
--
1-4244-0910-1/07/$20.00 ©2007 IEEE.

A Multi-Level Parallel Implementation of a Program for Finding
Frequent Patterns in a Large Sparse Graph

Steve Reinhardt1 and George Karypis2

1

SGI, 2750 Blue Water Road, Eagan, MN 55121 USA spr@sgi.com
2Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA

karypis@cs.umn.edu

Abstract
Graphs capture the essential elements of many
problems broadly defined as searching or
categorizing. With the rapid increase of data
volumes from sensors, many application disciplines
need to process larger graphs quickly. This paper
presents the results of parallelizing with OpenMP an
algorithm that finds, in a single large labeled
undirected sparse graph, the connected subgraphs
with a given minimum number of edge-disjoint
embeddings. Parallelism is exploited at two levels in
the algorithm. The lack of a priori knowledge of the
extent of parallelism for a given input required use of
a dynamic, multi-level approach based on the
proposed OpenMP taskq/task extensions. The
parallel implementation required the addition of 21
directives and about 50 accompanying lines of code,
in an original code of about 15,000 lines.
Experimental results show excellent speed-up to 30
processors for the graphs used, with a best speed-up
of 26.1 compared to the serial version. The
taskq/task constructs show promise for problems
exhibiting unstructured parallelism.

Keywords: pattern discovery, frequent
subgraph, data mining, parallel
processing, OpenMP, unstructured
parallelism

1 Introduction

The use of graphs to represent discrete data and the
connections within the data is growing as researchers
seek to solve a variety of problems in data mining,
chemical compound classification, link analysis, and
computational biology. The size of these graphs is
growing explosively, corresponding to the growth of
the data volume from sensors (e.g., microscopes,
mass spectrometers, and gene arrays). Computational
methods for these large graphs need to be fast for
routine use, and thus one is naturally drawn to parallel
extension of the existing serial methods.

This work builds on Kuramochi and Karypis'
VSiGraM algorithm [1], extending it to exploit
parallelism both across candidate subgraphs, and
within a candidate subgraph on the multiple

embeddings in the large graph. This approach allows
exploitation of a large amount of the potential
parallelism within the algorithm. However, the two
levels of parallelism and the recursive nature of the
algorithm do not map trivially to the existing parallel
language methods. After two aborted attempts with
other parallel methods, we finally used the taskq
and task extensions [5] to the OpenMP 2.5 [7]
parallel interface. These constructs support
parallelism at multiple locations or levels within a
program, with the run-time library directing
processors to a single conceptual work queue. The
desired parallelism within the algorithm mapped
naturally to these constructs. We implemented this
algorithm so that the parallelism between subgraphs
(high level) and within a subgraph (low level) could
be turned on or off independently, to measure the
performance benefit of each. The high-level
parallelism consistently showed strong benefit, but
the low-level parallelism showed only modest, and
often no, benefit for the graphs we used, and indeed
degraded performance as more processors were
added. Our experience with this algorithm and
OpenMP showed that the taskq/task constructs
are a promising means of effectively parallelizing this
type of algorithm, both in terms of the time spent
changing an existing serial code and in the
performance benefit of parallelism.

2 Problem Statement

The problem considered here, as described in [1], is
that of a graph G consisting of a set of vertices V and
a set of edges E, with each vertex and edge having a
(potentially non-unique) label. A graph Gs is a
subgraph of G if and only if Vs ⊆ V and Es ⊆ E. Two
graphs G1 and G2 are isomorphic if they are
topologically identical to each other. The problem of
subgraph isomorphism between G1 and G2 is to find
whether an isomorphism between G2 and and a
subgraph of G1. Two embeddings of Gs are identical if
they use the same set of edges of Gs, and they are
called edge-disjoint if they do not have any edges of
G in common. This work focuses on finding
subgraphs of a single large graph whose embeddings
are edge-disjoint.

The overlap graph of Gs is a graph obtained by
creating a vertex for each non-identical embedding, in
the set of all embeddings of Gs in G and allocating an
edge for each pair of embeddings that are not edge-
disjoint. Calculation of the set of edge-disjoint
embeddings depends on calculating the maximal
independent set of the overlap graph. One input
parameter to the algorithm is the minimum frequency
of occurrence of a subgraph to consider. Because of
the potential computational complexity of the exact
calculation of MIS, the vSiGraM program embodies
three different algorithms for calculating MIS: one
heuristic and one exact algorithm for calculating the
MIS and one exact algorithm for calculating an
upper-bound on the MIS.

