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Abstract 
Graphs capture the essential elements of many 
problems broadly defined as searching or 
categorizing.  With the rapid increase of data 
volumes from sensors, many application disciplines 
need to process larger graphs quickly.  This paper 
presents the results of parallelizing with OpenMP an 
algorithm that finds, in a single large labeled 
undirected sparse graph, the connected subgraphs 
with a given minimum number of edge-disjoint 
embeddings.  Parallelism is exploited at two levels in 
the algorithm.  The lack of a priori knowledge of the 
extent of parallelism for a given input required use of 
a dynamic, multi-level approach based on the 
proposed OpenMP taskq/task extensions.  The 
parallel implementation required the addition of 21 
directives and about 50 accompanying lines of code, 
in an original code of about 15,000 lines.  
Experimental results show excellent speed-up to 30 
processors for the graphs used, with a best speed-up 
of 26.1 compared to the serial version.  The 
taskq/task constructs show promise for problems 
exhibiting unstructured parallelism. 
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1  Introduction 

The use of graphs to represent discrete data and the 
connections within the data is growing as researchers 
seek to solve a variety of problems in data mining, 
chemical compound classification, link analysis, and 
computational biology.  The size of these graphs is 
growing explosively, corresponding to the growth of 
the data volume from sensors (e.g., microscopes, 
mass spectrometers, and gene arrays).  Computational 
methods for these large graphs need to be fast for 
routine use, and thus one is naturally drawn to parallel 
extension of the existing serial methods. 

This work builds on Kuramochi and Karypis' 
VSiGraM algorithm [1], extending it to exploit 
parallelism both across candidate subgraphs, and 
within a candidate subgraph on the multiple 

embeddings in the large graph.  This approach allows 
exploitation of a large amount of the potential 
parallelism within the algorithm. However, the two 
levels of parallelism and the recursive nature of the 
algorithm do not map trivially to the existing parallel 
language methods.  After two aborted attempts with 
other parallel methods, we finally used the taskq 
and task extensions [5] to the OpenMP 2.5 [7] 
parallel  interface.  These constructs support 
parallelism at multiple  locations or levels within a 
program, with the run-time library directing 
processors to a single conceptual work queue.  The 
desired parallelism within the algorithm mapped 
naturally to these constructs.  We implemented this 
algorithm so that the parallelism between subgraphs 
(high level) and within a subgraph (low level) could 
be turned on or off independently, to measure the 
performance benefit of each.  The high-level 
parallelism consistently showed strong benefit, but 
the low-level parallelism showed only modest, and 
often no, benefit for the graphs we used, and indeed 
degraded performance as more processors were 
added.  Our experience with this algorithm and 
OpenMP showed that the taskq/task constructs  
are a promising means of effectively parallelizing this 
type of algorithm, both in terms of the time spent 
changing an existing serial code and in the 
performance benefit of parallelism. 

2   Problem Statement 

The problem considered here, as described in [1], is 
that of a graph G consisting of a set of vertices V and 
a set of edges E, with each vertex and edge having a 
(potentially non-unique) label.  A graph Gs is a 
subgraph of G if and only if Vs ⊆ V and Es ⊆ E.  Two 
graphs G1 and G2 are isomorphic if they are 
topologically identical to each other.  The problem of 
subgraph isomorphism between G1 and G2 is to find 
whether an isomorphism between G2 and and a 
subgraph of G1. Two embeddings of Gs are identical if 
they use the same set of edges of Gs, and they are 
called edge-disjoint if they do not have any edges of 
G in common.  This work focuses on finding 
subgraphs of a single large graph whose embeddings 
are edge-disjoint.  



The overlap graph of Gs is a graph obtained by 
creating a vertex for each non-identical embedding, in 
the set of all embeddings of Gs in G and allocating an 
edge for each pair of embeddings that are not edge-
disjoint.  Calculation of the set of edge-disjoint 
embeddings depends on calculating the maximal 
independent set of the overlap graph.  One input 
parameter to the algorithm is the minimum frequency 
of occurrence of a subgraph to consider.  Because of 
the potential computational complexity of the exact 
calculation of MIS, the vSiGraM program embodies 
three different algorithms for calculating MIS:  one 
heuristic and one exact algorithm for calculating the 
MIS and one exact algorithm for calculating an 
upper-bound on the MIS. 

