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ABSTRACT
Solving the AllPairs similarity search problem entails finding all
pairs of vectors in a high dimensional sparse dataset that have a
similarity value higher than a given threshold. The output form
this problem is a crucial component in many real-world applica-
tions, such as clustering, online advertising, recommender systems,
near-duplicate document detection, and query refinement. A num-
ber of serial algorithms have been proposed that solve the prob-
lem by pruning many of the possible similarity candidates for each
query object, after accessing only a few of their non-zero values.
The pruning process results in unpredictable memory access pat-
terns that can reduce search efficiency. In this context, we intro-
duce pL2AP, which efficiently solves the AllPairs cosine similarity
search problem in a multi-core environment. Our method uses a
number of cache-tiling optimizations, combined with fine-grained
dynamically balanced parallel tasks, to solve the problem 1.5x–
238x faster than existing parallel baselines on datasets with hun-
dreds of millions of non-zeros.

Keywords
similarity search, similarity join, bounded cosine similarity graph,
cosine similarity

1. INTRODUCTION
Given a set of objects, AllPairs similarity search (APSS) finds,

for each object in the set, all other similar objects, those with a simi-
larity value above a certain threshold t. The output of APSS is a cru-
cial component in many applications, including clustering [8, 13],
online advertising [19], recommender systems [9], near-duplicate
document detection [23], and query refinement [7,21]. Executing a
search naïvely over a set of n objects requires O(n2) object com-
parisons. To solve this challenging problem, recently proposed se-
rial APSS solutions [3, 4, 7, 16] rely on theoretic similarity upper
bounds to stop comparing a pair of objects as soon as it is clear their
similarity cannot reach the desired threshold t. Parallel versions of
these algorithms could further speed up computation. However, the
active pruning of the search space in serial APSS methods is highly
data dependent and results in unpredictable memory access pat-
terns, making their effective parallelization non-trivial.
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Parallel APSS solutions target either multi-core or distributed
systems. Most distributed approaches use MapReduce [11] to com-
pute similarities in parallel [6, 10, 12, 18], using an inverted index
data structure and performing analogous pruning as in serial meth-
ods. However, these methods suffer from high communication costs
which make them inefficient for large datasets [2]. Partition based
MapReduce methods [1, 2, 22] address this problem via block data
decomposition, using serial APSS methods on MapReduce nodes
to compute pairwise similarities between objects in block pairs.
These methods could further benefit from multi-core parallel APSS
solutions, which are not prevalent in the literature.

In this work, we address multi-core parallel solutions for the
exact APSS problem using cosine similarity as a way to com-
pare objects. Awekar and Samatova [5] provide the only existing
multi-core parallel algorithm to solve this problem, which we call
pAPT. Their method is based on an existing serial APSS algorithm
they developed, APT [4], and uses index sharing as a way to allow
threads to execute independent searches. In essence, an inverted
index is pre-computed and shared among the threads, while each
thread keeps and updates its own version of index meta-data to
avoid synchronization overheads. The authors devise and test three
load balancing strategies, and find that both dynamic and round-
robin task assignments perform similarly.

The APSS parallelization strategy of Awekar and Samatova does
not take into account the available memory hierarchy in current
systems, and can lead to slow performance due to thrashing when
searching large datasets. As each thread traverses portions of the
inverted index associated with their own query object, they likely
evict the working data of other threads from cache. With this in
mind, we design a new multi-core parallel algorithm, pL2AP, which
uses a number of cache-tiling optimizations, combined with fine-
grained dynamically balanced parallel tasks, to solve the APSS
problem, using 24 threads, 1.5x–238x faster than parallel baselines
and 2x–34x faster than the fastest serial method on datasets with
hundreds of millions of non-zeros.

The remainder of the paper is organized as follows. Section 2 in-
troduces the problem and notation used throughout the paper. Sec-
tion 3 details the serial APSS computation framework, while Sec-
tion 4 presents parallel solutions to the problem. We describe our
evaluation methodology and analyze experimental results in Sec-
tions 5 and 6. Section 7 summarizes related works, and Section 8
concludes the paper.

2. DEFINITION & NOTATIONS
Let D = {d1, d2, . . . , dn} be a set of objects such that each

object di is a (sparse) vector in an m dimensional feature space.
We will use di to indicate the ith object, di to indicate the feature



vector associated with the ith object, and di,j to indicate the value
(or weight) of the jth feature of object di.

