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Pareto optimal pairwise sequence alignment
Kevin W DeRonne and George Karypis

Abstract—Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-
profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto
optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise
alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise
alignments. All possible sets of two, three and four profile scoring functions are used from a pool of eleven functions and applied to
588 pairs of proteins in the ce ref dataset. The performance of the best objective combinations on ce ref is also evaluated on an
independent set of 913 protein pairs extracted from the BAliBASE RV11 dataset. Our dynamic-programming-based heuristic approach
produces approximated Pareto optimal frontiers of pairwise alignments which contain comparable alignments to those on the exact
frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain
alignments whose quality are better than the alignments obtained by single objectives. However, the task of identifying a single high-
quality alignment among those in the Pareto frontier remains challenging.

Index Terms—Pareto, pairwise sequence alignment, optimization
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1 INTRODUCTION

P ROFILE-BASED sequence alignments have long been
the workhorse for establishing relations between

protein sequences, and are used extensively for studying
the properties of uncharacterized proteins. An accurate
alignment to a template sequence can help in the infer-
ence of protein structure and function. Key to alignment
methods is the scheme used to score aligned positions.
Various approaches have been developed whose individ-
ual performance has been extensively compared [1]–[3].
The focus of this paper is on investigating the extent to
which improvements in pairwise protein sequence align-
ments can be attained by combining different profile-
profile scoring functions. Though such scoring functions
can be easily combined in an ad hoc fashion by using
a linear combination to derive a “meta” profile-profile
scoring function, this study investigates treating the
way in which these functions are combined as a multi-
objective optimization problem based on Pareto opti-
mality. When optimizing multiple objectives, a Pareto
optimal solution is one in which improving the value
of any objective requires the degradation of another.

This paper presents a multi-objective pairwise se-
quence alignment algorithm using the affine gap model.
We show that the problem exhibits optimal substructure,
and develop a dynamic programming algorithm to find
the Pareto optimal frontier. We present optimizations
to the overall approach which limit the computational
requirements, along with several approaches for select-
ing a high-quality solution from the Pareto frontier.
Results from a comprehensive study involving 588 pairs
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of proteins, and all possible combinations of size two,
three and four objectives from a pool of eleven are
presented. The best performing schemes from this study
are also evaluated on the challenging RV11 dataset from
BAliBASE [4].

To the best of our knowledge, this paper is the largest
study of Pareto optimal alignments both in terms of
the number of sequences and the number of objectives
involved. We present a novel method to approximate a
Pareto frontier, and compare it with an existing evolu-
tionary method. For four objectives, on average our op-
timizations can produce comparable solutions in 1/58th
the time required to generate the exact frontier.

Comparing alignments selected from a Pareto optimal
frontier with those produced by a single objective or a
linear combination of objectives (our baseline), we find
that Pareto frontiers frequently contain alignments of
higher quality. However, identifying the best alignment
on a Pareto frontier is quite challenging, and none of
the selection schemes presented here can consistently
pick an alignment of higher quality than the baseline.
In contrast, for the same sets of objectives, an evolu-
tionary algorithm only rarely generates higher quality
alignments than the baseline.

The remainder of this paper is organized as follows. In
section 2 we present preliminary information on which
the rest of the paper depends. In section 3 we cover pre-
viously published related work. Section 4 introduces the
notion of Pareto optimal sequence alignment, proving
that the problem has the optimal substructure property.
Section 5 explains our experimental methodology, while
section 6 presents our results. In section 7 we present a
brief discussion and conclude.
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2 PRELIMINARY MATERIAL

2.1 Notation and Definitions
Characters in script (e.g., V, E will be used to denote sets,
characters with an arrow (e.g., ~x) will be used to denote
vectors, and boldface characters (e.g., m) will be used
to denote multi-dimensional matrices. We will use the
letters A and B to denote proteins represented by strings
of amino acid residues. The ith residue of protein A will
be denoted by ai. A subsequence of protein A starting
at residue ai and ending at residue aj will be denoted
by A(i : j). An amino acid scoring matrix m is a two
dimensional matrix with amino acids as both row and
column labels. The size of m will be |Σ|×|Σ|, where Σ is
the amino acid alphabet with the addition of a space
character, and |Σ| equals the number of characters in
that alphabet. Each mi,j entry in this matrix represents
the score for substituting amino acid ai with bj . Such
a matrix is referred to as a position-to-position scoring
matrix. A global alignment between two strings A and
B is obtained by inserting enough spaces into either or
both strings such that the resulting strings A′ and B′

are of equal length l; and then establishing a one-to-one
mapping between a′i and b′i for {i = 1 . . . l}. When A′ and
B′ are strings of amino acids, a protein sequence align-
ment is computed. Spaces may not be aligned against
one another, and any maximal consecutive run of spaces
constitutes a gap. Under an affine gap model, the score
for a global protein sequence alignment of length l is
given by

∑l
i=1ma′

i
,b′

i
−ng × go−ns× ge, where go is the

cost associated with a gap, ng is the number of gaps,
ge is the cost associated with a space, and ns is the
number of spaces. Collectively, go and ge are referred
to as gap penalties. As the cost associated with spaces
is determined outside of m, the scores for mapping
any amino acid to a space are set to zero. The optimal
sequence alignment problem under the affine gap model
is that of finding the alignment that maximizes the
alignment score. The alignment scoring function is the
objective function of this optimization problem, which is
parameterized on go, ge and m.

2.2 Efficient Global Sequence Alignment
Given two protein sequences A and B, the global se-
quence alignment problem under the affine gap model
can be solved using dynamic programming in O(n1n2)
time, where n1 and n2 are the lengths of A and B [5].
The recurrence relations defining the optimal value of an
alignment with affine gap weights are

Fi,j = max(Fi−1,j − ge, Vi−1,j − go− ge),
Ei,j = max(Ei,j−1 − ge, Vi,j−1 − go− ge),
Gi,j = max(Vi−1,j−1 +mi−1,j−1, Fi,j , Ei,j),

Vi,j = max(Ei,j , Fi,j , Gi,j), (1)

where Fi,j , Ei,j , Gi,j and Vi,j are the the scores of the
optimal alignment of the ith prefix of A and the jth
prefix of B, without constraint for Vi,j , but under the

constraint that i is aligned against a gap for Fi,j , j is
aligned against a gap for Ei,j , and i is aligned against j
for Gi,j . (The reader is directed to [6] for a more detailed
discussion.)

