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ABSTRACT

Identifying enrollment patterns associated with course success can

help educators design better degree plans, and students make in-

formed decisions about future enrollments. While discriminating

pattern mining techniques can be used to address this problem,

course enrollment patterns include sequence and quantity (grades)

information. None of the existingmethodswere designed to account

for both factors. In this work we present UPM, a Universal discrim-

inating Pattern Mining framework that simultaneously mines vari-

ous types of enrollment patterns while accounting for sequence and

quantity using an expansion-speci!c approach. Unlike the existing

methods, UPM expands a given pattern with an item by !nding a

minimum-entropy split over the item’s quantities.We then use UPM

to extract discriminating enrollment patterns from the high and

the low performing student groups. These patterns can be utilized

by educators for degree planning. To evaluate the quality of the

extracted patterns, we adopt a supervised classi!cation approach

where we apply various classi!cation techniques to label students

according tho their performance based on the extracted patterns.

Our evaluation shows that the classi!cation accuracies obtained

using the UPM extracted patterns are higher than the accuracies

obtained using patterns extracted by other techniques. Accuracy

improves signi!cantly for students with larger numbers of patterns.

Moreover, expansion-speci!c quantitative mining leads to more

accurate classi!cations than the methods that do not account for

quantities (grades).
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1 INTRODUCTION

Due to the "exibility of the degree requirements, a student can enroll

in di#erent course sequences before they graduate. Ample course

choices can leave students confused, take unncessary courses, or

even drop out. One strategy to promote student timely graduation

is to design good degree plans that show course enrollments with

particular sequences that would lead to successful learning out-

comes as measured by the student’s GPA. The question is how to

!nd the enrollment practices that are associated with success in a

future courses.

We address the problem of !nding the enrollment practices as-

sociated with high and low performance in a course. For a student

that has taken that course, her enrollments in previous courses

over successive terms, along with her grades, can be viewed as a

sequence of quantitative itemsets as shown in Table 1. From among

prior enrollments of all students that took a target course, we want

to !nd the enrollment patterns that are associated with success and

failure. To do so, !rst, we extract two student groups: high- versus

low-performing. Second, we mine the prior course enrollments of

both student groups to extract discriminating patterns.

Existing discriminating pattern mining methods [2] [4] [15]

[7] [6] [12] [3] can either extract discriminating itemsets or dis-

criminating item sequences. None of them can e#ectively extract

discriminating quantitative patterns and so, they cannot account

for students grades in previous courses. We present UPM, a uni-

versal discriminating pattern mining technique. UPM extracts dis-

criminating patterns of di#erent types: itemsets, item sequences,

quantitative itemsets and quantitative item sequences. It uses a

feature-centric approach that extracts the most discriminating pat-

tern, excludes instances covered by that pattern, and repeats until

the dataset is covered. For discriminating quantitative patterns,

UPM accounts for item quantities in the pattern expansion step by

!nding a minimum-entropy split over the quantities of the added

item to the expanded pattern. This novel approach makes the quan-

tity split conditional on the pattern being expanded, not a static

one-time split applied once prior to mining.

We evaluate UPM over many course datasets using a supervised

approach. For each course, we extract discriminating enrollment

patterns from the groups of high and low performing students. To

evaluate the extracted patterns, we use them as features to repre-

sent the students, then build a classi!er to label students according

to performance. We use various types classi!ers, including HAR-

MONY, SVM and Random Forests. We Also build another set of

classi!ers where the students are represented using the univer-

sal set of enrollment patterns without extracting discriminating
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ones, or using the small set of courses that each student enrolled

in. We do this to evaluate how well the UPM extracted patterns

are compared to the whole set of enrollment patterns, and simple

patterns. Our evaluation shows that classi!cation accuracies ob-

tained using UPM patterns are higher than accuracies obtained

using the other patterns for most courses. Classi!cation accuracy

improves for students represented with larger numbers of patterns.

For these students, the extracted patterns can be used with high

con!dence to make future enrollment recommendations or degree

plan modi!cations.

By analyzing the patterns extracted by UPM, we !nd that all

pattern types are extracted, with more itemsets than other pattern

types. In many cases, the number of quantitative item sequences is

larger than the number of item sequences. The learned HARMONY

and linear SVM models can be used to more speci!cally identify

the enrollments associated with high and low performance. Finally,

when evaluating the quantitative pattern mining technique, we !nd

the classi!cation accuracies obtained when using itemsets is less

than the accuracies obtained when using quantitative itemsets. The

same applies for item sequences versus quantitative item sequences,

showing the importance of considering student grades.

Table 1: Students’ course enrollments viewed as a sequence

of quantitative itemsets over the successive terms, where

each course ci is associatedwith the gradeдi that the student

has obtained in it.

term1 term2 term3

student1 c1:g1,c5:g5,c4:g4 c3:g3,c7:g7 c2:g2,c6:g6
student2 c5:g5,c2:g2 c6:g6,c4:g4,c3:g3 c1:g1
student3 c4:g4 c1:g1,c5:g5 c7:g7,c3:g3,c6:g6

This work has three main contributions. First, we introduce the

!rst framework for jointly mining di#erent types of discriminating

patterns in a quantitative sequential dataset. Second, we introduce

a quantitative pattern mining technique that conditionally splits

the quantity range of a given item by considering the pattern that

is being expanded by that item, and !nding a split that minimizes

the total entropy over the expanded pattern. Third, we use UPM to

mine students’ course enrollment patterns to identify enrollment

practices associated with course success. To our knowledge, this is

the !rst work to address the problem throughmining discriminating

course enrollment patterns and evaluating how well they can label

students by their performance.