3  Approach to Parallelization 

The original SiGraM work had different 
implementations for a depth-first or vertical version 
and a breadth-first or horizontal version.  With the 
inclusion of parallelism, the notion of "first" becomes 

imprecise, as does the distinction between depth-first 
and breadth-first, as the parallelism will typically be 
proceeding in both dimensions simultaneously.  This 
work was based on the vertical version of VSiGraM, 
as the recursive structure of that code expressed the 
potential parallelism well. 

Conceptually, the algorithm has several 
dimensions of parallelism that could be exploited.  
The algorithm (with slight modifications from 
Algorithm 5 from [1]) is shown in Figure 1.  
vSiGraM creates the size-1 subgraphs (each 
represented by F1) and then calls vSiGram-Extend 
with a subgraph, the whole graph, and the minimal 
frequency f.  vSiGraM-Extend calls itself recursively, 
and hence most of the time is spent there.  In 
vSiGraM-Extend, lines 2-3 creates all the size-i+1 
subgraphs (Ci+1) that contain Fi, then prunes the set for 
redundancy (choosing only those whose generating 
parent is the candidate subgraph) and minimal 
frequency.  All of those surviving subgraphs are then 
extended again recursively.

Figure 1.  Algorithm 5 from Kuramochi and Karypis [1]. 

vSiGraM (G, MIS_type, f)
1. F← ∅
2. F1 ← all frequent size-1 subgraphs in G
3. for each F1 in F1 do
4. M(F1) ← all embeddings of F1

5. for each F1 in F1 do
6. F← F ∪ vSiGraM-Extend(F1, G, f)
7. return F

vSiGraM-Extend(Fk, G , f)
1. F← ∅
2. for each embedding m in M(Fk) do
3. C k+1 ← C k+1 ∪ {all (k+1)-subgraphs of G containing m}
4. for each Ck+1 in C k+1 do
5. if Fk is not the generating parent of Ck+1 then
6. continue
7. compute Ck+1.freq from M(Ck+1)
8. if Ck+1.freq < f then
9. continue
10. F ← F ∪ vSiGraM-Extend(Ck+1, G, f)
11.return F

The high-level parallelism exploited is at the 
parallel loop of lines 5 and 6 of vSiGraM and the 
recursion step in line 10 in vSiGraM-Extend. At these 
points, each of the candidate size-i subgraphs 
represents a distinct set of vertices and edges, and its 
suitability for extension to size i+1 can be determined 
independently of the suitability of any other size-i 
subgraph.  I.e., it depends only on the input graph and 
the candidate subgraph itself, and in no way on the 
characteristics of other subgraphs.  Thus each of the 
size-i subgraphs can be extended in parallel.  This 
parallelism grows directly with the number of 
candidate subgraphs. 

The low-level parallelism exploited is lines 2 and 3 
of vSiGraM-Extend.  These lines find all the possible 
size-i+1 subgraphs that contain the size-i subgraph, 
storing the unique subgraphs that result with the count 
of occurrences.  This parallelism tends to grow as the 
size of the graph grows. 

3.1  Possible Parallel Languages 

The dominant parallel programming method in use 
today is MPI [2], but the characteristics of this 
problem are a poor match for it.  In general for large 



problems, each processor will want to traverse the 
original large graph as needed, and that graph will be 
big enough not to fit in the memory of a single node 
(processor plus memory) of the parallel system. 
Ideally the code could address directly into the large 
array, with the array being distributed across the 
memory of multiple nodes.  Also, the extent of 
parallelism is dynamic and typically highly 
imbalanced, necessitating a means of balancing the 
work across the processors.  While load-balancing 
abilities have been implemented for MPI in some 
packages (e.g., Zoltan [3]), they are not simple and 
straight-forward to implement in a modestly sized 
(~15,000 lines of C) research code.  One of the 
criteria for this work was that the changes for 
parallelism be minimally intrusive to the structure of 
the existing code. 