2.3 Pareto Optimality
Optimizing the value of a single function entails finding
either a minimum or maximum value over the range
of the function. When optimizing multiple functions
simultaneously, one must take into account the values for
all of the functions. Consider a set of feasible solutions
{s1, . . . , sn} to an optimization problem, and let f1 and
f2 be two objective functions. A solution si dominates
another solution sj if f1(si) ≥ f1(sj) and f2(si) > f2(sj),
or if f1(si) > f1(sj) and f2(si) ≥ f2(sj). If f1(si) ≥ f1(sj),
and f2(si) ≤ f2(sj) or f1(si) ≤ f1(sj), and f2(si) ≥
f2(sj), then neither set dominates the other. We will
use the notation f1 � f2 to indicate that f1 dominates
f2. Over all feasible solutions optimizing f1 and f2, we
can construct a set of values such that no pair strictly
dominates another pair in that set. This set is known as
the Pareto frontier, and the points are referred to as being
Pareto optimal. With respect to optimizing f1 and f2, each
point in this set is considered equivalent to all the other
points, and no other points need to be considered when
trying to optimize the functions involved.

3 RELATED RESEARCH

There has been a fairly limited amount of work done
on multi-objective sequence alignment, with notable ex-
ceptions occurring within the context of RNA secondary
structure prediction [7], [8], multiple sequence align-
ment [9], [10] and treating gap penalties as an objective
to be optimized [11]–[13]. In terms of the methods
used to perform multi-objective alignments, the work
done with RNA and multiple sequence alignment has
relied upon evolutionary algorithms, while the work
done with gap penalties as an objective has used dy-
namic programming. Evolutionary algorithms attempt
to optimize an objective function by mimicking the
process of natural selection. A considerable amount of
effort has been devoted to applying these algorithms
to multi-objective optimization problems [14]–[18], and
also to perform sequence alignments using a single
objective [19]–[22] or multiple objectives [7]–[10], [23].
An evolutionary algorithm consists of three primary
parts: an initial population of solutions, a set of genetic
operators which modify those solutions, and an objec-
tive function to assess the quality (or fitness) of those
solutions. By applying the genetic operators to the initial
population, new solutions are generated and fitness is
determined. Then a new population is selected from the
new solutions, the previous solutions, or a combination
of the two. This process is repeated until some pre-
determined stopping criteria are met. For the single
objective alignment applications, the fitness assessment
is straightforward, but for multiple objectives the process
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is more complicated. Two approaches for this assessment
are random tournaments between solutions in which
one solution “wins” and is considered to have higher
fitness [10] and using dominance-rank assignment [7]–
[9]. Dominance-rank assignment consists of organizing
a set of points into ordered Pareto optimal frontiers.
Points on the rank one frontier are not dominated by any
points. Each point on the rank two frontier is dominated
by some point on the rank one frontier, and so on,
with all points on the rank r frontier being dominated
by some point on each frontier with rank < r. As
ranking solutions is computationally expensive, several
algorithms for this have been reported [24]–[26].

Previous dynamic programming-based approaches
have focused on treating gap penalties, rather than
position-to-position scores, as objective functions. In
parametric sequence alignment [12], the space defined
by the gap penalties is partitioned such that the resulting
regions are as large as possible, and that one alignment
is optimal for each region. Given a set of sequences
and a range of values for gap penalties, [12] finds all
optimal alignments within that range. In an attempt to
do away with gap penalties entirely, [11] and [13] use as
their objective functions counts of spaces and matches
(positions in an alignment where both sequences have
the same symbol). These algorithms attempt to maximize
the number of matches while minimizing the number of
spaces in the alignment.

4 PARETO OPTIMAL SEQUENCE ALIGNMENT

This paper focuses on generating optimal multi-objective
sequence alignments; specifically alignments whose
scores for each objective correspond to points on a Pareto
frontier. We refer to such alignments as Pareto optimal
alignments. Formally, the Pareto optimal alignment prob-
lem is defined as follows:

Definition. Given a pair of sequences A and B,
and a set of k alignment scoring functions (objectives)
{f1, . . . , fk}, the Pareto optimal alignment problem is
that of generating the set of alignments that constitute
the complete Pareto frontier.

This problem has the property of optimal substructure,
which is defined as follows:

Lemma. Given an alignment (A′, B′) of sequences A
and B on the Pareto frontier, and a pair of indices i, j
with i < j such that i and j are not cutting through a
gap, then the alignment (A′[i : j], B′[i : j]) is also an
alignment on the Pareto frontier for the substrings of A
and B in A′[i : j] and B′[i : j].

The correctness of this lemma can be shown by con-
tradiction. Let A′′ and B′′ be the strings of A and B,
respectively, that fall within the (A′[i : j], B′[i : j])
portion of the alignment. Assume that (A′[i : j], B′[i : j])
is not on the Pareto frontier of A′′ and B′′. This means
that there is another alignment of A′′ and B′′, call it

(A′′′, B′′′) whose scores dominate (A′[i : j], B′[i : j]).
Consider now the alignment of length e of A and B
that is obtained by replacing (A′[i : j], B′[i : j]) in
(A′, B′) with (A′′′, B′′′). Now let (l, c, r) be the multi-
objective vector scores of the (A′[1 : i − 1], B′[1 : i − 1]),
(A′[i : j], B′[i : j]) and (A′[j + 1 : e], B′[j + 1 : e]) parts of
the alignment and c′ be the multi-objective score vector
of the (A′′′, B′′′) alignment. Note that l + c + r is the
multi-objective score of (A′, B′) and l + c′ + r is the
multi-objective score of the new alignment. Since c′ � c,
then l + c′ + r � l + c + r. Hence the new alignment
dominates (A′, B′); This is a contradiction, as (A′, B′) is
an alignment in the Pareto frontier of A and B. Thus,
(A′[i : j], B′[i : j]) must belong to the Pareto frontier of
global alignments for A′′ and B′′.

The optimal substructure property of the Pareto opti-
mal alignment problem allows us to develop a dynamic
programming algorithm for solving it. The set of recur-
rence relations associated with this algorithm are similar
in nature to those of Equation 1, but these need to be
extended to deal with the multiple alignments that exist
on the Pareto frontier.