2 DEFINITIONS AND NOTATIONS

Let I = {i1, i2, i3, . . . , in } be the universal set of distinct items. An

itemsetp consists of a set of distinct, unordered items {ip1 , ip2 , ip3 , . . . ipl }.

An itemset of length l is referred to as an l-itemset. An l-itemset, p1,

is called a superset of another x-itemset,p2, if l > x and all the items

in p1 are in p2. An item sequence s consists of an ordered sequence

of itemsets 〈p1,p2,p3, . . . ,pm〉. The items within each itemsetpi are

not ordered whereas the itemsets are ordered. The length of an item

sequence is equal to the sum of the lengths of all the itemsets in it.

An item sequence of length l is referred to as an l-item sequence. A

quantitative itemset r is a set of distinct, unordered items that each is

associated with a quantity {ir1 : qr1 , ir2 : qr2 , ir3 : qr3 , . . . irl : qrl }.

A quantitative item sequence s consists of an ordered sequence of

quantitative itemsets 〈r1, r2, r3, . . . , rm〉.

A quantitative sequential dataset SD consists of k quantitative

item sequences, and they are referred to as the data instances of

SD. SD can be considered a sequential dataset by simply ignoring

the item quantities. It can also be considered an itemset dataset by

ignoring the sequencing information and considering each data

instance as a set of unordered items. Each data instances in SD

is associated with a class label and an ID. The k instances in SD

have IDs from 1 to k . Given a frequent pattern p in SD, the terms

Conditional Dataset and Projected Dataset of p refer to all instances

in SD that contain p.

In many mining algorithms, the term Pattern Expansion refers to

expanding a frequent pattern (itemset or item sequence) into all its

frequent supersets. It is also referred to as Pre!x Expansion.

3 RELATEDWORK

Classi!ers that utilize frequent itemsets as features [2] [4] [15]

[7] [3] can be divided into three categories: 1) methods that !rst

mine all frequent patterns, then extract the discriminating ones,

and !nally use them as features to represent the data instances and

build a classi!er, 2) methods that directly mine the discriminating

patterns and then build the classi!er, and 3) methods that directly

builds a rule-based classi!er from the input data. The second and

third categories were developed to improve over the e%ciency of

the !rst category.

HARMONY [15] directly mines the classi!cation rules by using

an instance-centric approach and e%cient search space pruning

to accelerate the mining process. It starts with single frequent

items and considers each as a pre!x. For each pre!x, it builds its

conditional dataset, and mines all its rules. For each data instance, it

keeps the highest-con!dence rule that is mined so far. This is done

with each new pre!x that is generated during themining process. At

the end, each data instance is associated with its highest-con!dence

rule. The !nal classi!er is then built by dividing the !nal set of

rules into groups as per the number of classes. To classify a new

instance, a score is computed for each group and the instance is

classi!ed into the class whose group returns the highest score.

DDPMine [4] uses a feature-centric approach. The dataset is

represented using an FPTree (frequent-pattern tree) that saves class

label information and it is used for e%ciently mining frequent

itemsets. Similar to HARMONY, it starts with single frequent items,

considered as pre!xes. For each pre!x, it builds its conditional

FPTree and expands it to get longer itemsets that are considered as

new pre!xes, and so on. The information gain (IG) of each itemset

is computed during the mining and the maximum IG is maintained

along with the corresponding itemset. At the end of the mining

process, the itemset with the maximum IG is selected, and the

FPTree is updated to remove the data instances that are covered by

it. This process is repeated until all the data instances are covered.

In order to prune the mining process, the upper bound on the IG is

computed for a pre!x before expanding it, and if it is less than the

maximum IG, then the pre!x is not expanded.

Classi!ers that are based on frequent item sequences [6] [12]

are also divided into the same three categories that are described
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above. BIDE-Discriminative [6] mines discriminating closed item

sequences. It considers the class labels while mining the closed

frequent item sequences. Similar to HARMONY, it relies on pre-

!x expansion. Before a pre!x is expanded, it computes the upper

bound on IG , and if it is less than the maximum IG , then the pre!x

is not expanded. The mining process repeats until k patterns are

extracted and it is done with BIDE[14], which mines frequent closed

sequences. Pre!xSpan [9], on the other hand, mines frequent se-

quences and it tends to be faster than BIDE with increasing support

threshold.

Quantitative pattern mining [8] [11] considers the quantities

that are associated with the items. SQUIRE [8] proposed two ap-

proaches. The !rst one considers each item-quantity pair as a new

item, and then mines for frequent patterns. The second one uses

prede!ned coarse-grain quantities intervals. So each item-interval

pair is considered as a new item, and then it mines for frequent

patterns. Then for each frequent pattern, it !nds !ne-grain frequent

patterns within it. The second approach is more e%cient as it dis-

cards the non-frequent coarse-grained patterns. These approaches

are designed to extract frequent patterns, and not discriminating

ones.

The work done in [11] combines the quantities for each item

into intervals based on information loss. Developed in the context

of association rule mining, the intervals are evaluated in terms of

how the rules that are generated based on the combined attribute

quantities are di#erent from the rules that are generated without

combining. In particular, for each rule in the original data (without

combining the attribute quantities into intervals), they check how

far the closest rule is in the modi!ed data (after combining the

attribute quantities into intervals). Rule closeness indicates rule

generalization, and rule-rule distance is based on the ratio between

the rule supports. The method allows the user to provide a measure

for information loss, and the item intervals are determined accord-

ingly. It also introduces a maximum support parameter and uses it

to avoid over-combination of adjacent quantities.

Multi-dimensional sequential pattern mining [10] accounts for

side information that is associated with sequential data such as

time, place, demographics or customer groups.

