07 18.95

RecWalkPR 52.47 27.29 34.09 54.92 28.74 34.91 35.29 14.07 19.00

Hyperparameters: RecWalk: (fixed) α = 0.005, C ∈ {0.1 |I |, 0.25 |I | } γ1, γ2 ∈ {1, . . . , 15} and K ∈ {1, . . . , 30} for RecWalk
K-step

and η = {0.1, . . . , 0.9}
for RecWalk

PR
; EigenRec: f ∈ {5, 10, . . . , 300}, d ∈ {−2, −1.95, . . . , 2}; RP3b: b ∈ {0, 0.05, . . . , 1}; SLIM: λ, β ∈ {0.1, 0.5, 1, 3, 5, 10, 20}; Mult-VAEpr-

Mult-DAE: we used the hyperparameter tuning approach provided by the authors in their publicly available implementation; for each model we considered both

architectures proposed in [23]; namely [I − 200 − I ] and [I − 600 − 200 − 600 − I ].
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Figure 2: The figure plots the spectra of the transition proba-
bilitymatrices S (green line) andMI (blue line) definedusing
the corresponding item models.

good recommendation quality. Note also that the stochasticity ad-

justment strategy proposed in (7) seems to promote slow mixing

in itself. However, using MI alone cannot in general guarantee

this property irrespectively of the underlying item model whereas

using the complete RecWalk model can give absolute control over

convergence (as Theorem 2.1 predicted).

5.3 Performance against Competing
Approaches

We evaluate the top-n recommendation accuracy of RecWalkK-step

and RecWalkPR against competing approaches.

5.3.1 Competing Baselines. We compare against six state-of-the-

art baselines; namely (i) thewell-known item-basedmethod SLIM [33]
which builds a sparse item model by solving an ℓ1, ℓ2-regularized

optimization problem; (ii) the random-walk approach RP3b [7],

which recommends based on a short-length walk on the user-

item graph after rescaling the landing probabilities to compensate

for the bias towards popular items; (iii) the well-known PureSVD
method [10], which produces recommendations based on the trun-

cated SVD of R; (iv) the EigenRec method [31], which builds a fac-

tored item model based on a scaled cosine similarity matrix; as well

as the recently proposed deep learning methods (v-vi) Mult-VAE
and Mult-DAE [23] which extend variational and denoising autoen-

coders to collaborative filtering using a multinomial likelihood and

were shown to achieve state-of-the-art recommendation quality,

outperforming several other deep-network-based approaches.

5.3.2 Results. Table 2 reports the top-n recommendation perfor-

mance of the competing approaches. The performance was mea-

sured in terms of HR@n, ARHR@n and NDCG@n, focusing on the

n = 10. Model selection was performed for each dataset and metric

following the procedure detailed in Section 4.2 and considering for

each method the hyperparameters reported on Table 2. We see that

both variants of RecWalk outperform all other methods considered

on every metric and for all datasets. The results indicate the poten-

tial of the proposed methodology in achieving high quality top-n
recommendations.

6 CONCLUSIONS AND FUTURE DIRECTIONS
Combining random walks with item models has the potential of

exploiting better the information encoded in the inter-item rela-

tions which can lead to increased top-n recommendation accuracy.

To gain this benefit, however, one needs to define judiciously the

transition probabilities of the walks in order to counterbalance their

tendency to rapidly concentrate towards the central nodes of the

graph. To this end we introduced RecWalk; a novel random walk

framework for top-n recommendations that can provably provide

control over convergence allowing the walk to harvest more ef-

fectively the rich network of interactions encoded within the item

model on top of which it is built. Our experiments reveal that the

mixing properties of the walks are indeed intertwined with top-n
recommendation performance. A very interesting direction we are

currently pursuing involves the exploration of methods for statisti-

cal learning in the space of landing probabilities [5] produced by

RecWalk. Here we proposed two simple recommendation strategies

to exploit these landing probabilities that were able to provide high

top-n recommendation accuracy, outperforming several state-of-

the-art competing approaches. Our findings showcase the value of

combining item-models with graph-based techniques.
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