In this extended setting, each entry in the V , F , G and
E matrices must store a set of Pareto optimal alignments
for the ith and jth prefixes of the two sequences. To
represent the change from matrices containing values
to matrices containing sets, we replace V, F,G and E
with V,F ,G and E , respectively. Additionally, instead
of single values for go and ge we now have objective-
specific gap penalties, so we replace go and ge with the
vectors ~go and ~ge. Each entry in ~go and ~ge contains a
gap penalty for a specific objective. Finally, we have
a separate position-to-position scoring matrix for each
objective. To represent this change, we replace m with
m. The m parameter is a three-dimensional matrix with
amino acids as labels for the first two dimensions, and
objectives as labels for the third. For k objectives, the
size of m will be |Σ| × |Σ| × k, where Σ is the amino
acid alphabet with the addition of a space character,
and |Σ| equals the number of characters in that alphabet.
An entry ~mai,bj constitutes a vector of k scores, one for
substituting amino acid ai with bj under each of the k
objectives.

For each pair i, j in V,F ,G and E , we have a set
of partial alignments (solutions) from the beginning of
each sequence to i, j, based on applying the original
recurrence relations to each objective using the ~go, ~ge and
m scoring parameters. These solution sets will consist of
vectors of Pareto optimal objective scores resulting from
combinations of Pareto frontiers at previous positions in
the alignment. For example, Fi,j will consist of combin-
ing solutions on the frontiers stored at Fi−1,j and Vi−1,j .
However, when taken together these solutions may not
all be Pareto optimal, so we eliminate dominated so-
lutions from the set for i, j and store only the Pareto
frontier. This operation, PF, replaces the max function in
the original recurrence relations. Given a set of solutions,
the PF operator generates a subset of solutions that
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comprise a Pareto optimal frontier. Additionally, we
define an operator {} which adds or subtracts a given
vector ~x from each member in a set of vectors Y :

{Y − ~x} → ∀~y ∈ Y : ~y − ~x.

The recurrence relations for Pareto optimal sequence
alignment, then, are

Fi,j = PF({Fi−1,j − ~ge} ∪ {Vi−1,j − ~go− ~ge}),
Ei,j = PF({Ei,j−1 − ~ge} ∪ {Vi,j−1 − ~go− ~ge}),
Gi,j = PF({Vi−1,j−1 + ~mi−1,j−1} ∪ Fi,j ∪ Ei,j}),
Vi,j = PF(Ei,j ∪ Fi,j ∪ Gi,j), (2)

where Fi,j , Ei,j , Gi,j and Vi,j are the sets of scores for
the Pareto optimal alignments between the ith prefix
of A and the jth prefix of B, without constraint for
Vi,j , but under the constraint that i is aligned against
a gap for alignments in Fi,j , j is aligned against a gap
for alignments in Ei,j , and i is aligned against j for
alignments in Gi,j .

4.1 Elimination of Dominated Solutions
Determining which solutions are dominated and which
should be kept (i.e., performing the PF operation) can
be computationally expensive. A simple approach to
finding a Pareto frontier from a set of solutions steps
through the list of possible values, eliminating any
solution dominated by another solution. This requires
O(kn2) time based on the total number of solutions n
and number of objectives k. In the next two sections,
we describe two techniques for eliminating dominated
solutions. The first of these techniques uses multi-key
sorting and the second uses a tree structure.

4.1.1 Sorting-based Elimination
Our algorithm for eliminating dominated solutions treats
the case of two objectives differently than when there
are more than two. For two objectives, our algorithm
proceeds as follows: The solutions are sorted in decreas-
ing order based on the first objective (call this set S1),
and in increasing order based on the second objective
(call this set S2). The first solution in S1 (call it s11 ) is
saved, and S2 is scanned until reaching s11 . All solutions
seen in S2 before s11 are dominated by s11 and can be
eliminated. The process is repeated for the next solution
in S1 until all solutions in S1 have been examined. As
it is dominated by the time required for sorting, this
approach has a computational complexity of O(n log n).

When there are three or more objectives, we proceed
as follows. Using a multi-key sort, a list of solutions
is sorted by the first objective function, then within
equivalent values of the first objective by the second
objective function, and so on for all functions. The first
solution in this list is definitely on the frontier so it is
added to the frontier set. Then the second solution in
the list is compared with the first. If the first solution
dominates the second, the second solution is discarded.

Otherwise, the second solution is added to the frontier
set. Continuing down the list, each solution is compared
with the entire frontier yet seen, until all solutions
have been examined. The complexity of this technique
depends on the size of the frontier in question. If the
number of solutions on the frontier is relatively small,
the complexity is dominated by the sorting portion:
O(kn log(n)) where n is the number of solutions. If the
number of solutions on the frontier is nearly the same
as the initial number of solutions, then the complexity is
O(n2). We refer to this technique as the Sort-all method.

In the context of a dynamic programming alignment,
we can greatly increase the efficiency of the sorting-
based algorithm by leveraging the structure of the prob-
lem. The inputs to the elimination algorithm consist
of two or three internally optimal Pareto frontiers of
solutions (Equation 2). For example, computing the set
Fi,j involves combining frontiers Fi−1,j and Vi−1,j , af-
ter computing {Vi−1,j − ~go}. Adding or subtracting a
constant from all values on a Pareto optimal frontier
results in another Pareto optimal frontier, shifting the
original points but preserving their relative positions.
By definition, no point within a Pareto optimal set can
dominate another, and Fi−1,j and {Vi−1,j− ~go} are Pareto
optimal sets. Thus, when combining these sets, solutions
within a set need not be compared with each other. For
t frontiers containing n solutions, in the average case,
this reduces the cost of eliminating dominated solutions
by O(n2/t). We refer to this technique as the Merge-front
method.

In an attempt to further decrease the required com-
putational time, we examine eliminating solutions from
consideration based on the structure of the dynamic
programming matrices. When generating a set of solu-
tions, two input solutions may have the same source
but arrive via different routes. For example, consider a
solution ~s in the set Vi−1,j−1. This solution can appear
in Vi,j via three routes: directly from Vi−1,j−1, through
Fi−1,j , and through Ei,j−1. In the first route, ~s will
have ~mi−1,j−1 added to its scores. In either of the two
remaining routes, ~s will have − ~go− ~ge added to its scores
before being stored in the intermediate set, then − ~ge
added to its scores to reach Vi,j . Note that ~s might be
eliminated before this point if it is not Pareto optimal
for the intermediate set. If ~s does reach Vi,j it will have
scores of ~s + ~mi−1,j−1 or ~s − ( ~go + 2 ~ge). Given this,
if ~mi−1,j−1 ≥ −( ~go + 2 ~ge) then we can eliminate all
solutions arriving from the latter route without com-
paring them to anything. (The third route is analogous
to the second in that it results in the same scores, but
passes through Ei,j−1 instead of Fi−1,j .) We refer to the
technique using this optimization as the Merge-front-A
method.