4 DISCRIMINATING ITEMSET MINING

The problem of mining discriminating itemsets is stated as follows.

Given a set ofm items i1, i2, . . . im , a sequential quantitative dataset

SD, and a minimum support threshold ϵ , it is required to extract a

set of itemsets that covers SD with maximized information gain.

We use the e%cient DDPMinemethod [4] to address this problem.

With each step, DDPMine extracts the most discriminating itemset

from among all the frequent itemsets. Then it eliminates the data

instances that are covered by it, updates the mining structures, and

repeats until all data instances are covered.

To apply DDPMine on SD, item quantities and sequencing in-

formation are ignored and each data instance is considered as a

set of items. DDPMine starts by computing the support per item,

removing items with support less than ϵ , and sorting the items in

each instance by decreasing item support. Then it represents the

sorted dataset using a compact Frequent Pattern Growth Tree (FP-

Tree) structure that also stores the sequence IDs and class labels. To

!nd the most discriminating itemset, it starts with single frequent

items, or 1-itemsets and uses the FPTree to !nd longer frequent

itemsets. The FPTree e%ciently expands a given l-itemset into all

its l + 1-immediate supersets. While mining, DDPMine keeps track

of the most discriminating itemset so far. It also uses branch and

bound as a mechanism to prune and speedup the mining process.

Information Gain (IG) is used to determine the most discrimi-

nating itemset. IG is proportional to the itemset support and it is

computed for an itemset X as

IG(C |X ) = H (C) − H (C |X ),

where H (C) is the total entropy for all data instances, and H (C |X )

is the conditional entropy computed for the data instances that

contain X . H (C) is computed as

H (C) = −
∑

c ∈C

(
nc

n
) log(

nc

n
),

where C is the set of all classes, n is the total number of data in-

stances, and nc is the number of data instances with class label c .

Similarly, H (C |X ) is computed as

H (C |X ) = −
∑

c ∈C

(
nc ,X

nc
) log(

nc ,X

nc
),

where nc ,X is the number of data instances that containX and have

class label c .

DDPMine uses branch and bound to prune the mining process.

Before expanding an itemset X , it computes the upper bound on

its information gain IGub (C |X ). If IGub (C |X ) is less than or equal

to the maximum IG over the extracted patterns so far, then it can

safely skip expanding X . We assume a multi-class problem with

C ≥ 2 and use a one-vs-all strategy [14] to compute IGub (C |X ) for

an itemset X as described in [5].

5 DISCRIMINATING ITEM SEQUENCE
MINING

Mining discriminating item sequences is similar to mining itemsets

except that we mine a set of item sequences that covers SD with

maximized information gain.

Pre!xSpan [9] is an e%cient algorithm for mining frequent

item sequences. For each frequent item f , it constructs a projected

dataset SDf that contains the sequences that have f and the po-

sition of f in each sequence. It uses SDf to expand f to all its

frequent sequences of length 2. This process is repeated until all

the frequent sequences are discovered.

We modify Pre!xSpan to mine discriminating item sequences

using the same ideas that were applied in DDPMine. That is, we

extract the item sequence that has the highest IG, exclude the

data instances that are covered by it, and repeat until all the data

instances are covered. The branch and bound approach is also used

to prune the mining process based on the upper bound IG for each

item sequence before expanding it. The Discriminating Pre!xSpan

procedure listing, D-Pre!xSpan, is described at the end of Section

6.2
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6 DISCRIMINATING QUANTITATIVE
PATTERN MINING

In many datasets, the items are associated with quantities that rep-

resent counts, prices, etc. In the case of mining student enrollment

patterns, items are courses, and item quantities represent students

grades. Since we want to !nd the enrollment patterns that are asso-

ciated with high and low performances in a course, it is essential to

consider the students grades. That’s because a student’s grades in

the courses taken before a course c are indicative of his performance

in c .

Previous quantitative pattern mining methods, such as SQUIRE

[8], either consider each item-quantity pair as a new item, or they

consider coarser-grained quantity intervals that are further re!ned

in order to improve the time performance. None of the previous

methods mine for discriminating quantitative patterns.

In this work, we modify the discriminating pattern mining tech-

niques that rely on pattern expansion (DDPMine and D-Pre!xSpan)

in order to consider item quantities. When expanding a pattern p

by an item i , instead of simply appending i to p to obtain a new

pattern p′ = p ∪ {i}, we !nd a minimum entropy split over the

quantities of i in the instances that contain p′. If that split yields a

number of intervals v , then quantitatively-expanding p by i leads

to v new patterns p′1,p
′
2, . . . ,p

′
v , one for each interval.

This expansion-speci!c method !nds more discriminating pat-

terns than doing a static quantity-split for each item prior to mining.

It can be used to consider quantities in itemset and item sequence

mining. In the next subsections we will discuss !nding a minimum

entropy split over a given set of quantities, and how it is applied for

mining discriminating quantitative itemsets and item sequences.

The idea of considering item quantities to discriminate between

di#erent classes was previously used in association rule mining

[11], where the quantities of a certain item could be divided into

intervals in order to generate purer data splits. However, sequencing

information, accounting for di#erent types of patterns (e.g., itemsets

and item sequences), or di#erent classes cannot be considered by

these methods.

6.1 Finding a Minimum-Entropy Split

Given a quantitative pattern p that we want to expand by an item i ,

we extract the set of instances sdpi that contain p and i along with

their class labels. The quantities associated with i in sdpi form the

range of values that wewant to split such that the entropy computed

over the resulting intervals is minimized. Without loss of generality,

we assume discrete values for item quantities. Discretization can

be applied in the case of continuous values.