The AllPairs similarity search problem seeks, for each object di
in D, all other objects dj such that sim(di, dj) ≥ t. We use the
cosine function to measure vector similarity. To simplify the pre-
sentation of the algorithms, we assume that all vectors have been
scaled to be of unit length (||di|| = 1, ∀di ∈ D). Given that, the
cosine similarity between two vectors di and dj is simply their
dot-product, which we denote by dot(di,dj).

An inverted index representation of D is a set of m lists,
I = {I1, I2, . . . , Im}, one for each feature. List Ij contains pairs
(di, di,j), also called postings, where di is an indexed object that
has a non-zero value for feature j and di,j is that value. Postings
may store additional information, such as the position of the feature
in the given document or other statistics.

Given a vector di and a dimension p, we will denote by d≤p
i the

vector 〈di,1, . . . , di,p, 0, . . . , 0〉, obtained by keeping the p leading
dimensions in di, which we call the prefix (vector) of di. Similarly,
we refer to d>p

i = 〈0, . . . , 0, di,p+1, . . . , di,m〉 as the suffix of di,
obtained by setting the first p dimensions of di to 0. One can then
verify that

di = d≤p
i + d>p

i ,

||di||2 = ||d≤p
i ||

2
+ ||d>p

i ||
2
, and

dot(di,dj) = dot(di,d
≤p
j ) + dot(di,d

>p
j ).

3. SERIAL ALGORITHMS
Most serial APSS solutions follow a similar computation frame-

work, first introduced by Bayardo et al. [7], which we describe in
Algorithm 1. In this section, we present an overview of the frame-
work, with a focus on its memory access patterns. Specific prun-
ing theoretic bounds included in the APT algorithm by Awekar and
Samatova [4] and in the L2AP algorithm in our previous work [3],
on which the parallel algorithms described in Section 4 are based,
are described in detail in [3].

Algorithm 1 The AllPairs Framework
1: function ALLPAIRS(D, t)
2: Set processing order for vectors and features
3: O ← ∅, Ij ← ∅, for j = 1, . . . ,m
4: for each i = 1, . . . , n do
5: A← GenerateCandidates(di, I, t)
6: O ← O ∪ VerifyCandidates(di, A, I, t)
7: Index(di, I, t)
8: return O

The APSS search proceeds in three stages. While processing an
object di, which we call the query, a list of potential candidates
is generated, which is a superset of the set of objects similar to the
query. A partial similarity score is computed for each candidate and
used to prune (remove from further consideration) many of those
candidates that cannot meet the similarity threshold requirement.
Then, in the second stage, each candidate is verified, eliminating
the remaining dissimilar objects from the list and finalizing the sim-
ilarity value computation for the similar objects. Finally, the query
object is analyzed and some of its suffix features and other meta-
data are added to a growing inverted index, which is used to gen-
erate the candidate list for the next object in the processing order.
Processing objects in this manner takes advantage of the commu-
tative property of cosine similarity, computing only one similarity
score for each pair of objects.

Since parts of the inverted index are traversed each time a search
is performed for a query object, it is beneficial to index as few
values as possible. Indexing is delayed in the framework until the

similarity estimate of the query prefix with any unprocessed object
reaches the threshold t (line 3 in Algorithm 2). Any unprocessed
similar object is guaranteed in this way to have at least one feature
in common with the query object. Then, when later processing that
similar object, the query object will be found while traversing the
index in the candidate generation stage. APT computes the estimate
ˆsim(d≤j+1

i , ·) as the dot product between the query vector and the
vector made up of all maximum feature values, which we call the
max vector. The estimate is further improved by requiring that ob-
jects be processed in decreasing order of their maximum feature
weights. Furthermore, L2AP uses the `2-norm of the query prefix
ending at index j, inclusive, ||d≤j+1

i ||, as an estimate of the query
object similarity with any other object, which includes unprocessed
objects. When indexing suffix values of the query vector (line 4 in
Algorithm 2), L2AP also indexes additional meta-data, such as the
`2-norm of the query prefix and its maximum value.