Another optimization can be made when either E or
F is the sole contributor to a set in V . For example,
when creating the set for Vi,j−1, if only solutions from
Ei,j−1 are used then when constructing Ei,j , anything
from Vi,j−1 can be safely ignored. To see this, recall
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that Ei,j = PF({Ei,j−1 − ~ge} ∪ {Vi,j−1 − ~go − ~ge}), so if
Ei,j−1 = Vi,j−1, no element of {Vi,j−1− ~go} will dominate
Ei,j−1. We refer to the technique using this optimization
as the Merge-front-B method.

4.1.2 Dominance Trees
The Dominance tree method described in [25] is also
used to identify dominated solutions. This technique
eliminates redundant comparisons by maintaining pre-
viously computed dominance relationships in a tree
structure. Nodes at a given level of the tree dominate
all nodes on levels below them, but do not dominate
each other. After constructing a dominance tree, we
eliminate anything found below the first level of the tree.
This is the same method used to rank solutions in the
evolutionary algorithm described in [7] and Section 5.6.2.

4.2 Frontier Size Reduction Schemes
The number of solutions produced in the course of
constructing a Pareto optimal frontier of alignments
can be quite large. At each entry for V , E , F , and G
from Equation 2, the entire frontier needs to be calculated
and persisted, which leads to severe computational and
storage requirements. In order to keep the problem com-
putationally tractable, we reduce the number of Pareto
optimal solutions maintained for each (i, j) sub-problem.
Note that we only perform this reduction after domi-
nated solutions have been eliminated by the methods
described above, and we have generated a minimum
number of solutions (arbitrarily set to 100). We call this
process coarsening the Pareto frontier.

The goal of coarsening is to eliminate as many so-
lutions as possible while preserving the diversity of
the solutions on a Pareto frontier. Put another way, we
would like to eliminate only those solutions which are
very similar to some solution that is kept. This improves
the chances that the Pareto frontier for the complete
sequences will contain high-quality alignments. One
simple way of achieving this is by randomly selecting
a percentage cp of solutions to keep, which should on
average select a diverse set. We refer to this technique
as the Sample method. Varying cp controls how many
solutions the Sample method will keep (and thus how
many it will eliminate), and is referred to as its coarsening
parameter.

Randomly sampling the frontier risks keeping multi-
ple solutions which are very similar, so we designed an
algorithm which lays a grid over a normalized space of
solutions (see Section 4.3.1), and keeps at most one so-
lution from each cell in the grid. The grid is constructed
as follows. The possible values for each objective get
divided into a fixed number of cells c, so given k
objectives there will be ck possible cells, though not all of
them need to be occupied. The width of the cells along an
objective v is calculated as (maxv −minv)/c where minv

is the minimum value seen on the frontier for objective
v, and maxv is the maximum value seen on the frontier

for objective v. This means that for a given cell, the size
along one objective can be very small while the size
along another objective can be quite large. We refer to
this technique as the Cell method, with c as its coarsening
parameter.

If the solutions selected using the Cell method lie
close to the borders of their cells, the diversity of the
resulting set can be compromised. To address this is-
sue, we use another method which visits the frontier
solutions in arbitrary order, eliminating any solutions
within a specified Euclidean distance cd of the solution
in question, then proceeding to the next solution not
previously eliminated and repeating the process. We
refer to this technique as the Centroid method, with cd
as its coarsening parameter.

4.3 Solution Selection
Having generated a Pareto optimal frontier consisting of
alignments between a pair of sequences, the problem be-
comes one of choosing the best possible alignment from
the set. We examine three methods for accomplishing
this, called the Unit-space method, the Unit-z method,
and the Objective Performance Weighted method. Sev-
eral variations on these techniques were also tested, but
with no significant improvement in performance.

4.3.1 Unit-space Selection Method
Taking the maximum values seen for each objective as
a single point gives a hypothetical upper-bound for
a solution within the context of a pair of sequences.
Assuming all objectives are of equal quality, the best
solution on the frontier will be the one with the most
similar objective scores to this point. The Unit-space se-
lection technique chooses the alignment with the small-
est Euclidean distance to this point. However, before
a meaningful distance can be calculated, all objective
scores must be normalized to be in the same range. To
achieve this, we create a unit-space normalization of a
Pareto frontier as follows. First, if the minimum value
seen for objective v (minv) is negative, we translate all
points into the first quadrant by adding −minv to each
score. Second, we divide each value xv for objective v
by maxv , the maximum value seen for objective v scaled
by −mink, i.e., xv/(maxv −minv). This scales all values
to be in the range [0, 1].

4.3.2 Unit-z Selection Method
Given a distribution of different alignments for a pair of
proteins, most of the alignments will be of poor quality.
Thus, an alignment which stands out from the back-
ground should be a good alignment. A z-score for a point
measures how different that point is from a background
distribution. It is calculated by subtracting the mean and
dividing by the standard deviation for the distribution.
By repeatedly shuffling a pair of sequences and align-
ing the results, we generate a set of objective scores
for sequences with the same composition as our input
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TABLE 1
Notation used in profile scoring function definitions.

Symbol Description Definition
x • y Dot product of x and y

∑
a
xaya

Avg(x, y) Averaged vector (xa + ya)/2
DKL(x, y) Kullback-Leibler

∑
a
xa log2 xa/ya

divergence
HS(x, y) Symmetrized entropy (DKL(x, y) +DKL(y, x))/2
DJS(x, y) Jensen-Shannon divergence (DKL(x,Avg(x, y)) +DKL(y,Avg(x, y)))/2
< x > Mean of x

∑
a
xa/|x|

R(x, y) Pearson correlation (
∑

a
xa− < x > ×

∑
a
ya− < y >)/

√
[
∑

a
(x2a− < x >2)×

∑
a
(y2a− < y >2)]

σa(x) Rank of xa in vector x σ(x) = 1 if xa is smallest to σa(x) = |x| if xa is largest;
ties defined so that

∑
a
σa(x) remains constant.

sequences. These scores then serve as the background
distribution used to calculate z-scores for all points on
the Pareto frontier, which are used in place of the original
objective scores. For the Unit-z selection method, we
take the maximum z-score seen for each objective and
combine them to form an upper bound. The solution
with objective scores closest to this hypothetical point
(in terms of Euclidean distance) is used as the Unit-z
selection.