We construct a list L of {quantity, label} pairs that holds the

quantities of i in sdpi and their corresponding class labels. We sort

L in ascending order with respect to quantity. We want to !nd the

quantities at which L can be split so that the total entropy over all

sdpi is minimized.

Since the class labels can be distributed randomly throughout the

range, then !nding the optimal split requires checking all possible

splits. If we consider a number of distinct quantities n, and a single

split point, then the number of possible splits is nC1 = n, as we try

to split at each quantity. Similarly, for two split points, the number

of possible splits is nC2, and so on. The total number of possible

splits becomes
∑n
i=1

nCi . Checking all splits can be computationally

expensive even for a small n. We use a heuristic approach.

The idea is to repetitively bisect L as long as the bisection yields

a lower total entropy [13]. With each step, we !nd the split that

has the minimum entropy over the given list. If the split entropy is

less than the total entropy before splitting, then the list is split into

two parts. Then the same process is repeated with each part. We

refer to this process as the FindDiscriminatingIntervals precedure.

6.2 Mining Discriminating Quantitative
Patterns

The problem ofmining discriminating quantitative patterns is stated

as follows. Given a quantitative sequential dataset SD that consists

of n quantitative item sequences, it is required to extract a set of

quantitative patterns that covers SD with maximized information

gain. we use the generic word patternwhich can be used for itemsets

or item sequences.

To mine discriminating quantitative itemsets, we modify DDP-

Mine in order to account for item quantities, and we refer to it as

Q-DDPMine. We introduce another variable to the edges of the FP-

Tree to hold item quantities, and we refer to it as Q-FPTree. When

expanding an itemset p by an item i , Q-DDPMine applies the Find-

DiscriminatingIntervals procedure to the quantities that i takes in

the data instances that contain p and i . It then uses the returned

intervals to expand p by i .

Notice that the di#erence between mining itemsets and mining

quantitative itemsets is the step of !nding a discriminating interval

over the item quantities before expansion. If we discard this step,

then we will get the DDPMine procedure for mining discriminating

itemsets that is discussed in Section 4

The same ideas are used to mine discriminating quantitative

item sequences. We modify D-Pre!xSpan into DQ-Pre!xSpan, Dis-

criminating Quantitative Pre!xSpan, by considering the quantities

of an item i when that item is used to expand a sequence p. The

DQ-Pre!xSpan procedure is shown in Algorithm 1. Its structure

is similar to Q-DDPMine, except that it cannot use a Q-FPTree for

pattern expansion. Instead, for each item it constructs a projected

dataset and uses it for expansion via the procedure DiscrNodeMine-

Seq (lines 18-19). DiscrNodeMine-Seq is listed in Algorithm 2. It is

used to expand a quantitative item sequence. It is similar to Dis-

crNodeMine, except that it expands an item sequence using its

projected dataset (line 11) rather than using a Q-FPTree. Notice

that the di#erence between mining item sequences and mining

quantitative item sequences is !nding a discriminating interval

over the item quantities before expansion. If we discard these steps

in Algorithms 1 and 2, we will get the D-Pre!xSpan procedure for

mining discriminating item sequences discussed in Section 5.

7 UPM: UNIVERSAL DISCRIMINATING
PATTERN MINING

So far we have discussed separate methods for mining discriminat-

ing itemset, item sequence, quantitative itemset and quantitative

item sequence patterns. In this section we present UPM, a feature-

centric framework for simultaneously mining di#erent types of dis-

criminating patterns. UPM combines the four algorithms described

above, DDPMine, Q-DDPMine, D-Pre!xSpan and DQ-Pre!xSpan,
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Algorithm 1Mining Discriminating Quantitative Item Sequences

1: procedure DQ-PrefixSpan

2: Input: SD: Sequential Dataset, ProjDB: Projected Dataset Struc-

ture, ϵ : min support

3: Output: FQ : Set of Discriminating Item Sequences with Quan-

tity Intervals

4:

5: FQ ← ∅

6: while number of uncovered instances in SD > 0 do

7: e ← TotalEntropy(SD)

8: Mmax ← ∅

9: maxIG ← −1

10: for each frequent item t in SD do

11: intervals←FindDiscriminatingIntervals(t, SD)

12: for each interval i ∈ intervals do

13: M ← {t : i}

14: ProjDB← GetProjDB(M)

15: DiscrNodeMine-Seq (e, t, i, ProjDB,M,Mmax
,

maxIG)

16: end for

17: end for

18: FQ ← FQ ∪Mmax

19: SeqIDs ← GetSeqIDs(Mmax )

20: RemoveSeqIDs(SD, SeqIDs)

21: end while

22: end procedure

Algorithm 2 Recursively Expanding a Quantitative Item Sequence

to Find the Sequence with the Maximum IG.

1: procedure DiscrNodeMine-Seq

2: Input: e: Total Entropy, t : item, i: value interval for t , ProjDB:

Projected Dataset Structure, M: Current Quantitative Item

Sequence,Mmax : Quantitative Item Sequence with Maximum

IG,maxIG: Maximum IG

3: Output: Discriminating Quantitative Item Sequence stored in

Mmax

4:

5: if IG(M) > maxIG then

6: maxIG ← IG(M)

7: Mmax ←M

8: end if

9: if maxIG ≥ IGub (M) then return

10: end if

11: support←Expand(ProjDB)

12: for each item n with support[n] > 0 do

13: intervals←FindDiscriminatingIntervals(n,T )

14: for each interval j ∈ intervals do

15: Mnew ←M ∪ {n : j}

16: DiscrNodeMine-Seq(e,n, j, ProjDB,Mnew
,Mmax

,maxIG)

17: end for

18: end for

19: end procedure

in order to mine the di#erent patterns simultaneously. It mines the

most discriminating pattern among all types, then it removes the

data instances that are covered by that pattern, updates the mining

structures, and repeats until all data instances are covered.