Algorithm 2 Indexing in the AllPairs Framework
1: function INDEX(di, I, t)
2: for each j = 1, . . . ,m, s.t. di,j > 0 do
3: if ˆsim(d≤j+1

i , ·) ≥ t then
4: Ij ← Ij ∪ {(di, di,j)} . add suffix to index

Indexing requires traversing the sparse query vector and access-
ing values in the max vector, which could be stored in a dense ar-
ray. Since this process occurs only once for each object in the set, it
takes much less of the overall search time than the other two stages
in the framework. As an example, Figure 1 shows the percent of
overall search time taken by each of the three stages in L2AP, for
t ranging from 0.1 to 0.9, for a network (Orkut) and a text-based
dataset (WW500). Furthermore, values in both the query vector
and feature maximum values are accessed sequentially, in sorted
feature processing order, and can take advantage of software and
hardware pre-fetching to reduce latency. As a result, we will focus
on optimizing the other two stages in the framework. It is important
to note, however, that the size of the inverted index is highly depen-
dent on the similarity threshold t. Higher thresholds allow delaying
indexing further and lead to a smaller inverted index, as shown in
Figure 1 of [3].

The candidate generation and verification stages are described
in Algorithms 3 and 4, respectively. During candidate generation,
the lists in the current version of the inverted index associated with
non-zero feature values in the query object are scanned, one list at
a time. An accumulator (map based data structure that accumulates
values for given keys) is used to keep track of partial dot-products
between the query and encountered objects. Once accumulation has
started for an object, it becomes a candidate. However, accumula-
tion is prevented for a new object if its prefix does not have enough
weight to achieve at least t similarity with the query. The similarity
estimate ˆsim(dc, di) in line 6 of Algorithm 3 is based on comput-
ing the similarity of the query with the max vector in APT, and
additionally based on the prefix `2-norm of the query in L2AP. Vec-
tors that do not have enough non-zeros given their maximum value
are also pruned by APT and removed from the index, which avoids
checking them in future index traversals. While this pruning strat-
egy has little effect for some datasets (e.g., text-based ones), it can
improve efficiency for datasets with many objects with few non-
zero values. After each accumulator change, at features the query
and candidate objects have in common, L2AP also checks whether
the candidate should be pruned, based on the prefix `2-norm of the
query and candidate vectors. While L2AP stores the prefix `2-norm
of the candidate in the inverted index along with its feature val-
ues, it computes the `2-norm of the query vector on-the-fly while
iterating through its values.
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Figure 1: Percent execution times for the Orkut and WW500 datasets.
For each dataset, the stacked bars show the percent of search time taken by
the indexing (idx), candidate generation (cg), and candidate verification
(cv) phases in L2AP, for similarity thresholds ranging from 0.1 to 0.9.

Algorithm 3 Candidate Generation in the AllPairs Framework
1: function GENERATECANDIDATES(di, I, t)
2: A← ∅ . accumulator array
3: for each j = 1, . . . ,m, s.t. di,j > 0 do
4: for each (dc, dc,j) ∈ Ij do
5: check whether to remove dc from index
6: if dc is not pruned and

ˆsim(dc, di) can be at least t then
7: A[dc]← A[dc] + di,j × dc,j
8: check whether to prune dc . L2AP only
9: return A

The critical memory access portions of the candidate generation
stage are updating values in the accumulator data structure, which
can be reused for each query, and traversing lists in the inverted in-
dex. If these structures take up more than the available cache mem-
ory, the computation will incur additional delay while data is loaded
from the main memory.

Candidate verification iterates through the list of candidates and
computes the partial similarity between the query vector and the
un-indexed portion of each candidate, adding it to the already ac-
cumulated partial similarity (line 5 in Algorithm 4). Each candidate
is first vetted based on an upper bound of its un-indexed prefix sim-
ilarity with any object stored during indexing. As in the candidate
generation stage, after each similarity accumulation, L2AP checks
whether the candidate should be pruned, based on the prefix `2-
norm of the query and candidate vectors, or based on the maximum
feature value in the candidate prefix.