3 Approach to Parallelization

The original SiGraM work had different
implementations for a depth-first or vertical version
and a breadth-first or horizontal version. With the
inclusion of parallelism, the notion of "first" becomes

imprecise, as does the distinction between depth-first
and breadth-first, as the parallelism will typically be
proceeding in both dimensions simultaneously. This
work was based on the vertical version of VSiGraM,
as the recursive structure of that code expressed the
potential parallelism well.

Conceptually, the algorithm has several
dimensions of parallelism that could be exploited.
The algorithm (with slight modifications from
Algorithm 5 from [1]) is shown in Figure 1.
vSiGraM creates the size-1 subgraphs (each
represented by F1) and then calls vSiGram-Extend
with a subgraph, the whole graph, and the minimal
frequency f. vSiGraM-Extend calls itself recursively,
and hence most of the time is spent there. In
vSiGraM-Extend, lines 2-3 creates all the size-i+1
subgraphs (Ci+1) that contain Fi, then prunes the set for
redundancy (choosing only those whose generating
parent is the candidate subgraph) and minimal
frequency. All of those surviving subgraphs are then
extended again recursively.

Figure 1. Algorithm 5 from Kuramochi and Karypis [1].

vSiGraM (G, MIS_type, f)
1. F← ∅
2. F1 ← all frequent size-1 subgraphs in G
3. for each F1 in F1 do
4. M(F1) ← all embeddings of F1

5. for each F1 in F1 do
6. F← F ∪ vSiGraM-Extend(F1, G, f)
7. return F

vSiGraM-Extend(Fk, G , f)
1. F← ∅
2. for each embedding m in M(Fk) do
3. C k+1 ← C k+1 ∪ {all (k+1)-subgraphs of G containing m}
4. for each Ck+1 in C k+1 do
5. if Fk is not the generating parent of Ck+1 then
6. continue
7. compute Ck+1.freq from M(Ck+1)
8. if Ck+1.freq < f then
9. continue
10. F ← F ∪ vSiGraM-Extend(Ck+1, G, f)
11.return F

The high-level parallelism exploited is at the
parallel loop of lines 5 and 6 of vSiGraM and the
recursion step in line 10 in vSiGraM-Extend. At these
points, each of the candidate size-i subgraphs
represents a distinct set of vertices and edges, and its
suitability for extension to size i+1 can be determined
independently of the suitability of any other size-i
subgraph. I.e., it depends only on the input graph and
the candidate subgraph itself, and in no way on the
characteristics of other subgraphs. Thus each of the
size-i subgraphs can be extended in parallel. This
parallelism grows directly with the number of
candidate subgraphs.

The low-level parallelism exploited is lines 2 and 3
of vSiGraM-Extend. These lines find all the possible
size-i+1 subgraphs that contain the size-i subgraph,
storing the unique subgraphs that result with the count
of occurrences. This parallelism tends to grow as the
size of the graph grows.

3.1 Possible Parallel Languages

The dominant parallel programming method in use
today is MPI [2], but the characteristics of this
problem are a poor match for it. In general for large

problems, each processor will want to traverse the
original large graph as needed, and that graph will be
big enough not to fit in the memory of a single node
(processor plus memory) of the parallel system.
Ideally the code could address directly into the large
array, with the array being distributed across the
memory of multiple nodes. Also, the extent of
parallelism is dynamic and typically highly
imbalanced, necessitating a means of balancing the
work across the processors. While load-balancing
abilities have been implemented for MPI in some
packages (e.g., Zoltan [3]), they are not simple and
straight-forward to implement in a modestly sized
(~15,000 lines of C) research code. One of the
criteria for this work was that the changes for
parallelism be minimally intrusive to the structure of
the existing code.

We tried to use Unified Parallel C (UPC) [4], a
global-address-space extension to the C language
intended for problems with fine-grained, dynamic
parallelism. After considerable time working to map
the existing vSiGraM code onto the UPC constructs,
we abandoned that approach. The primary difficulties
were in defining structures properly so that they could
be allocated and addressed appropriately (private or
shared) in different circumstances, in the context of
an existing code that has many different structures
defined with pointers to each other. We wound up
with myriad combinations, for instance with a flavor
of struct A containing a pointer to a private struct B
and a distinct flavor of struct A containing a pointer
to a shared struct B. Researchers more experienced
with UPC may have succeeded where we did not.