The UPM procedure is listed in the Algorithm 3. It starts by ini-

tializing the structures that are used in mining the di#erent types

of patterns (line 5). These structures are a FPTree (T ), a Q-FPTree

(QT ), a Projected Dataset structure (ProjDB), and another Projected

Dataset (QProjDB) for mining discriminating itemsets, quantitative

itemsets, item sequences, and quantitative item sequences, respec-

tively. The mining process starts at line 6. At lines 7, 8, 9 and 10,

the itemset p1, quantitative item set p2, item sequence p3 and quan-

titative item sequence p4 that have the maximum IG are returned,

along with the IG values iд1, iд2, iд3 and iд4, respectively. Among

these, the pattern with maximum IG, pmax , is returned at line 11.

Then pmax is added to the set of discriminating patterns F at line

12. In line 13, the IDs of the instances that are covered by pmax are

returned, and in line 14 the mining structures are updated accord-

ingly. This process repeats until all data instances are covered.

Procedure GetMaxIGItemset (line 7) performs one scan of the

data instances to !nd the most discriminating itemset using the

FPTree structure and the IG-based branch and bound mechanism

to prune the search space. Procedure GetMaxIGQuantItemset (line

8) performs one scan to get the most discriminating quantitative

itemset. Similarly, the procedures at lines 9 and 10 extract the most

discriminating item sequence and quantitive item sequence, respec-

tively. They are equivalent to executing lines 7-17 in Algorithm 1

without and with considering item quantities, respectively.

Algorithm 3 UPM: Mining Di#erent Discriminating Patterns

1: procedure UPM

2: Input: SD: Sequential Dataset, ϵ : Minimum Support Threshold,

F : Set of Discriminating Patterns

3: Output: Set of All Discriminating Patterns F

4:

5: {T ,QT , ProjDB,QProjDB} ← InitMiningStructures(SD, ϵ)

6: while number of uncovered sequences > 0 do

7: {iд1,p1} ← GetMaxIGItemset(T )

8: {iд2,p2} ← GetMaxIGQuantItemset(QT )

9: {iд3,p3} ← GetMaxIGItemsequence(ProjDB)

10: {iд4,p4} ← GetMaxIGQuantItemsequence(QProjDB)

11: pmax ←MaxIGPattern(iд1, iд2, iд3, iд4,p1,p2,p3,p4)

12: F ← F ∪ pmax

13: SeqIDs ← GetSeqIDs(pmax )

14: UpdateMiningStructures(T ,QT , ProjDB,QProjDB, SeqIDs)

15: end while

16: end procedure

8 MINING DISCRIMINATING STUDENT
ENROLLMENT PATTERNS

The performance of a student in a course c is determined by many

factors. One important factor is the courses that he has taken before

c and his performance in them. Prior courses are assumed to provide

the necessary knowledge for future courses, and the obtained grades

are a quantitative indicator of knowledge acquisition. Taking a
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course without fully acquiring its knowledge components will lead

to poor performance in a future course that builds upon these

components.

Our goal is to !nd, for a target course c , the prior course sets,

along with sequence and performance information, that are associ-

ated with high and low performance in c . The input data consists

of:

• c: the target course

• Sc : the set of students that have taken c

• Q{Sc }: A set that holds for each student s ∈ Sc , the sequence

of courses that s has taken prior to c , and his grades in these

courses

We formulate a binary classi!cation problem as follows. First, we

extract Sc ,a ⊂ Sc , the subset of students with high performance in

c , and Sc ,b ⊂ Sc , the subset of students with low performance in

c . Second, we create a quantitative item sequence dataset SD from

Q{Sc } as follows. Each instance in SD represents a student s as a

quantitative item sequence that shows the course sets that s took

in successive terms along with his grades. Grades take the ordinal

values {A ≺ A− ≺ B+ ≺ B ≺ B− ≺ C+ ≺ C ≺ C− ≺ D+ ≺ D ≺ F }.

Each instance is associated with a 1 or 0 class label depending on

whether the student performed highly or low in c , respectively.

Given this input dataset, we apply UPM to extract the discrimi-

nating enrollment patterns that are associated with high and low

performance in c . Then we use these patterns to represent the

students and build classi!ers to sort them into the high and low per-

forming classes. These patterns can be itemsets (course sets without

any sequencing or grade information), quantitative itemsets (course

sets with grade information), item sequences (sequences of course

sets without grade information), or quantitative item sequences

(sequences of course sets with grade information).

9 EVALUATION METHODOLOGY

In this section we describe how we identify high and low perform-

ing students, the course datasets that are used for evaluation, the

methods that we compare with, the training procedure and the

evaluation metrics.

9.1 Identifying Well- and Poorly-Performing
Students

We !rst de!ne the concept of a grade tick. Given a letter grade

scale A,A−,B+,B,B−,C+,C, C−,D+,D, F , then one grade tick is

one step on this scale in any direction. That is, the di#erent between

A and A− is one grade tick, and the di#erence between A and B is

three grade ticks.

For a course c , we identify a well-performing student in c as a

student who performs above or the same as her average grade prior

to taking c . And we identify a poorly-performing student in c as

a student that performs at least 3 grade ticks below her average

grade prior to taking c .

9.2 Pattern Extraction and Student
Representation

After de!ning the well- and poorly-performing students in a course,

we create a quantitative item sequence dataset SD for that course

as described in Section 8 Then UPM is applied to extract the enroll-

ment patterns that discriminate between the two student groups.