Algorithm 4 Candidate Verification in the AllPairs Framework
1: function VERIFYCANDIDATES(di, A, I, t)
2: for each dc s.t. A[dc] > 0 do
3: check whether to prune dc
4: for each j s.t. d>c,j > 0 ∧ di,j > 0 do
5: A[dc]← A[dc] + di,j × dc,j
6: check whether to prune dc . L2AP only
7: store similarity if A[dc] ≥ t

The accumulator is not critical in the candidate verification stage,
as processing occurs for one candidate at a time. The partial accu-
mulated similarity of a candidate can be looked up once and further
accumulation can occur on the stack. On the other hand, feature val-
ues and meta-data associated with those features in the query vector
are accessed in a random fashion, based on the features encountered
in the candidate object. To facilitate computing dot products be-
tween the query and candidate vectors, we have found it beneficial
to insert the feature values of the query vector, its prefix `2-norm
values, and its prefix maximum values in a hash table. When iter-
ating through the sparse version of a candidate object’s un-indexed
prefix, the query feature, prefix maximum and `2-norm values can
then be quickly looked up in O(1) time. The cost of using a hash
table can be offset by reusing the structure for verifying many can-
didates. An alternative to looking up query values in a hash table
would be to traverse the candidate and query vectors concurrently,
assuming a predefined global feature traversal order. We have found
that in most cases (other than datasets with small number of vector
non-zeros) this strategy leads to 2x-3x slower execution times.

4. PARALLEL ALGORITHMS
In this section, we present two parallel solutions to the APSS

problem. First, we summarize algorithmic choices in the method
of Awekar and Samatova, pAPT. We then introduce pL2AP, which
was designed based on the memory access observations we made
in Section 3, with the goal of improving cache locality during sim-
ilarity search.

4.1 pAPT
Awekar and Samatova introduced the first multi-core parallel

APSS algorithm [5], pAPT, based on their serial APT algorithm.
Their main idea was to pre-compute the partial inverted index
(lines 4–5 in Algorithm 5), rather than indexing each object after
its processing, and allow threads to share the index structure. To
prevent synchronization overheads when removing values from the
inverted index (line 5 of Algorithm 3), pAPT duplicates, for each
thread, a list of offsets from the beginning of each inverted list.
Then, each thread modifies its own offsets, incrementing them to
remove only items at the start of inverted lists.

Algorithm 5 The pAPT Algorithm
1: function PAPT(D, t)
2: Set processing order for vectors and/or features
3: O ← ∅, Ij ← ∅, for j = 1, . . . ,m
4: for each i = 1, . . . , n do
5: Index(di, I, t)
6: for each i = 1, . . . , n, in parallel do
7: A← GenerateCandidates(di, I, t)
8: O ← O ∪ VerifyCandidates(di, A, I, t)
9: return O

Awekar and Samatova proposed three load balancing strategies
in pAPT: block, round-robin, and dynamic partitioning. The object
processing order in the AllPairs framework, namely in decreasing
maximum value order, after first normalizing object vectors, means
that objects with few non-zeros are processed first, and those with



many non-zeros last. As a result, statically assigning n/nt consec-
utive objects to each thread, where nt is the number of threads,
leads to load imbalance. Awekar and Samatova attempted to fix
the potential imbalance by assigning subsets of query objects with
equal number of non-zeros to each thread, but found this strategy is
still worse than round-robin or dynamic partitioning. The best per-
forming load balancing strategy in their experiments was dynamic
partitioning, which assigns a small set of objects to a thread as soon
as it has finished processing its previous assigned set.

4.2 pL2AP
Our new method, pL2AP, uses the same indexing, candidate gen-

eration and verification pruning choices as L2AP, which has been
shown to outperform those in APT, both theoretically and experi-
mentally [3]. Additionally, pL2AP employs two strategies aimed at
improving cache locality during search. First, cache-tiling breaks
up the inverted index into blocks that can fit in the system cache,
reducing latency during candidate generation. Second, for datasets
with high dimensionality, mask-based hash tables can greatly re-
duce the amount of memory required for storing query object
values and meta-data during search, allowing them to persist in
the cache during candidate verification. Algorithm 6 provides an
overview of our method.

Algorithm 6 The pL2AP Algorithm
1: function PAPT(D, t)
2: Set processing order for vectors and features
3: for each i = 1, . . . , n in parallel do
4: S ← FindIndexSplit(di, t)

5: K ← FindIndexAssignments(S)
6: O ← ∅, Ik,j ← ∅, for j = 1, . . . ,m and k = 1, . . . ,K
7: for each i = 1, . . . , n do
8: Index(di, I, S, t)
9: for each k = 1, . . . ,K do

10: for each l = S[k], . . . , n, in increments of qsz do
11: for each i = l, . . . ,min(l+qsz −1, n), in parallel do
12: A← GenerateCandidates(di, Ik, t)
13: O ← O ∪ VerifyCandidates(di, A, Ik, t)
14: return O