We tried to use Unified Parallel C (UPC) [4], a 
global-address-space extension to the C language 
intended for problems with fine-grained, dynamic 
parallelism.  After considerable time working to map 
the existing vSiGraM code onto the UPC constructs, 
we abandoned that approach.  The primary difficulties 
were in defining structures properly so that they could 
be allocated and addressed appropriately (private or 
shared) in different circumstances, in the context of 
an existing code that has many different structures 
defined with pointers to each other.  We wound up 
with myriad combinations, for instance with a flavor 
of struct A containing a pointer to a private struct B 
and a distinct flavor of struct A containing a pointer 
to a shared struct B.  Researchers more experienced 
with UPC may have succeeded where we did not. 

Next we used OpenMP.  OpenMP is rarely used in 
today's HPC clusters, in part because until recently 
the nodes in those clusters had just one or two 
processors in a cache-coherent domain (a near-
requirement for OpenMP implementation), and thus 
there was little opportunity for performance benefit.  
With the onset of multi-core processors, however, 
several manufacturers already offer inexpensive 
nodes with 4-8 cores, and one can reasonably expect 
those nodes to have 10s of cores in the near future.  
This makes OpenMP a reasonable choice for 
parallelism on the node.  A few manufacturers (SGI 
most extremely) offer large cache-coherent nodes that 
could be used for problems that don't fit on the typical 
small node. 

Our first OpenMP implementation exploited just 
high-level parallelism, using the parallel for 
construct.  We used the Electric Fence [6] library to 
find data erroneously typed as private or shared 
and quickly had a working code.  However, this code 
did not exhibit the expected level of speed-up, due to 
the dynamic nature of the parallelism and the static 
nature of allocation of processors to standard 
OpenMP parallel regions.  At the time of creation of a 
parallel region, the programmer must specify how 
many threads (processors) are to be used in the 
region, and those threads are dedicated to that region 
for the duration of the region.  In the recursive nature 
of vSiGraM, this meant that threads were allocated to 
the parallel region at depth i, and were unavailable to 

participate in the parallel regions at other depths.  A 
more dynamic means of allocation of threads and 
tasks was needed.  Also, we wanted to exploit the 
low-level parallelism, which was dynamic and also 
orthogonal to the high-level parallelism. 

The proposed taskq/task extensions to 
OpenMP have been implemented in the latest Intel 
C/C++ compiler [5].  They allow disparate locations 
in a program to add work to a single conceptual queue 
that is served by all the threads active in the program. 
Multiple queues can also be created, with the run-
time library scheduling threads dynamically among 
the queues.  This matches very well with the desired 
parallelism (recursive, multi-location) in vSiGraM.  A 
simple single-queue example of the use of 
taskq/task for a recursive subroutine is as 
follows: 
 
main() 
{ 
   int val; 
#pragma intel omp taskq 
   val = fib(12345); 
} 
 
fib(int n) 
{ 
   int ret[2]; 
   if (n>2) 
#pragma intel omp task 
      for(i=n-2; i<n; i++) {      
         ret[n-2-i] = fib(i); 
      } 
      return (ret[0] + ret[1]); 
   } else { 
      return 1; 
   } 
} 

The first pragma declares the task queue and the 
second pragma designates items to be placed on the 
queue and hence executed.  The taskq pragma is 
placed outside the recursive routine so that all the 
items will be added to a single queue. 

The second vSiGraM OpenMP implementation 
was based on taskq/task, with switches to allow 
the high-level and low-level parallelism to be enabled 
independently for measurement purposes.  
Implementation of the high-level parallelism was 
straight-forward, with a parallel region around the 
extension of the original size-1 subgraphs and a 
parallel construct around the recursive call to create 
size-i+1 subgraphs.  Key portions of the parallel code 
are presented in Figure 2. 

Implementation of the low-level parallelism 
required more thought.  This code expands the map of 
the current subgraph to identify all valid size-i+1 
extensions.  Those extensions could occur more than 
once, which the algorithm checks for before 
registering an extension in the extension set.  When 
run serially, this check is simple.  The code is 
 
for (i=0; i < vmap_sz(sg); i++) 
expand_map(sg, ct, ams, i,es,lg); 

 



When run in parallel, however, two processors may 
identify the new extension nearly simultaneously. 
These duplicate extensions which must be combined 
in the result extension set.  Thus after the parallel 
loop finds all the locally distinct extensions, a 
reduction step collapses them to all the globally 
distinct extensions.  Because of the semantics of the 
taskq/task constructs, where non-master threads 
are not guaranteed to execute the postamble of the 
task loop, an extra data structur, suggested by Grant 
Haab and colleagues from the Intel OpenMP 
development group, is used to store the local 
extension sets for all the non-master threads, and then 
the master does the reduction in the postamble. The 

code for the parallel version is in Figure 3.  This 
implementation of high- and low-level parallelism 
produced identical results as the serial algorithm for 
the number of frequent subgraphs of each size, the 
number of maps, the number of live edges, etc.   