Next we used OpenMP. OpenMP is rarely used in
today's HPC clusters, in part because until recently
the nodes in those clusters had just one or two
processors in a cache-coherent domain (a near-
requirement for OpenMP implementation), and thus
there was little opportunity for performance benefit.
With the onset of multi-core processors, however,
several manufacturers already offer inexpensive
nodes with 4-8 cores, and one can reasonably expect
those nodes to have 10s of cores in the near future.
This makes OpenMP a reasonable choice for
parallelism on the node. A few manufacturers (SGI
most extremely) offer large cache-coherent nodes that
could be used for problems that don't fit on the typical
small node.

Our first OpenMP implementation exploited just
high-level parallelism, using the parallel for
construct. We used the Electric Fence [6] library to
find data erroneously typed as private or shared
and quickly had a working code. However, this code
did not exhibit the expected level of speed-up, due to
the dynamic nature of the parallelism and the static
nature of allocation of processors to standard
OpenMP parallel regions. At the time of creation of a
parallel region, the programmer must specify how
many threads (processors) are to be used in the
region, and those threads are dedicated to that region
for the duration of the region. In the recursive nature
of vSiGraM, this meant that threads were allocated to
the parallel region at depth i, and were unavailable to

participate in the parallel regions at other depths. A
more dynamic means of allocation of threads and
tasks was needed. Also, we wanted to exploit the
low-level parallelism, which was dynamic and also
orthogonal to the high-level parallelism.

The proposed taskq/task extensions to
OpenMP have been implemented in the latest Intel
C/C++ compiler [5]. They allow disparate locations
in a program to add work to a single conceptual queue
that is served by all the threads active in the program.
Multiple queues can also be created, with the run-
time library scheduling threads dynamically among
the queues. This matches very well with the desired
parallelism (recursive, multi-location) in vSiGraM. A
simple single-queue example of the use of
taskq/task for a recursive subroutine is as
follows:

main()
{
 int val;
#pragma intel omp taskq
 val = fib(12345);
}

fib(int n)
{
 int ret[2];
 if (n>2)
#pragma intel omp task
 for(i=n-2; i<n; i++) {
 ret[n-2-i] = fib(i);
 }
 return (ret[0] + ret[1]);
 } else {
 return 1;
 }
}

The first pragma declares the task queue and the
second pragma designates items to be placed on the
queue and hence executed. The taskq pragma is
placed outside the recursive routine so that all the
items will be added to a single queue.

The second vSiGraM OpenMP implementation
was based on taskq/task, with switches to allow
the high-level and low-level parallelism to be enabled
independently for measurement purposes.
Implementation of the high-level parallelism was
straight-forward, with a parallel region around the
extension of the original size-1 subgraphs and a
parallel construct around the recursive call to create
size-i+1 subgraphs. Key portions of the parallel code
are presented in Figure 2.

Implementation of the low-level parallelism
required more thought. This code expands the map of
the current subgraph to identify all valid size-i+1
extensions. Those extensions could occur more than
once, which the algorithm checks for before
registering an extension in the extension set. When
run serially, this check is simple. The code is

for (i=0; i < vmap_sz(sg); i++)
expand_map(sg, ct, ams, i,es,lg);

When run in parallel, however, two processors may
identify the new extension nearly simultaneously.
These duplicate extensions which must be combined
in the result extension set. Thus after the parallel
loop finds all the locally distinct extensions, a
reduction step collapses them to all the globally
distinct extensions. Because of the semantics of the
taskq/task constructs, where non-master threads
are not guaranteed to execute the postamble of the
task loop, an extra data structur, suggested by Grant
Haab and colleagues from the Intel OpenMP
development group, is used to store the local
extension sets for all the non-master threads, and then
the master does the reduction in the postamble. The

code for the parallel version is in Figure 3. This
implementation of high- and low-level parallelism
produced identical results as the serial algorithm for
the number of frequent subgraphs of each size, the
number of maps, the number of live edges, etc.

The changes to use OpenMP included 12 OpenMP
directives in the main algorithms. (One of these
directives and accompanying code changes was
necessary to enable running with high- and low-level
parallelism independently, which would probably not
persist into a final implementation.) Nine OpenMP
directives were necessary in utility routines (memory
allocation, mainly) to ensure proper
private/shared definition and mutual exclusion.