4.2.1 Cache-tiling
Cache-tiling aims to increase cache locality during the candidate

generation stage of the similarity search by ensuring the inverted
index and accumulator structures fit in cache. The inverted index in
pL2AP is highly dependent on the values of objects being indexed
and the required minimum similarity threshold t. As such, pL2AP
first finds the first feature to be indexed in each object (line 4),
which also provides the number of values to be indexed in each
object. These counts are used to define tiles, consecutive sets of
objects to be indexed together. The list S, containing tile start and
end offsets given the predefined processing order, is then used to
index each object suffix in their assigned inverted index (line 8).

We use an array to track accumulated similarities for candidates.
Since the accumulation array is randomly accessed for different
candidates encountered while traversing the inverted index, nt ac-
cumulation arrays should also fit in cache along with the index, one
for each thread. The size of the accumulation array is the same as
the number of objects assigned to an index.

Choosing the size of each cache tile is non-trivial in the APSS
problem, due to the varying number of feature values being indexed
for each object. For example, choosing to index the same number
of objects in each tile will lead to large indexes for the final tiles
to be processed which may not fit in cache. Instead, we assign up

to inz non-zero values to be indexed in each tile, where inz is an
input parameter in our method.

The un-indexed portion of each un-pruned candidate vector is
sequentially accessed during candidate verification. To maximize
cache locality, we explicitly create a sparse forward index contain-
ing prefix values for objects in each tile.

During parallel sections (lines 3 and 11), pL2AP follows a dy-
namic task partitioning approach, assigning a small set of objects
to a thread to process as soon as it has finished processing its previ-
ous assigned set. Since candidate pruning is unpredictable, a thread
may get assigned objects that finish processing quickly and may
jump ahead many places in the processing order. This may lead to
loss of cache locality if some threads read query objects from dif-
ferent portions of the dataset. To prevent this, we process queries
qsz at a time, where qsz is an input parameter, forcing threads to
read from the same subset of query vectors, which should be lo-
cated in sequential memory blocks.

4.2.2 Query vector mask-hashing
During candidate verification, pL2AP sequentially traverses the

prefix of a candidate and checks whether the query has non-zero
values for the features encountered. When those are encountered,
query object meta-data (prefix `2-norm or maximum value) are
used to check whether the candidate can be pruned. An efficient
way to locate query vector values and meta-data during this process
is by storing them in arrays, as dense vectors. However, for datasets
with high dimensionality (generally above 106), this technique can
lead to polluting the cache with zero values from the dense arrays,
evicting other necessary data.

Given that query vectors are sparse, and their features are always
processed in a predefined order, we developed a heuristic hashing
technique that uses a small amount of cache space for each hash
structure, takes advantage of O(1) access times for most look-ups
and leads to few collisions in practice. pL2AP uses a small hash-
table array of size h + max(||di||∞) to store matching offsets in
one or more lists containing the query data. Here, h is a predefined
parameter, generally much smaller than m, and max(||di||∞) is
the maximum number of non-zero features for all objects in the set.
The hash-table array is initialized with negative values. For each
feature in the query vector, pL2AP efficiently computes a hash key
by using the mask (1 � h) to truncate the feature ID, where the
ID is its position in the predefined global feature processing order,
to the [0, h − 1] domain. Offsets into the sparse query vector are
stored at locations in the hash-table corresponding to feature hash
keys. In case of a collision, the offset for the feature is added to the
end of the hash-table array, starting at index h, in processing order,
and can thus be quickly looked up through a limited linear scan.
In practice, however, we have found that less than 1% of hash key
look-ups end in collision.

5. EXPERIMENTAL EVALUATION
In this section, we present our experimental methodology. For

both serial and parallel methods we measure runtime (wallclock),
in seconds, for the similarity search phase of the algorithm. I/O
time needed to load the dataset into memory or write output to the
file system should be the same for all methods and is ignored. Be-
tween a method A and a baseline method B, we report speedup as
the ratio of B’s execution time and that of A’s. Additionally, we
report strong scaling for parallel methods, in which multi-threaded
execution times are compared with the 1-threaded execution of the
same method.
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Figure 2: Speedup of 1-threaded pL2AP over L2AP.