4.3.3 Objective Performance Weighted Method
Both the Unit-z and Unit-space selection methods rely on
the assumption that all objectives are of equal quality. In
practice this is generally not the case, so to overcome
this limitation we assign different weights to each ob-
jective, in an attempt to give more emphasis to better
objectives. These weights are set to the average match
score (see Section 5.4) over all proteins in the ce ref [27]
dataset, then normalized so that they sum to one. The
Objective Performance Weighted Method chooses a solution
as follows. If xv is the normalized value of objective v,
wxv

is the weight for objective v, and k is the number of
objectives, then we choose the solution that minimizes√∑

k wxv
(1− xv)2. Note that when ∀wxv

: wxv
= 1, this

is equivalent to the Unit-space method.

5 EXPERIMENTAL METHODOLOGY
5.1 Data
To test the effectiveness of various objective combina-
tions for Pareto optimal sequence alignments, we use the
ce ref set of proteins [27]. This dataset consists of 588
pairs of proteins having high structural similarity but
low sequence identity (≤ 30%). However, the supplied
alignments are local alignments, and lack a reference
point in the global sequences. As such, we cannot di-
rectly use them for a meaningful evaluation, so we con-
struct new structural alignments with MUSTANG [28]
and use these as our gold standard. (Note that this
also makes our results not directly comparable to [3].)
Comparing the ce ref alignments with our MUSTANG-
based alignments, we see that over 81% of the amino
acid pairs in the local alignments appear in the global
alignments.

To further explore the relative performance between
single objectives, linear combinations of objectives, com-
binations of objectives using the evolutionary algorithm
and Pareto optimal combinations, we apply these meth-
ods to the RV11 dataset from BAliBASE [4]. RV11 is one
of the most informative datasets [29] in BAliBASE. This
dataset contains 38 multiple sequence alignments, each
containing seven or more highly divergent sequences
(<20% sequence identity). We exclude one of these
multiple sequence alignments, following [30]. From the
remaining 37 multiple sequence alignments we extract
921 pairwise alignments. Eight of these pairwise align-
ments are between protein pairs which are also aligned
in the ce ref set, so we exclude these to create an entirely
independent set of 913 pairwise alignments.

5.2 Profile Construction
Many objective functions require profiles as input, and
these are generated using PSI-BLAST version 2.2.5 with
the options -h 5 -e 0.1 (these are the same as specified
in [3]). PSI-BLAST generates a profile for a query se-
quence by constructing a multiple sequence alignment
between the query and multiple database sequences.
This alignment is constrained to be the same length as
the query, and is converted into a profile by examining
the composition of the amino acids aligned at each
position of the query. This profile is then used to search
the database in place of the query, and the process is re-
peated for a specified number of iterations. Preliminary
experiments did not show a substantial difference in
performance between profile construction methods. The
final PSI-BLAST profiles are used as input to most objec-
tive functions directly, and to YASSPP for generation of
secondary structure predictions. These predictions take
the form of a three-dimensional vector, whose values
correspond to the prediction scores for each of the three
secondary structure states (β-sheet, α-helix and coil), and
serve as the basis of the SS dotp objective function.

5.3 Objective Functions
We include eleven objective functions in our study. Nine
objectives correspond to the profile-based objective func-
tions from Edgar and Sjölander [3], while the remaining
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two are the Picasso [31] objective, and SS dotp, an
objective based on the YASSPP [32] secondary struc-
ture prediction vector. Including the secondary structure
function adds an interesting dimension, as it is the
only one calculated using information from a window
of amino acids around the amino acid being scored.
Definitions used in the formulas for these functions are
listed in Table 1, with the formulas themselves located
in Table 2.

5.4 Performance Assessment Metrics
To measure the quality of an alignment, we use the
percent of aligned pairs of positions in the test alignment
that exist in the gold standard alignment, which we refer
to as the match score (MS). We find this to be a simple
and intuitive method that correlates very well (Pearson
correlation 0.98 in our experiments) with the much more
complicated Cline-shift method [33]. To aggregate match
scores over multiple alignments we present the average
match score. In addition, to get a more accurate picture
of the relative performance of the alignment selection
schemes (including selecting the best alignment on a
frontier), we use a metric which we call FIM. FIM, which
stands for Fraction IMproved, represents the fraction
of alignments in which the best single objective was
improved upon. Specifically, using the ranking of single
objectives from Table 2, we select the best performing
single objective from each combination of objectives to
be used for comparison. When making comparisons
between multi-objective and single objective approaches,
we will refer to this single objective as the corresponding
single objective. For every alignment, we determine if
the multi-objective approach produced a better match
score than the corresponding single objective. Counting
the number of times this is the case and dividing by the
total number of alignments yields the FIM value.

Two metrics are used to compare approximated Pareto
frontiers with complete Pareto frontiers. First, the frontier
coverage metric is used to measure how much of the exact
frontier is contained in the approximated frontier. The
frontier coverage is calculated as the number of solutions
on the exact frontier that are also on the approximated
frontier, divided by the total number of solutions on
the exact frontier. Second, percent false positives is used
to measure how many incorrect solutions exist on the
approximated frontier. The percent false positives value
is calculated as the number of solutions on the approxi-
mated frontier that are not on the exact frontier, divided
by the total number of solutions on the approximated
frontier. A perfect technique would produce a frontier
with a frontier coverage of 100% and 0% false positives.
Lastly, to compute the statistical significance of our
results, we use the student’s t-test.