These patterns are used as features to represent the students. Let

the number of patterns extracted by UPM be l . We de!ne l cor-

responding binary features, f1, f2, . . . , fl . Then they are used to

represent the instances (students) in SD as follows. Each student s

is represented by l binary features. For feature fi , if the enrollment

pattern that corresponds to fi exists in the enrollment sequence of

s , then we set fi = 1 for s , else it is set to 0.

9.3 Evaluation Datasets

The course datasets that are used for evaluation are obtained from

the University of Minnesota. The courses that we have selected

for evaluation have a relatively high number of poorly-performing

students, and so, would be considered di%cult courses. Discov-

ering which enrollment patterns are associated with success in

such di%cult courses is bene!cial for students and college advisers.

Table 2 describes the set of courses that are used for evaluation.

For each course, it shows the total number of student enrollments,

the number of poorly- and well-performing students which are

identi!ed as described above. Notice that the total number of en-

rollments in each course is greater than the number of well and

poorly performing students combined. That’s because the students

that have performed 1 or 2 grade ticks below their average grade

are neither considered as well nor poorly performing students and

are excluded.

9.4 Comparison Methods

Classi!cation here is only used as a mean for evaluating the ef-

fectiveness of the UPM extracted enrollments patterns in di#eren-

tiating between high and low performing students, we compare

various classi!ers that are trained using di#erent types of patterns

(features). These methods and feature sets are as follows.

• HARMONY-1: Each student is represented using the origi-

nal set of courses that he has taken prior to the target course

c . Then the rule-based classi!er HARMONY [15] is trained

using this data. This method serves as a baseline since no

discriminating pattern mining is carried out.

• HARMONY-UPM: The students are represented using the

set of discriminating enrollment patterns that are extracted

by UPM, and HARMONY is used for classi!cation.

• SVM-UPM: The students are represented using the set of

discriminating enrollment patterns that are extracted by

UPM, and SVM with linear kernel is used for classi!cation.

• SVM-All: The students are represented using the set of all

frequent patterns (itemsets, quantitative itemsets, item se-

quences and quantitative item sequences) without applying

UPM to extract the discriminating patterns. SVM with linear

kernel is used for classi!cation.

• RF-UPM: The students are represented using the set of dis-

criminating enrollment patterns that are extracted by UPM

and Random Forests are used for classi!cation.

• RF-All: The students are represented using the set of all

frequent patterns (itemsets, quantitative itemsets, item se-

quences and quantitative item sequences) without applying
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Table 2: Description of the courses that are used for evaluation. For the number of poorly- and well-performing cases per

course, we also show the percentages of these cases as per the total number of enrollments in that course.

Course Code Course Name # poor perf. students # good perf. students # enrolls

CPSY-4343 Cognitive Development 205 (23%) 368 (42.2%) 872

CE-4301 Soil Mechanics II 158 (32.4%) 130 (26.7%) 487

LASK-1001 Mastering Skills 182 (42.1%) 250 (57.9%) 432

BIOC-4331 Structure/Catalysis/Metabolism 257 (35.3%) 197 (27%) 728

MATH-5651 Probability & Statistics Theory 192 (31.6%) 223 (36.7%) 608

AEM-4501 Aero Structures 140 (31%) 113 (25%) 453

KIN-4385 Exercise Physiology 244 (37%) 111 (16.8%) 661

EE-4341 Microprocessor System Design 105 (35%) 77 (25.8%) 299

MATS-3011 Introduction to Material Science 421 (32.6%) 338 (26.2%) 1289

ANAT-3601 Principles of Human Anatomy 499 (39.3%) 404 (31.9%) 1268

CHEN-4001 Material & Energy 375 (37.5%) 219 (22%) 999

ACCT-3001 Technology Tools in Accounting 1221 (29%) 1344 (31.8%) 4223

ACCT-5102W Intermediate Accounting II 301 (32.8%) 151 (16.5%) 917

BIOL-3021 Biochemistry 1397 (28.2%) 1602 (32.4%) 4948

CPSY-4329 Biol Foundations of Development 100 (23%) 208 (48%) 433

UPM to extract the discriminating patterns. Random Forests

are used for classi!cation.

Notice that for the di#erent courses, the set of all frequent pat-

terns is around two to three orders of magnitude larger than the set

of patterns that is extracted by UPM. For some courses, the number

of all patterns and the set of UPM-extracted patterns are around

300,000 and 300, respectively.

9.5 Model Training Procedure

Each course dataset is divided into a 80-20% train-test split. UPM

is then applied to extract the discriminating enrollment patterns.

The classi!ers are trained on the training set and we select the

models with the highest classi!cation accuracy on the test set.

These models are used for feature analysis in order to extract the

enrollment patterns that are associated with the well and poorly

performing students.

9.6 Evaluation Metrics

Classi!cation Accuracy: The classi!cation accuracy obtained by

the classi!ers. It shows how the extracted patterns can generally

di#erentiate between the well and poorly performing student pop-

ulations.

Geometric Mean Improvement (GMI): This is a generic metric

that shows the overall performance of each classi!cation method

with respect to the best method in general.

For a given method M , GMIM is computed as follows, given a

number of comparison methods x , and a number of dataset d ,

GMIM =
x

√

Π
d
i=1

ai ,M

ai ,best
, (1)

where ai ,M is the classi!cation accuracy achieved by methodM on

dataset i , and ai ,best is the best accuracy achieved by all methods

on dataset i . A high GMIM indicates that methodM performs better

than other methods in general.

10 RESULTS AND ANALYSIS

We assess the e#ectiveness of the developed methods in order to

answer the following questions:

Q1. Are the enrollment patterns extracted by UPM more discrim-

inating between highly and low performing students, and so,

lead to higher classi!cation accuracy than using previously-

taken courses as is without pattern extraction?