5.1 Datasets

Table 1: Dataset Statistics
Dataset n m nnz µr σr µc σc
RCV1 0.80M 0.05M 62M 76 55 1347 8350

WW500 0.24M 0.66M 202M 830 386 306 3323
WW200 1.02M 0.66M 437M 430 302 659 8273

Wiki 3.71M 3.71M 111M 30 68 56 561
Orkut 3.07M 3.07M 117M 38 131 38 51

Twitter 0.15M 0.15M 200M 1370 2275 1395 2262

For each dataset, n is the number of vectors/objects (rows), m is the
number of features (columns), nnz is the number of non-zero values, µr

and σr are the mean and standard deviation of row lengths (number of
non-zeros), and µc and σc are the same statistics for column lengths.

We use six datasets to evaluate each method. They represent
some real-world and benchmark text corpora often used in text-
categorization research and web/social networks. Their character-
istics, including number of objects (n), features (m), and non-zeros
(nnz), row/column length mean and standard deviation (µr/c,
σr/c), are detailed in Table 1. Standard pre-processing, including
tokenization, lemmatization, and tf-idf scaling, were used to en-
code text documents as vectors. Network datasets contain the tf-idf
scaled binary adjacency structure in the underlying graphs.

• RCV1 is a standard benchmark corpus containing over 800,000
newswire stories provided by Reuters, Ltd. for research pur-
poses, made available by Lewis et al. [17].
• WW500 contains documents with at least 500 distinct features,

extracted from the October 2014 article dump of the English
Wikipedia1 (Wiki dump).
• WW200 contains documents from the Wiki dump with at least

200 distinct features.
• Wiki represents a directed graph of hyperlinks between

Wikipedia articles in the Wiki dump.
• Orkut contains the friendship network of the Orkut social media

site, made available by Mislove et al. [20].
• Twitter, first provided by Kwak et al. [15], contains follow re-

lationships of a subset of Twitter users that follow at least 1,000
other users.

5.2 Baseline methods
In addition to the pAPT algorithm by Awekar and Samatova,

which we described in Section 4, we compare pL2AP against the
following algorithms.
1http://download.wikimedia.org
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Figure 3: Percent cache misses of pL2APrr and pL2AP with inz
between 1.5M and 4M non-zeros for the RCV1 (top) and Orkut
(bottom) datasets.

1. IdxJoin, APT, and L2AP are baseline serial APSS search
methods described in detail in [3]. We report speedup over
the fastest execution time of any of the serial methods.

2. pIdxJoin uses similar cache-tiling as pL2AP, but does not
use any pruning when computing similarities. For each block
of queries, pIdxJoin sequentially retrieves a block of ob-
jects to search against and indexes all their values. Threads
then share the index to compute similarities, via accumula-
tion, of each assigned query object against all indexed ob-
jects, retaining those pairs above the threshold t.

3. pL2APrr follows the same parallelism strategy as pAPT (see
Section 4), but takes advantage of the advanced pruning
bounds of L2AP. After first indexing the suffixes of all ob-
jects, pL2APrr dynamically assigns small sets of query ob-
jects for processing to available threads. For each query ob-
ject, pL2APrr indexes the same values and performs the same
pruning in the candidate generation and verification stages as
pL2AP.

5.3 Execution environment
Our method and all baselines are implemented in C and com-

piled using gcc 4.4.7 with -O3 optimization. We used the OpenMP
framework for implementing shared-memory parallel methods.
Each method was executed on its own node in a cluster of HP Linux
servers, each with two twelve-core 2.5 GHz Intel Xeon E5-2680v3
processors and 64 Gb RAM. For each method, we varied the sim-
ilarity threshold t between 0.3 and 0.9, in increments of 0.1. For
pL2AP, we fixed qsz at 25K objects and varied inz between 250K
and 3M in 250K increments. We set the masked hash-table size
parameter h to 213.



6. RESULTS & DISCUSSION

6.1 Improvements in cache locality
In this section, we show the effectiveness of our proposed tech-

niques to improve cache locality. While pL2AP performs the same
pruning as L2AP, it scans each query object multiple times to com-
pare against objects in multiple constructed inverted indexes. The
smaller inverted indexes and the mask-based hash table used dur-
ing the search help avoid cache thrashing, improving efficiency by
reducing time wasted waiting for data transfers from memory to
cache. To measure the serial effect of this improvement, we com-
pared the 1-threaded execution of pL2AP against the serial L2AP
algorithm. We used qsz =25K objects and inz =1M non-zeros for
this test. Figure 2 shows speedup results for each of the six datasets
we tested, for t between 0.3 and 0.9.