5.5 Gap Parameter Optimization
Accurate alignments require proper gap-open and gap-
extension penalties, which must be conditioned both on

TABLE 2
Average match score, gap parameters and

definitions of objective functions.
Name Go Ge Score Definition
Picasso 9.61 1.92 0.728 f1 • p2 + f2 • p1
Correlf 1.30 0.10 0.725 R(f1, f2)
Rankp 0.78 0.11 0.712 R(σ(p1), σ(p2))
Rankf 0.52 0.08 0.711 R(σ(f1), σ(f2))
Ylf 0.27 0.07 0.702 (1−DJS(p1, p2))×

(1 +DJS(Avg(p1, p2), p0)
Fdotf 0.28 0.01 0.701 f1 • f2
Yldf 0.27 0.03 0.700 1−DJS(f1, f2)
Correlp 1.20 0.07 0.693 R(f1, f2)
Fdotp 0.20 0.03 0.656 f1 • p2
Ref 1.50 0.40 0.656 HS(f1, f2)
SS dotp 2.11 0.09 0.585 ss1 • ss2
Abbreviations used in this table: Go: Gap open cost Ge: Gap extension
cost. The Score column shows average match scores over all proteins
in the ce ref set. See Table 1 for more information on objective
definitions.

TABLE 3
Runtime performance of methods for the PF operation

on four objectives.

Method Mean runtime Standard deviation
Sort-all 31.335 70.128
Merge-front 20.657 46.547
Merge-front-A 23.567 52.255
Merge-front-B 20.263 45.995
Dominance-tree 51.299 106.722

the objectives used and on alignment type (e.g., global or
local). Changing the gap-open and gap-extension values
can lead to considerably different alignments, so we take
care to set them appropriately. We establish a grid of 400
points (20 on each side), with each point corresponding
to a pair of (gap-open, gap-extension) values. Given that
a gap will take the place of an alignment between two
amino acids, we assume that no gap should cost more
than the best aligned pair of amino acids seen. Thus,
for a given profile-profile scoring function, the range
of values is bounded by [0, objmax], where objmax is
empirically determined as the maximum value seen in
any position-to-position scoring matrix for 100 protein
pairs. Using these values we assign to each grid point the
average match score over alignments between the same
100 protein pairs. Areas surrounding local maxima are
expanded to form a new grid and the process is repeated
until the gain in average match score between iterations
drops below 0.001. This is similar to the procedure
described in [3] except that we use a larger grid and
perform global alignments.

5.6 Comparison Algorithms
5.6.1 Linear Combinations
Aside from Pareto optimal combinations, linear com-
binations are another means of utilizing multiple ob-
jectives. We compare our Pareto techniques with a
weighted linear combination of objectives. The range of
values for each objective is scaled to [0,1] by dividing
by the maximum value seen for each objective, and
the weights are scaled so that they sum to 1. Objective
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TABLE 4
Various performance metrics comparing the best solution on the Pareto frontier with the solution of the best

corresponding single objective.
Objectives Best Mean FIM BPO Objectives Best Mean FIM BPO Objectives Best Mean FIM BPO
SS Pc 0.761 0.687 0.801 0.728 SS Pc Cp 0.770 0.690 0.855 0.728 SS Pc Cp Rp 0.772 0.691 0.867 0.728
SS Cf 0.759 0.686 0.803 0.726 SS Pc Rp 0.767 0.691 0.861 0.728 SS Pc Cp Rf 0.771 0.693 0.871 0.728
Pc Cp 0.756 0.719 0.757 0.728 SS Pc Cf 0.767 0.691 0.862 0.728 SS Pc Cf Cp 0.771 0.692 0.855 0.728
Pc Rp 0.753 0.720 0.759 0.728 SS Cp Rf 0.767 0.690 0.891 0.712 SS Pc Cf Rp 0.771 0.692 0.874 0.728
Cf Cp 0.751 0.715 0.733 0.726 SS Cf Cp 0.766 0.690 0.854 0.726 SS Cf Cp Rp 0.771 0.690 0.866 0.726
Abbreviations for objectives: SS: SS dotp Pc: Picasso Cf: Correlf Cp: Correlp Rf: Rankf Rp: Rankp
Description of columns: Best: the MS of the best solution on the Pareto frontier. Mean: the mean MS of solutions on each Pareto frontier individually.
BPO: Best performing objective. FIM: Fraction improved. Values other than FIM are average match scores over 588 protein pairs

values are scaled on a per-protein basis (meaning each
position-to-position matrix m is scaled independently),
then weights are applied to form a new m matrix for
Equation 1. To optimize the weights on the objectives
we perform a grid search within the range [0,1], in 0.1
increments. Gap parameters are optimized for each set
of weights in the grid (see Section 5.5). For a given set
of objectives, the weights and gap parameters with the
highest average match score are used. The optimized
weights and gap parameters are listed in Table 1 of the
supplementary material.

5.6.2 Evolutionary Algorithm
Current multi-objective alignment algorithms typically
involve using evolutionary algorithms to approximate
the Pareto frontier. Here, we implement the algorithm
used in Cofolga2mo [7], though we replace the O(N3)
original dominance-rank assignment algorithm with
a considerably faster algorithm (O(N2) in the worst
case) [25]. This is the fastest known algorithm that can
be used for this problem.

Cofolga2mo begins by initializing a population of align-
ments using weighted stochastic backtracking [8]. This
technique generates a dynamic programming matrix
for an alignment, then generates a set of alignments
through a nondeterministic backtracking process. The
initial population also includes the optimal alignments
for each individual objective. To give this algorithm the
best chance at covering the actual Pareto frontier, we
determine the initial population size as 15 times the
number of solutions on the frontier generated using our
Pareto method.

After the initialization step, Cofolga2mo alternates be-
tween two phases, evaluation and reproduction. In the
evaluation phase, dominance ranks are assigned to all
alignments in the current population. In the reproduc-
tion phase, candidates for reproduction are selected with
probabilities inversely proportional to their ranks. All the
best (rank one) solutions are preserved for the next gen-
eration. To create a child solution a genetic operator is
randomly selected, then one or two parents are selected
based on the needs of the operator. The genetic operator
is applied, and if the resulting alignment is valid it
replaces one of the parents. (A valid alignment contains
no gaps aligned with other gaps.) Five genetic opera-

Fig. 1. Relative improvement in terms of MS of the best
solution on Pareto optimal frontiers over the best corre-
sponding single objective when using four objectives.
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tors are employed: random two-point crossover, random
gap-block shuffling, local re-alignment with weighted
stochastic backtracking, dominance-based crossover, and
dominance-based gap-block shuffling. (See [7] and [8]
for a description of these operators.) The reproduction
process is repeated until enough children have been gen-
erated to replace all the parents. Cofolga2mo terminates
when either a maximum number of iterations have been
performed (1000 in our study), or when no new rank one
solutions have been generated for a specified number of
iterations (500 in our study).