Figure 2. Parallel Code for "High Level" Parallel Section

// In a top-level routine, start all the initial subgraphs

#pragma intel omp parallel taskq shared(i,freq) default(none)
for (i = 0; i < sg_set_size(freq); i++) {

#pragma intel omp task captureprivate(i)

{
SubGraph *sg = sg_set_at(freq, i);

expand_subgraph(sg, ct, lg, ls, o);

}
}

}

// At the bottom of expand_subgraph, after all child subgraphs

// have been identified, start them all.

#pragma intel omp taskq
for (ii=0; ii<sg_set_size(child); ii++) {

#pragma intel omp task captureprivate(ii)

{
SubGraph *csg = sg_set_at(child,ii);

expand_subgraph(csg, csg->ct, lg, ls, o);

} // end-task
}

 One difficulty we did not resolve, but merely
deferred, was that of expanding an array after it had
been once allocated. In a serial version, this is
simple, as one can know which structures point to a
given array and go update those structures to point to
a newly allocated array containing the contents of the
formerly allocated array. Updating these pointers is,

in general, not possible in a parallel situation. We
deferred this problem by making arrays substantially
larger than they would have normally been, so we
would rarely hit the array-overflow conditions, but we
still hit them in some of the larger runs with more
processors.

Figure 3. Parallel Code for "Low Level" Parallel Section (some details omitted)

#pragma omp parallel shared(nt, priv_es)
{

#pragma omp master
{

nt = omp_get_num_threads(); //#threads in par
priv_es = (ExtensionSet **)kmp_calloc(nt, sizeof(ExtensionSet *));

}
#pragma omp barrier
#pragma intel omp taskq

{
for (i = 0; i < sg_vmap_size(sg); i++) {

#pragma intel omp task captureprivate(i)
{

int th = omp_get_thread_num();
if (priv_es[th] == NULL) {

priv_es[th] = exset_init(128);
}
expand_map(sg, ct, ams, i, priv_es[th], lg);

}
}

}
}

for (i=0; i < nt; i++) {
if (priv_es[i] != NULL) {

exset_merge(priv_es[i],es);
}

}
kmp_free(priv_es);

Figure 4. VSiGraM Timings and Scaling for DTP Input Data
 Note: Serial times use neither high-level nor low-level parallelism.

Number of processors Graph Frequency Type of
Parallelism 1 2 4 8 16 30 60

 Time in seconds (speed-up)

High 31.94 17.01
(2.03)

14.76
(2.40)

13.89
(2.58)

14.00
(2.56)

13.97
(2.57)

Low 32.51
(0.98)

31.52
(1.01)

37.95
(0.83)

42.18
(0.74)

49.56
(0.63)

 500

Both 17.52
(1.96)

14.88
(2.37)

15.80
(2.21)

29.85
(1.08)

44.37
(0.70)

High 93.96 48.86
(1.97)

27.12
(3.71)

16.82
(6.39)

15.05
(7.29)

14.52
(7.61)

Low 94.36
(1.00)

92.18
(1.02)

112.17
(0.83)

133.40
(0.70)

116.31
(0.80)

 100

Both 48.38
(1.99)

27.27
(3.69)

61.52
(1.55)

315.94
(0.29)

281.83
(0.33)

High 282.15 142.02
(2.00)

62.73
(4.64)

34.44
(8.76)

19.40
(16.56)

15.06
(22.27)

15.80
(21.03)

Low 283.19
(1.00)

293.6
(0.96)

400.55
(0.70)

262.82
(1.07)

197.27
(1.44)

dtp

50

Both 140.47
(2.03)

81.18
(3.55)

242.09
(1.17)

513.39
(0.55)

581.04
(0.48)

4 Experimental Results

The code was compiled with the Intel C++ compiler,
version 9.0.030, with the -openmp_profile and
-O3 flags. The results below were obtained on an
SGI Altix 4700 system populated with 32 1.6GHz
Itanium2 dual-core "Montecito" sockets (64 cores)
and 64GB of memory. No special dplace or
cpuset commands were used. Attention was paid
to scaling performance, and not to absolute per-
processor performance. The runs all used the upper-
bound algorithm [1] for maximum independent set
(MIS) calculation. The times are all in seconds of
wall-clock time, selected as the minimum of 4 runs
except the serial runs, which are the minimum of 2
runs. The minimums were chosen because the
programs were run on quiet, but not strictly dedicated
systems, so system effects could have degraded
results. In practice, the times of the multiple runs
were similar. The processing of the input graph takes
about 2.5 seconds, in a serial region. The speed-up
calculation excludes the time spent reading the input
file.