The results show an improvement over L2AP for datasets with
long inverted lists, whether text or network based. The short in-
verted lists in the Orkut and Wiki dataset do not provide enough
cache reuse for 1 thread to hide the additional work of multiple
query searches, leading to slower execution than that of L2AP.
However, the small inverted index in pL2AP is shared by all threads
in executing concurrent searches. As another way to quantify cache
locality improvements, we compared the percent of cache misses
when executing pL2AP and pL2APrr with 24 threads. Both algo-
rithms perform the same pruning, but pL2APrr builds a single in-
verted index and does not consider cache locality in its execution.
Figure 3 shows our results when executing pL2AP with inz be-
tween 0.5M and 4M non-zeros and pL2APrr, on the RCV1 (top)
and Orkut (bottom) datasets, for t = 0.3. We show the size of the
inverted index pL2APrr builds below its bar in the graph. We ob-
served similar results for most other datasets and t values. In gen-
eral, pL2AP improves cache locality, and the improvement is more
pronounced for text based datasets, which tend to have longer in-
verted lists.

6.2 Parameter sensitivity
Our method, pL2AP, is controlled by three parameters. The size

of the mask-based hash table, h, is dependent on the dimensionality
of the feature space. Choosing a small h value for a dataset with
large dimensionality will likely cause many hash table collisions
and slow down execution. Similarly, the inz parameter dictates the
number of non-zeros that should be included in each inverted index,
which dynamically decides the size of each cache tile. Choosing a
small inz value will lead to many inverted indexes being created
which may lead to slow-downs due to repeated traversals of the
query objects. On the other hand, choosing an inz value that is too
large will diminish the cache locality benefits of our tiling strategy.
To ascertain the sensitivity of pL2AP to these parameter choices, we
tested different values of each parameter while keeping the other
two unchanged.

In the first experiment, we set inz to 1M non-zeros and qsz to
25K and varied h between 25 and 215. Results of these experiments
over our six datasets are shown on the left side of Figure 4, as ex-
ecution times relative to the h = 213 parameter choice for each
dataset. Our method is not sensitive to this parameter for text and
the Twitter datasets, which have smaller dimensionality, but can in-
cur over 2.5x slowdown when choosing a small hash table size for
the Orkut or Wiki datasets, which both have over 3M dimensions.

Choosing the size of each bulk synchronous block, qsz, does
not affect performance in pL2AP, as long as the qsz value is not
too small. We found any values above 5K to be adequate for all
datasets. The middle section of Figure 4 shows execution times for
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Figure 4: Relative execution times for different h, qsz, and inz
parameter choices.

each dataset, given h = 213 and inz =1M, for qsz between 1K and
50K, relative to the execution time for qsz =25K.

Finally, we tested the sensitivity of the inz parameter, for val-
ues between 0.25M and 3.0M, given qsz =25K and h = 213, and
show times relative to the inz =1M execution in the right section of
Figure 4. While the inz choice will be dependent on the cache con-
figuration of the target system, our experiments showed that pL2AP
performed well for most datasets given inz set to at least 1M non-
zeros.

6.3 Comparison with serial methods
We compared the execution time of all parallel methods, exe-

cuted with 24 threads, with the best serial execution time achieved
by any of the serial algorithms, at similarity thresholds between
0.3 and 0.9. Figure 5 shows the results of this experiment. In all
cases, pL2AP had the best execution time of all parallel methods,
achieving speedups of 2x–20x for network datasets and 12x–34x
for text datasets. Compared to existing parallel baselines, pL2AP
executed 1.5x–3x faster for network datasets and 7x–238x faster
for text datasets. While pL2APrr uses the same type of pruning as
pL2AP, it traverses the entire inverted index during each query and,
as a result, cannot perform as well. Instead, by using tiling and
other optimizations that promote cache locality, pL2AP is able to
achieve very good speedup for datasets with long columns, such as
text datasets. At high similarity thresholds, pL2AP is able to prune
candidates quickly and does not need to traverse many candidate
and query vector features, rendering our cache locality optimiza-
tions less effective.