6 RESULTS

We have organized our experiments into five categories.
First, we examine the performance of single objectives
as compared with multiple objectives. Next, because
the vast majority of the computational cost associated
with generating multi-objective solutions is consumed
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TABLE 5
Various performance metrics comparing Pareto frontiers generated by the Centroid,

Cell and Sample coarsening methods with the exact frontiers.
Coarsening method Coarsening Alignment Percent Frontier Best Mean BPO

parameter time false positives coverage
Two objectives

None NA 33.416 0.000 100.000 0.732 0.666 0.696
Centroid 0.2 6.872 33.040 52.370 0.722 0.664 0.696
Centroid 0.05 6.367 33.997 54.163 0.728 0.667 0.696
Centroid 0.006 8.317 33.088 61.620 0.731 0.664 0.696
Cell 5 6.437 34.456 55.010 0.730 0.668 0.696
Cell 15 6.645 32.882 59.550 0.731 0.667 0.696
Cell 30 7.221 30.442 63.517 0.731 0.667 0.696
Sample 0.25 6.269 34.480 57.693 0.730 0.668 0.696
Sample 0.75 7.545 28.783 65.788 0.731 0.668 0.696
Sample 0.9 8.281 26.161 68.641 0.731 0.668 0.696

Three objectives
None NA 180.630 0.000 100.000 0.832 0.768 0.790
Centroid 0.2 4.992 58.585 31.307 0.809 0.756 0.790
Centroid 0.05 5.313 58.948 33.094 0.822 0.762 0.790
Centroid 0.006 66.892 50.781 45.522 0.829 0.762 0.790
Cell 5 4.887 57.797 35.764 0.826 0.766 0.790
Cell 15 6.332 52.534 42.729 0.829 0.766 0.790
Cell 30 8.989 47.216 48.278 0.829 0.766 0.790
Sample 0.25 4.667 58.268 35.841 0.825 0.768 0.790
Sample 0.75 6.348 51.408 43.934 0.828 0.769 0.790
Sample 0.9 7.944 46.789 48.243 0.829 0.769 0.790

Four objectives
None NA 241.771 0.000 100.000 0.868 0.805 0.822
Centroid 0.2 3.601 61.407 31.262 0.846 0.793 0.822
Centroid 0.05 7.675 61.828 32.691 0.858 0.798 0.822
Centroid 0.006 199.201 44.169 52.980 0.866 0.801 0.822
Cell 5 3.903 58.482 37.197 0.862 0.803 0.822
Cell 15 6.920 50.028 46.445 0.865 0.804 0.822
Cell 30 18.150 39.722 56.609 0.866 0.804 0.822
Sample 0.25 3.420 60.454 35.046 0.860 0.806 0.822
Sample 0.75 4.923 52.885 43.500 0.864 0.808 0.822
Sample 0.9 6.944 47.181 48.837 0.865 0.806 0.822
Description of columns: Best: the MS of the best solution on the Pareto frontier Mean: the mean MS of solutions on each
Pareto frontier individually. BPO: Best performing objective. Rows with a coarsening method of ”None” show results
for the exact frontier.

in removing dominated solutions from consideration
(the PF operation), we compare several algorithms to
accomplish this. Next, since using multiple objectives
can lead to multiple solutions, we compare methods that
select a single solution from the Pareto frontier to be used
as the result of the alignment. Then, we evaluate the
Cell, Sample and Centroid methods, which reduce the
number of solutions input to the PF operation. We con-
clude the presentation of our results with comparisons
between the dynamic programming approach used here
and the other alignment methods on both the ce ref and
BAliBASE RV11 datasets.

6.1 Single Vs Pareto Optimal Multiple Objectives
We generated Pareto optimal pairwise sequence align-
ments for all combinations of two, three and four objec-
tives, and evaluated their performance on 588 protein
pairs. Due to the large number of these experiments,
in our results we focus our discussion on the five best
performing combinations of two, three and four objec-
tives. These results are shown in Table 4. Results for the
top ten objectives can be found in Tables 3, 4 and 5 of
the supplementary material. Note that due to the high

computational requirements of generating exact frontiers
for some protein pairs and objective combinations, we
report results using the Cell reduction technique with
its coarsening parameter set to ten. The relative per-
formance of the other reduction techniques is explored
in Section 6.3.

Comparing the best alignments generated by the
multi-objective approaches with the alignments of the
best corresponding single objectives (Table 4) we see
that using multiple objectives in a Pareto framework can
create better alignments. The match score achieved by
the best two, three and four objective combinations is
0.761, 0.770 and 0.772, respectively. This represents an
improvement of 4.5% to 6.0% over the corresponding
best performing single objective. Moreover these im-
provements are statistically significant at p < 0.1 for two
objectives, p < 0.01 for three objectives, and p < 0.01 for
four objectives.

Examining the percent improved (FIM) column of
Table 4, we see that for all combinations of objectives, the
best alignment on the frontier has a higher match score
than the top performing single objective in the combina-
tion for over 83% of protein pairs. To better illustrate this,
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Figure 1 shows the performance of combinations of four
objectives from Table 4 relative to their corresponding
objectives. The plots in Figure 1 are histograms in which
the height of each bar indicates the number of alignment
pairs for which the best solution on the Pareto frontier
has a MS that is better/worse than the MS of the best
performing corresponding objective. Note that the pair
of MS numbers were compared by taking their log-ratios.
For all different combinations of objectives, the tallest
bars appear to the right of zero and the area on the pos-
itive side is greatest, indicating that the best alignment
on the Pareto optimal frontier frequently outperforms
the corresponding single objective.

One interesting aspect of Figure 1 is the number of
cases in which the best solution on the frontier does not
outperform the best constituent objective (represented
by bars to the left of the red line). Had our method
been used to generate the exact frontier, these cases
would not have arisen, since the best values for each
objective individually are on that frontier. However, we
use the Cell coarsening technique in these experiments,
resulting in the occasional elimination of one or more
of these solutions. In these cases, the frontier can lack
a better solution than using the constituent objectives
individually. To verify this, we looked at the 6409 exact
frontiers generated for this experiment, and only 5 of
them had a single best objective outperform the best
solution on the exact frontier. In none of those cases
was the difference more than 1%, and we attribute these
to rare situations where very similar alignments have
identical objective scores, but slightly different match
scores.