The changes to use OpenMP included 12 OpenMP 
directives in the main algorithms.  (One of these 
directives and accompanying code changes was 
necessary to enable running with high- and low-level 
parallelism independently, which would probably not 
persist into a final implementation.)  Nine OpenMP 
directives were necessary in utility routines (memory 
allocation, mainly) to ensure proper 
private/shared definition and mutual exclusion. 

Figure 2.  Parallel Code for "High Level" Parallel Section 

// In a top-level routine, start all the initial subgraphs

#pragma intel omp parallel taskq shared(i,freq)  default(none)
for (i = 0; i < sg_set_size(freq); i++) {

#pragma intel omp task captureprivate(i)

{
SubGraph *sg = sg_set_at(freq, i);

expand_subgraph(sg, ct, lg, ls, o);

}
}

}

//  At the bottom of expand_subgraph, after all child subgraphs

//  have been identified, start them all.

#pragma intel omp taskq
for (ii=0; ii<sg_set_size(child); ii++) {

#pragma intel omp task captureprivate(ii)

{
SubGraph *csg = sg_set_at(child,ii);

expand_subgraph(csg, csg->ct, lg, ls, o);

}       // end-task
}

 One difficulty we did not resolve, but merely 
deferred, was that of expanding an array after it had 
been once allocated.  In a serial version, this is 
simple, as one can know which structures point to a 
given array and go update those structures to point to 
a newly allocated array containing the contents of the 
formerly allocated array.  Updating these pointers is, 

in general, not possible in a parallel situation.  We 
deferred this problem by making arrays substantially 
larger than they would have normally been, so we 
would rarely hit the array-overflow conditions, but we 
still hit them in some of the larger runs with more 
processors.



 

Figure 3.  Parallel Code for "Low Level" Parallel Section (some details omitted) 

#pragma omp parallel shared(nt, priv_es)
{

#pragma omp master
{

nt = omp_get_num_threads();   //#threads in par
priv_es = (ExtensionSet **)kmp_calloc(nt, sizeof(ExtensionSet *));

} 
#pragma omp barrier
#pragma intel omp taskq

{
for (i = 0; i < sg_vmap_size(sg); i++) {

#pragma intel omp task captureprivate(i)
{

int th = omp_get_thread_num();
if (priv_es[th] == NULL) {

priv_es[th] = exset_init(128);
}
expand_map(sg, ct, ams, i, priv_es[th], lg);

}
}

}
}

for (i=0; i < nt; i++) {
if (priv_es[i] != NULL) {

exset_merge(priv_es[i],es);
}

}
kmp_free(priv_es);

Figure 4.  VSiGraM Timings and Scaling for DTP Input Data 
                     Note:  Serial times use neither high-level nor low-level parallelism. 

Number of processors Graph Frequency Type of 
Parallelism 1 2 4 8 16 30 60

   Time in seconds (speed-up) 

High 31.94 17.01 
(2.03) 

14.76 
(2.40) 

13.89 
(2.58) 

14.00 
(2.56) 

13.97 
(2.57) 

 

Low 32.51 
(0.98) 

31.52 
(1.01) 

37.95 
(0.83) 

42.18 
(0.74) 

49.56 
(0.63) 

 500 

Both 17.52
(1.96) 

14.88
(2.37) 

15.80
(2.21) 

29.85 
(1.08) 

44.37 
(0.70) 

 

High 93.96 48.86 
(1.97) 

27.12 
(3.71) 

16.82 
(6.39) 

15.05 
(7.29) 

14.52 
(7.61) 

 

Low 94.36 
(1.00) 

92.18 
(1.02) 

112.17 
(0.83) 

133.40 
(0.70) 

116.31 
(0.80) 