Q2. How do the patterns extracted by UPM perform compared

to the performance of each type of pattern separately?

Q3. Does considering the item quantities (course grades) lead to

improved classi!cation accuracy?

Q4. How do the enrollment patterns contribute to student classi-

!cation in the various models?

10.1 Classi!cation Accuracy Results

Table 3 shows the overall classi!cation accuracies by the di#erent

methods for the di#erent courses. HARMONY-1 gives the lowest

classi!cation accuracy for all the courses. This indicates the rel-

atively poor discriminating power by the set of previously taken

courses when they are used as is. For most courses, HARMONY-

UPM and SVM-UPM give the highest accuracy, except for a few

cases in which SVM-All and RF-All outperform them. This shows

that the enrollment patterns that are extracted by UPM can better

discriminate between high and low performance.

The last row in Table 3 shows the GMI for the various methods.

SVM-UPM and HARMONY-UPM have the highest GMI, indicat-

ing that they generally perform better than the other methods.

HARMONY-1 has the lowest GMI, indicating the e#ectiveness of
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discriminative pattern extraction in providing better separation

between the high and low performance classes.

In order to investigate the gain achieved by UPM over the other

techniques that mine a single type of pattern, we explored the

discriminating ability of each pattern type on its own. Table 4

shows the classi!cation accuracies obtained by training a linear-

SVM classi!er using each type of discriminating pattern separately

to represent the students. UPM patterns give higher accuracy for

most courses, showing the e#ectiveness of combining di#erent

pattern types in achieving better discrimination between high and

low performance.

Table 4 also shows that for most courses, the accuracies obtained

using itemsets only are higher than the ones obtained using quan-

titative itemsets only. The same applies for item sequences versus

quantitative item sequences. This shows the e#ectiveness of con-

sidering item quantities in mining more discriminating patterns.

10.2 Classi!cation Accuracy for Di"erent
Number of Patterns

UPM extracts some number of patterns, l , to cover a course dataset.

Students are represented using l binary features that correspond

to the extracted patterns. For each student, the number of features

with non-zero value is determined by how many of the l patterns

exist in the enrollment sequence of that student. Di#erent students

can have a di#erent number of non-zero features. In this experiment,

we investigate how the number of non-zero features in"uences clas-

si!cation accuracy. For each course, we divide the test set students

into groups based on their number of non-zero features. Then we

compute the classi!cation accuracy for each group.

The plots in Figure 1 show, for each course, the number of non-

zero features per group versus the classi!cation accuracy. Accu-

racy tends to increase with increasing number of features. In some

courses, such as ACCT-3001 and BIOL-3021, accuracy reaches 100%.

These plots can be used to determine the number of non-zero fea-

tures at which con!dence in the classi!cation results is high, and

so, they can be used by instructors, advisers or students to predict

future course success.

10.3 Analysis of Pattern Types Extracted by
UPM

Table 5 shows the percentage of each pattern type that was ex-

tracted by UPM. For most courses, itemset patterns have higher

percentages than other pattern types. We think this happens be-

cause the discriminative power of a pattern is determined using

IG, which is proportional to the pattern support [2], and the more

sophisticated patterns have lower support counts that the less so-

phisticated ones. For example, a quantitative itemset pattern that

contains a set of items, S, only tends to have a lower support count

than the itemset pattern that contains S, only. Similarly, an item

sequence pattern that contains only the set of items S tends to have

a lower support count than the itemset pattern that contains only

S.

Usually, at the beginning of the mining process, more sophis-

ticated patterns are selected. Then as the process continues, less

sophisticated patterns are more selected due to their relatively

higher support counts that contributes the IG computation.

10.4 How Course Enrollments Contribute to
Labeling Students as High- or Low-
Performing

The HARMONY and Linear-SVM models that we use to classify

students based on their past enrollment patterns are not black

box classi!ers. In fact, they can provide useful insights about how

the di#erent enrollment patterns contribute to classi!cation. We

investigate how the patterns extracted byUPM contribute to student

classi!cation in each model.

10.4.1 Classification Rules Mined by HARMONY. For each perfor-

mance group, HARMONY provides the set of rules that are used to

classify instances for that group. It also provides rule support and

con!dence, which give insights on the level to which the rule body

is found in the data, and the fraction of instances in which the rule

body was found along with the corresponding group, respectively.

Therefore, HARMONY is a good model choice for understanding

how the features contribute to classi!cation.

Table 6 shows a few rules for EE-4341 (Microprocessor System

Design). The high performance rules show obtaining A or A- in

various courses such as EE-3101 (Cir Elec Lab I), whereas a low

performance rule shows a C+ in EE-2011 (Lin Sys Cir & Elec). Such

rules look reasonable as high performance in the target course is

associated with high performance in some previous courses, and

the same for low performance.

10.4.2 Feature Importance of Linear SVM. The feature weights that

are learned by linear SVM represent feature importance [1]. In our

case, features with the highest positive weights and the lowest

negative weights represent the enrollment patterns that are mostly

associated with high and low performances, respectively.

Table 7 shows the enrollment patterns for EE-4341 (Microproces-

sor System Design). The patterns associated with high performance

show obtaining A- or A in various courses such as EE-3101 (Cir-

cuit Electronic Lab I) as well as certain course sequences. Patterns

associated with low performance show obtaining C+ in EE-2011

(Linear System Circuit Electronics)

The overlap between the linear-SVM patterns and the HAR-

MONY patterns is obvious. Also as with HARMONY, some patterns

associated with low performance show itemsets, which requires

further investigation of the underlying students in order to under-

stand the missing factors contributing to their low performance in

the target course.