As expected, the pIdxJoin algorithm, which does not perform
any pruning, was very slow in comparison to the other paral-
lel methods. It performed very poorly on network datasets, much
slower than L2AP, the fastest serial method, potentially due to their
high dimensionality. The pAPT method of Awekar and Samatova
performed fairly well on network datasets, but was very slow on
text datasets. It was not able to prune as many candidates as pL2AP
in general, and ended up performing many more unnecessary simi-
larity computations.

6.4 Strong scaling
Figure 6 shows some of the strong scaling results from our ex-

periments. The amount of work pL2AP does when processing each
query increases as the threshold t decreases. At high values of t,
there are few similar objects for each query and pL2AP is able to
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quickly dismiss candidates. As a result, its scaling is not as pro-
nounced at t = 0.9. On the other hand, queries will have many
similar objects at t = 0.3, and pL2AP shows linear scaling at this
threshold for text datasets. While its scaling is not as dramatic for
network datasets, pL2AP still exhibits very strong scaling, in most
cases better than the other baselines.

It is interesting to note that pAPT and pL2APrr both scale poorly
above twelve threads on text datasets. This may be an indication of
thrashing, which is causing threads to waste time waiting for cache
lines to be fetched from main memory.

7. RELATED WORK
Having been studied for over a decade, the APSS problem has

given rise to many serial solutions, some of which were described
in Section 3. In a previous work [3], we gave an overview of exist-
ing methods and analyzed their pruning performance.

Existing distributed solutions to the problem generally use the
MapReduce [11] framework and can be split into two categories.
Most rely on the framework’s built-in features to aggregate (re-
duce) partial similarities of object pairs computed in mappers [6,
10, 12, 18]. The computation efficiency can be greatly increased by
first generating an inverted index for the set of objects, which can
be done using one MapReduce task. The postings in the inverted
index lists can then be combined with features in the object vectors
or with other postings in the same list to generate partial similarity
scores. While some pruning strategies can be used to avoid generat-
ing some partial scores, these methods often suffer from high com-
munication costs which make then inefficient for large datasets [2].

The second category of MapReduce methods use a mapper-only
scheme, with no reducers [1, 2, 22]. They partition the set of ob-
jects into subsets (blocks) and use serial APSS methods to find
pairwise similarities of objects in block pairs. Certain block com-
parisons can be eliminated by relying on block-level filtering tech-
niques, such as computing the similarity of the objects made up of
the maximum values for features in the two blocks. When com-
paring two blocks, Alabduljalil et al. proposed locally building
a full inverted index for one of the blocks and scanning through
query objects in the other block to compute their similarity. They
found that filtering candidates was detrimental to execution speed
and suggested removing this optimization, rendering their local
search identical to that performed in one tile by our naïve baseline,
pIdxJoin. Within this context, they examined distributed load bal-
ancing strategies [22] and cache-conscious performance optimiza-
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Figure 6: Strong scaling of parallel methods at t = 0.3 (top)
and t = 0.9 (bottom).

tions for the local searches [1]. They provided a cost based anal-
ysis aimed at finding sizes for comparison blocks that maximize
cache locality. Their analysis is based on a full inverted index and
mean vector and inverted list lengths, which can vary greatly in real
datasets, as evidenced by the high σ values in Table 1.

Existing multi-core cosine APSS solutions are limited to the
pAPT algorithm by Awekar and Samatova, detailed in Section 4.
Jiang et al. [14] provided a parallel solution for the related problem
of string similarity joins with edit distance constraints.

8. CONCLUSIONS AND FUTURE WORK
We presented pL2AP, our multi-core parallel solution to the All-

Pairs cosine similarity search problem. Our method uses several
cache-tiling optimizations, combined with fine-grained dynami-
cally balanced parallel tasks, to solve the problem, using 24 threads,
1.5x–238x faster than existing parallel baselines and 2x–34x faster
than the fastest serial method on datasets with hundreds of mil-
lions of non-zeros. In the current work we have focused on tiles
that fit in L3 cache. It would be interesting to evaluate strategies for
maximizing the reuse of the L1 and L2 caches in similarity search.
Additionally, while choosing a cache-tile size for pL2AP is fairly
straight-forward, we may investigate designing a cache-oblivious
parallel APSS method. Finally, we may explore distributed algo-
rithms for efficiently constructing cosine similarity graphs.
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