We used two of the graphs explored in [1] for this
work. The first graph was the DTP graph, which
represents chemical compounds (vertices being
atoms, edges being bonds). The connected
components are of modest size (average 21), with
many similar chemical idioms being likely. The Air1

Figure 5. Sample Graph Data

 #components min max avg
 #vertices #edges #vertex

labels
#edge
labels

Air1 2,606 21 55 38
 101,088 98,482 6,171 51
DTP 2,080 1 110 21
 40,879 43,070 52 3

graph represents aviation safety information and has
many more found patterns (see Table 3 in [1]) than
DTP.

4.1 Results with DTP graph

We obtained a comprehensive set of results with
the DTP graph. High-level parallelism showed good
speed-ups for the frequency settings where there was
sufficient work to employ the number of processors.
For the highest tested frequency of 50, the best speed-
up was 22.27 on 30 processors. However, even for
that frequency, the marginal benefit of parallelism
was greatly reduced when going from 16 to 30P, as
the parallel efficiency dropped from 1.04 to 0.74.
The only experiment with a greater processor count
(60P) showed worse absolute performance. Only in
one case did low-level parallelism show any benefit
outside of measurement error, and typically it resulted
in significantly worse absolute performance. Because
of the poor performance of low-level parallelism, the
combination of high- and low-level parallelism was
also poor.

4.2 Results with Air1 Graph

 For the Air1 graph, we focused on high-level
parallelism, since that's what had shown benefit for
the DTP graph, and on lower frequency thresholds
and larger processor counts (up to 60P for all
frequencies), to push the limits of scaling. The results
were very similar to those for the DTP graph; namely
that scaling of the high-level algorithm was very good
to 8P but not as good at 30P, and the marginal benefit
of going to 60P was modest and in some cases
negative. The only trial with low-level parallelism
showed the best benefit from it for any case, with an
absolute speed-up of 2.13 on 60P.

Figure 6. VSiGraM Timings and Scaling for Air1 Input Data
 Note: Serial times use neither high-level nor low-level parallelism.

Number of processors Graph Frequency Type of
Parallelism 1 2 4 8 16 30 60

 Time in seconds (speed-up)

High 358.27 54.92
(7.19)

 21.74
(22.30)

18.85
(27.29)

1750
Low 171.04

(2.13)

1500 High 771.82 112.30
(7.20)

 39.40
(22.89)

33.99
(27.30)

1250 High 1503.49 209.08
(7.37)

 67.54
(24.31)

56.56
(29.58)

air1

1000 High 3909.95 490.38
(8.06)

 155.33
(26.13)

158.14
(25.65)

4.3 Discussion of Results.

We chose the frequency thresholds to be in the
boundary region where, for a given number of
processors, parallel overhead would be a significant
issue, as we wanted to avoid the "easy" cases where
the granularity of parallelism would make
parallelization clearly efficient. We were not able to
measure any cases where the granularity of parallel
operations were small enough that the dispatching
overhead was significant. For the DTP graph, e.g.,
[1] shows times for runs down to frequencies of 20
and 10, with run-times nearly 10X those of the
smallest frequency shown here (50). As the
frequency threshold drops and run-time grows, we
expected the use of more processors to be clearly
advantageous. In practice, the experimental results
show this to be true of high-level parallelism, to a
point, and not true of low-level parallelism.

The high-level parallel construct clearly shows
considerable benefits, scaling even super-linearly in
some cases with more work. However, even given
the super-linear speed-ups to 16P, we did not see any
benefit at or above 30P. We were not able to isolate
the source of this lack of further speed-up. Several
causes are possible. We did not use any dplace or
cpuset commands, so placement of data within the
physical memory of the system could have been poor.
Data communication within the shared memory could
have been intensive enough that it precludes further
speedup; this seems unlikely as the large shared
arrays are read-only, so would be cached in each
processor. There may be scaling limitations in the
underlying run-time system, though it would seem
they would have to be taskq/task specific, as
other OpenMP programs exhibit scaling above 30P
on the same system.