11 CONCLUSIONS AND FUTUREWORK

In this work we presented UPM, a method for simultaneously min-

ing di#erent types of discriminating patterns. UPM accounts for

item quantitiesand !nds a minimum-entropy split over the quanti-

ties of an item based on the pattern that is being expanded by it. We

used UPM to mine student enrollment practices that discriminate

between high and low performing students in a target course. We

have quantitatively evaluated the e#ectiveness of the extracted

patterns by using them as features to represent students and build-

ing classi!ers that sort students into their di#erent performance

classes.
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Table 3: Classi!cation Accuracy for the di"erent methods. The Geometric Mean Improvement (GMI) for the various methods

are listed in the last row.

Course HARMONY-1 HARMONY-UPM SVM-UPM RF-UPM SVM-All RF-All

CPSY-4343 65.0% 70.8% 75.8% 71.7% 67.5% 75.0%

CE-4301 63.8% 70.7% 67.2% 64.9% 67.2% 64.6%

LASK-1001 60.2% 72.7% 72.7% 64.0% 70.4% 66.9%

BIOC-4331 53.8% 81.3% 76.9% 73.1% 69.23% 70.7%

MATH-5651 54.8% 71.4% 66.7% 67.2% 60.7% 65.3%

AEM-4501 53.7% 79.6% 81.5% 70.8% 77.8% 68.4%

KIN-4385 76.1% 77.5% 76.1% 77.5% 84.5% 79.2%

EE-4341 40.5% 71.4% 73.8% 70.3% 71.4% 65.9%

MATS-3011 66.9% 74.8% 73.5% 71.6% 73.5% 73.4%

ANAT-3601 60.5% 76.2% 77.8% 73.8% 77.8% 71.4%

CHEN-4001 59.5% 69.4% 68.6% 72.6% 68.6% 74.4%

ACCT-3001 65.7% 68.0% 70.1% 64.7% 66.3% 65.0%

ACCT-5102W 65.9% 74.7% 74.7% 72.1% 80.2% 75.4%

BIOL-3021 64.9% 71.9% 73.3% 69.6% 74.9% 69.6%

CPSY-4329 65.1% 73.0% 79.4% 69.5% 73.0% 74.0%

GMI 0.791 0.966 0.968 0.921 0.942 0.926
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Figure 1: The classi!cation accuracy versus the number of features (enrollment patterns) for the di"erent courses.

Our evaluations showed that e#ectiveness of the UPM-extracted

patterns as compared to the set of all patterns, and the set of previ-

ously taken courses without any pattern extraction. Our evaluation

also showed the e#ectiveness of accounting for item quantities, rep-

resenting course grades, in mining more discriminating patterns.

We used the estimated SVM linear model to better identify the

enrollment patterns that are associated with high and low perfor-

mances for a target course. It showed that in some cases, taking

courses in a certain sequence and performing high (low) in them is

associated with high (low) performance in a target course. These

!ndings can be utilized by instructors and degree programs to

design better degree plans.

In the future we will investigate merging the mining of di#erent

patterns (itemsets, quantitative itemsets, or item sequences). We

will investigate leveraging the fact that the computations for mining

an itemset does not only cover its supersets, but also other pattern

types (quantitative itemsets, item sequences and quantitative item

sequences) that have the same items.Wewill also further investigate
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Table 4: Classi!cation accuracy for training an SVM model

with linear kernel over each type of discriminating pattern

separately.

Quantitative Item Quantitative

Course Itemsets Itemsets Sequences Item Sequences

CPSY-4343 70.1% 74.1% 70.8% 73.0%

CE-4301 64.1% 71.9% 62.1% 75.4%

LASK-1001 65.6% 68.9% 60.2% 70.4%

BIOC-4331 71.9% 73.4% 64.8% 74.8%

MATH-5651 60.1% 58.5% 58.7% 59.1%

AEM-4501 62.1% 65.2% 61.1% 70.3%

KIN-4385 74.1% 76.5% 77.4% 80.3%

EE-4341 61.9% 71.4% 69.0% 71.7%

MATS-3011 66.4% 67.5% 67.4% 69.8%

ANAT-3601 70.1% 71.8% 65.9% 69.0%

CHEN-4001 68.6% 71.0% 78.5% 70.0%

ACCT-3001 64.2% 65.3% 66.3% 65.9%

ACCT-5102W 65.1% 69.4% 67.0% 72.0%

BIOL-3021 64.8% 70.6% 65.9% 69.3%

CPSY-4329 65.8% 76.0% 69.8% 73.3%

Table 5: Percentage of the features that are itemsets (course

sets), quantitative itemsets (graded course sets), item se-

quences (course sequences) and quantitative item sequences

(graded course sequences) for each course.

Quantitative Item Quantitative

Course Itemsets Itemsets Sequences Item Sequences

CPSY-4343 48% 37% 2% 11%

CE-4301 0% 60% 33% 6%

LASK-1001 34% 39% 4% 21%

BIOC-4331 70% 20% 4% 4%

MATH-5651 58% 23% 10% 9%

AEM-4501 46% 38% 0% 15%

KIN-4385 71% 29% 0% 0%

EE-4341 31% 50% 18% 0%

MATS-3011 38% 45% 0% 16%

ANAT-3601 55% 33% 3% 7%

CHEN-4001 56% 34% 0% 8%

ACCT-3001 54% 29% 3% 11%

ACCT-5102W 52% 48% 0% 0%

BIOL-3021 71% 19% 2% 7%

CPSY-4329 72% 24% 0% 3%

patterns associated with low performance focusing on what other

courses students should have taken.
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