 100 

Both 48.38
(1.99) 

27.27
(3.69) 

61.52
(1.55) 

315.94 
(0.29) 

281.83 
(0.33) 

 

High 282.15 142.02 
(2.00) 

62.73 
(4.64) 

34.44 
(8.76) 

19.40 
(16.56) 

15.06 
(22.27) 

15.80 
(21.03)

Low 283.19 
(1.00) 

293.6 
(0.96) 

400.55 
(0.70) 

262.82 
(1.07) 

197.27 
(1.44) 

 

dtp 

50 

Both 140.47
(2.03) 

81.18
(3.55) 

242.09
(1.17) 

513.39 
(0.55) 

581.04 
(0.48) 

 



 

4  Experimental Results 

The code was compiled with the Intel C++ compiler, 
version  9.0.030, with the -openmp_profile and  
-O3 flags.  The results below were obtained on an 
SGI Altix 4700 system populated with 32 1.6GHz 
Itanium2 dual-core "Montecito" sockets (64 cores) 
and 64GB of memory.  No special dplace or 
cpuset commands were used.  Attention was paid 
to scaling performance, and not to absolute per-
processor performance.  The runs all used the upper-
bound algorithm [1] for maximum independent set 
(MIS) calculation.  The times are all in seconds of 
wall-clock time, selected as the minimum of 4 runs 
except the serial runs, which are the minimum of 2 
runs. The minimums were chosen because the 
programs were run on quiet, but not strictly dedicated 
systems, so system effects could have degraded 
results.  In practice, the times of the multiple runs 
were similar.  The processing of the input graph takes 
about 2.5 seconds, in a serial region.  The speed-up 
calculation excludes the time spent reading the input 
file. 

We used two of the graphs explored in [1] for this 
work.  The first graph was the DTP graph, which 
represents chemical compounds (vertices being 
atoms, edges being bonds).  The connected 
components are of modest size (average 21), with 
many similar chemical idioms being likely.  The Air1 

Figure 5.  Sample Graph Data 

 #components min max avg 
 #vertices #edges #vertex 

labels 
#edge 
labels 

Air1 2,606 21 55 38 
 101,088 98,482 6,171 51 
DTP 2,080 1 110 21 
 40,879 43,070 52 3 

graph represents aviation safety information and has 
many more found patterns (see Table 3 in [1]) than 
DTP. 

4.1  Results with DTP graph 

We obtained a comprehensive set of results with 
the DTP graph.  High-level parallelism showed good 
speed-ups for the frequency settings where there was 
sufficient work to employ the number of processors.  
For the highest tested frequency of 50, the best speed-
up was 22.27 on 30 processors.  However, even for 
that frequency, the marginal benefit of parallelism 
was greatly reduced when going from 16 to 30P, as 
the parallel efficiency dropped from 1.04 to 0.74.  
The only experiment with a greater processor count 
(60P) showed worse absolute performance.  Only in 
one case did low-level parallelism show any benefit 
outside of measurement error, and typically it resulted 
in significantly worse absolute performance.  Because 
of the poor performance of low-level parallelism, the 
combination of high- and low-level parallelism was 
also poor.  

4.2  Results with Air1 Graph 

  For the Air1 graph, we focused on high-level 
parallelism, since that's what had shown benefit for 
the DTP graph, and on lower frequency thresholds 
and larger processor counts (up to 60P for all 
frequencies), to push the limits of scaling.  The results 
were very similar to those for the DTP graph;  namely 
that scaling of the high-level algorithm was very good 
to 8P but not as good at 30P, and the marginal benefit 
of going to 60P was modest and in some cases 
negative.  The only trial with low-level parallelism 
showed the best benefit from it for any case, with an 
absolute speed-up of 2.13 on 60P.

Figure 6.  VSiGraM Timings and Scaling for Air1 Input Data 
                      Note:  Serial times use neither high-level nor low-level parallelism. 