The low-level parallel construct, by contrast, in
only two cases provides any benefit outside the
measurement error of the timings, and at such
prohibitive cost (2X speed-up when running on 30
processors) as to eliminate its practical use. Indeed it
proves a detriment to performance, compared to the
serial time, in most of the cases. We investigated this
in some detail. The barrier in the middle of the low-
level parallel section might appear to be an obvious
source of likely inefficiency, but the output created by
the -openmp_profile option showed minimal
time waiting for barriers. We eliminated parallel loop
overhead as the inhibitor by chunking the parallel
loop to provide 100X more work per iteration, with
an inner serial loop doing each map expansion. This
change made no difference. Examination of the
parallel and master reduction portions of the code
showed that on 1P, the parallel work was taking
430ms and the merge was taking 1ms. On 3P, the
parallel work took 450ms (wall-clock) and the merge
consumed 150ms. Thus it was obvious why no
speed-up was being seen. Each individual call to
register_extension (which is called from
expand_map and registers a candidate extension as
being possible) was taking longer in the 3P case than

the 1P case. Further, it was the parallel regions for
subgraphs with large vertex maps that were the source
of the poor scaling, due to highly variable (10-100X)
times for registering extensions. The routines called
by register_extension that were showing the
high variability had little in-line code and the lengthy
delays were due to lengthy delays in calls to
malloc. These delays were not predictable; i.e., the
set of slow iterations was different from run to run.
We used mallopt to cause malloc to allocate
memory initially and retain it in user space, to avoid
costly kernel calls, but this did not effect the timing.
This will need to be understood more fully to resolve
the lack of low-level scaling.

5 Conclusions

This work illustrates that, for a graph algorithm with
unbalanced parallelism that cannot be predicted in
advance, OpenMP and especially the new
taskq/task constructs provide an effective way of
implementing parallelism, both from the points of
view of the development work necessary and the
resulting scalability. The ability to parallelize the
code with minimal changes (~20 directives in a
~15,000 line program) make this a practical approach
for researchers wanting one (but perhaps not two)
order of magnitude performance improvement with a
modest investment of development time. While the
code was structured to exploit both high- and low-
level parallelism, the low-level parallelism did not
exhibit any benefit for the graphs used, for reasons
that are poorly understood.

Acknowledgments. This work would have been
impossible without the prior work by Michihiro
Kuramochi and consultations with him. Even though
the UPC port was ultimately not successful, extended
discussions with Parry Husbands and Bill Carlson
allowed that work to proceed as far as it did. The
OpenMP work was greatly accelerated by discussions
with John Baron of SGI and Jay Hoeflinger and Grant
Haab of Intel, especially concerning the use of the
taskq/task constructs. The comments of the
reviewers improved the paper considerably.

References

1. M. Kuramochi and G. Karypis. Finding frequent
patterns in a large sparse graph. In SIAM
International Conference on Data Mining (SDM-
04), 2004.
http://citeseer.ist.psu.edu/article/kuramochi04findi
ng.html

2. MPI Forum, MPI2: A message-passing interface
standard. International Journal of Supercomputer
Applications and High Performance Computing
1998; 12:1--299.

3. Devine, K. D., Hendrickson, B. A., Boman, E., St.
John, M., and Vaughan, C.: Zoltan: A Dynamic
Load Balancing Library for Parallel Applications;
User's Guide. Sandia National Laboratories,
Albuquerque, NM, (1999). Tech. Report SAND99-
1377. Open-source software distributed at
http://www.cs.sandia.gov/Zoltan.

4. W.W. Carlson, J.M. Draper, D.E. Culler, K.
Yelick, E. Brooks, and K. Warren. Introduction to
UPC and Language Specification, March 1999.
Available at http://www.gwu.edu/~upc/pubs.html.

5. Intel C++ Compiler User's Guide (2005),
www.intel.com/cd/software/products/asmo-
na/eng/compilers/219285.htm

6. Pixar, B. Perens. "Electric fence, malloc
debugger." Free software foundation, 1995.
http://perens.com/FreeSoftware/ElectricFence/.

7. OpenMP Application Program Interface, version
2.5 (May 2005).
http://www.openmp.org/drupal/mp-
documents/spec25.pdf.