Number of processors Graph Frequency Type of 
Parallelism 1 2 4 8 16 30 60

   Time in seconds (speed-up) 

High 358.27  54.92 
(7.19) 

 21.74 
(22.30) 

18.85 
(27.29) 

1750 
Low   171.04

(2.13) 

1500 High 771.82 112.30 
(7.20) 

 39.40 
(22.89) 

33.99 
(27.30) 

1250 High 1503.49 209.08 
(7.37) 

 67.54 
(24.31) 

56.56 
(29.58) 

air1 

1000 High 3909.95 490.38
(8.06) 

 155.33 
(26.13) 

158.14
(25.65) 



4.3  Discussion of Results. 

We chose the frequency thresholds to be in the 
boundary region where, for a given number of 
processors, parallel overhead would be a significant 
issue, as we wanted to avoid the "easy" cases where 
the granularity of parallelism would make 
parallelization clearly efficient.  We were not able to 
measure any cases where the granularity of parallel 
operations were small enough that the dispatching 
overhead was significant.  For the DTP graph, e.g., 
[1] shows times for runs down to frequencies of 20 
and 10, with run-times nearly 10X those of the 
smallest frequency shown here (50).  As the 
frequency threshold drops and run-time grows, we 
expected the use of more processors to be clearly 
advantageous.  In practice, the experimental results 
show this to be true of high-level parallelism, to a 
point, and not true of low-level parallelism. 

The high-level parallel construct clearly shows 
considerable benefits, scaling even super-linearly in 
some cases with more work.  However, even given 
the super-linear speed-ups to 16P, we did not see any 
benefit at or above 30P.  We were not able to isolate 
the source of this lack of further speed-up.  Several 
causes are possible.  We did not use any dplace or 
cpuset commands, so placement of data within the 
physical memory of the system could have been poor.  
Data communication within the shared memory could 
have been intensive enough that it precludes further 
speedup;  this seems unlikely as the large shared 
arrays are read-only, so would be cached in each 
processor.  There may be scaling limitations in the 
underlying run-time system, though it would seem 
they would have to be taskq/task specific, as 
other OpenMP programs exhibit scaling above 30P 
on the same system. 

The low-level parallel construct, by contrast, in 
only two cases provides any benefit outside the 
measurement error of the timings, and at such 
prohibitive cost (2X speed-up when running on 30 
processors) as to eliminate its practical use.  Indeed it 
proves a detriment to performance, compared to the 
serial time, in most of the cases.  We investigated this 
in some detail.  The barrier in the middle of the low-
level parallel section might appear to be an obvious 
source of likely inefficiency, but the output created by 
the -openmp_profile option showed minimal 
time waiting for barriers. We eliminated parallel loop 
overhead as the inhibitor by chunking the parallel 
loop to provide 100X more work per iteration, with 
an inner serial loop doing each map expansion.  This 
change made no difference.  Examination of the 
parallel and master reduction portions of the code 
showed that on 1P, the parallel work was taking 
430ms and the merge was taking 1ms.  On 3P, the 
parallel work took 450ms (wall-clock) and the merge 
consumed 150ms.  Thus it was obvious why no 
speed-up was being seen.  Each individual call to 
register_extension (which is called from 
expand_map and registers a candidate extension as 
being possible) was taking longer in the 3P case than 

the 1P case.  Further, it was the parallel regions for 
subgraphs with large vertex maps that were the source 
of the poor scaling, due to highly variable (10-100X) 
times for registering extensions.  The routines called 
by register_extension that were showing the 
high variability had little in-line code and the lengthy 
delays were due to lengthy delays in calls to 
malloc.  These delays were not predictable; i.e., the 
set of slow iterations was different from run to run. 
We used mallopt to cause malloc to allocate 
memory initially and retain it in user space, to avoid 
costly kernel calls, but this did not effect the timing.  
This will need to be understood more fully to resolve 
the lack of low-level scaling. 

5  Conclusions 

This work illustrates that, for a graph algorithm with 
unbalanced parallelism that cannot be predicted in 
advance, OpenMP and especially the new 
taskq/task constructs provide an effective way of 
implementing parallelism, both from the points of 
view of the development work necessary and the 
resulting scalability.  The ability to parallelize the 
code with minimal changes (~20 directives in a 
~15,000 line program) make this a practical approach 
for researchers wanting one (but perhaps not two) 
order of magnitude performance improvement with a 
modest investment of development time.  While the 
code was structured to exploit both high- and low-
level parallelism, the low-level parallelism did not 
exhibit any benefit for the graphs used, for reasons 
that are poorly understood. 
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