6.2 Dominated Solution Elimination
To evaluate dominated solution elimination schemes
(Section 4.1), we use the top performing objective com-
binations with a sample of protein pairs from the ce ref
dataset. Specifically, we use the top five performing
objective combinations of size two, three, and four (the
same combinations as those in Table 4), giving 15 total
objective combinations. Using these combinations we
align 98 randomly sampled protein pairs (one sixth
of the full ce ref set), with the different methods for
eliminating dominated solutions. The amount of time
required by the different methods is shown in Table 3.

Comparing the performance of the different schemes,
we see that the Sort-all method requires 50% more time
than the Merge-front method. This is not surprising,
as the Merge-front method is equivalent to the Sort-all
method, except that the Merge-front method takes ad-
vantage of the fact that a multi-objective dynamic pro-
gramming alignment merges internally optimal Pareto
frontiers. The Dominance-tree method is also slower
than the Merge-front method, and even slower than
the Sort-all method, as it assigns a dominance ranking
to the input solutions, rather than simply identifying
the Pareto frontier. The Merge-front-B method and the

Merge-front-A method show only marginal performance
gains over the Merge-front method. Whenever we report
timings or speed-up factors for our methods, we refer to
alignments produced using the Merge-front-B method.

6.3 Coarsening Optimizations
To study the impact the coarsening methods described
in Section 4.2 on frontier generation, we use protein
pairs that can have their exact frontiers generated in a
reasonable amount of time (less than 30 minutes), but
not so quickly that coarsening is not necessary. This
constrains the required computational time, while still
providing meaningful data for examining coarsening
methods. For combinations of objectives, we use the top
ten objectives for sets of two, three and four, for a total
of 30 objective sets. All told we compare 2671, 2222
and 1516 alignments for objective combinations of size
two, three and four, respectively. We examine a range
of parameters for each of the Cell, Centroid and Sample
coarsening techniques, and list a selection of the results
in Table 5, with the full results of the study available in
Table 2 of the supplementary material.

In terms of the time required to produce a solution
with a given quality, the Sample technique is on average
2.98, 27.88, and 58.07 times faster than generating the en-
tire Pareto optimal frontier when using sets of two, three
and four objectives, respectively. The Cell technique is
also much faster, specifically 2.88, 21.88 and 33.59 times
faster.

In terms of the quality of the Pareto frontier, we see a
graceful degradation of coverage and a gradual increase
in false positives with an increased level of approxi-
mation through the use of the coarsening parameter.
However, these metrics are not closely tied to the match
scores found on the frontiers, and as such the average
match scores over alignments on the frontiers change
very little as a result of different coarsening parameters.
With respect to the coarsening methods, both the Sample
and Cell methods show smooth changes in run times
according to the coarsening parameter, while the results
for the Centroid method show more severe changes,
particularly in the case of four objectives.

The relationship between speed increase and align-
ment quality is illustrated in Figures 2 and 3. Each point
in Figure 2 represents a protein pair and is plotted based
on how much more quickly the Sample method with
its coarsening parameter set to 0.25 generates a Pareto
optimal frontier. Figure 3 plots the match score of the
best solution on the approximate frontier relative to that
of the best solution on the exact frontier. The lengths of
the vertical lines are determined as

log

(
MS of best on approximate frontier

MS of best on exact frontier

)
.

From the results in Figure 2 we see that the speedups
obtained by the coarsening scheme varies widely for dif-
ferent alignment pairs, from less than an order of magni-
tude to nearly three orders of magnitude. Although the
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Fig. 2. Four objective coarsening algorithm perfor-
mance. A speed up of X indicates that the Sample
method with coarsening parameter 0.25 was X times
faster than generating the exact frontier.
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Fig. 3. Four objective coarsening algorithm perfor-
mance. The lengths of the vertical lines are deter-
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TABLE 6
Various performance metrics comparing a selected solution on the Pareto frontier with the

solution of the best corresponding single objective.
Objectives Unit-space Unit-z OPW Objectives Unit-space Unit-z OPW

MS/FIM MS/FIM MS/FIM MS/FIM MS/FIM MS/FIM
SS Pc 0.730/0.405 0.724/0.400 0.730/0.405 SS Pc Cp 0.729/0.381 0.726/0.372 0.728/0.384
SS Cf 0.723/0.393 0.728/0.395 0.725/0.386 SS Pc Rp 0.730/0.430 0.728/0.403 0.730/0.425
Pc Cp 0.729/0.369 0.722/0.350 0.729/0.371 SS Pc Cf 0.733/0.427 0.734/0.417 0.733/0.427
Pc Rp 0.728/0.362 0.725/0.395 0.728/0.364 SS Cp Rf 0.726/0.446 0.726/0.437 0.726/0.447
Cf Cp 0.722/0.362 0.723/0.354 0.722/0.359 SS Cf Cp 0.727/0.383 0.728/0.354 0.727/0.359
SS Pc Cp Rp 0.729/0.403 0.727/0.386 0.730/0.398
SS Pc Cp Rf 0.728/0.372 0.726/0.364 0.727/0.367
SS Pc Cf Cp 0.730/0.388 0.730/0.374 0.730/0.388
SS Pc Cf Rp 0.732/0.401 0.731/0.391 0.732/0.413
SS Cf Cp Rp 0.727/0.398 0.728/0.415 0.727/0.406
Abbreviations for objectives: SS: SS dotp Pc: Picasso Cf: Correlf Cp: Correlp Rf: Rankf Rp: Rankp
Description of columns: OPW: Objective Performance Weighted. MS: Match score. FIM: Fraction improved.
Values other than FIM are average match scores over 588 protein pairs

TABLE 7
Various performance metrics comparing a solution generated by a linear combination of objectives and the

best solution generated by the evolutionary algorithm with the solutions of the best corresponding single
objective.

Objectives Linear EA Objectives Linear EA Objectives Linear EA
MS/FIM MS/FIM MS/FIM MS/FIM MS/FIM MS/FIM

SS Pc 0.717/0.250 0.732/0.070 SS Pc Cp 0.727/0.372 0.742/0.297 SS Pc Cp Rp 0.724/0.366 0.749/0.484
SS Cf 0.719/0.163 0.729/0.055 SS Pc Rp 0.724/0.366 0.744/0.416 SS Pc Cp Rf 0.727/0.381 0.748/0.527
Pc Cp 0.724/0.313 0.740/0.256 SS Pc Cf 0.722/0.366 0.742/0.406 SS Pc Cf Cp 0.724/0.378 0.748/0.504
Pc Rp 0.724/0.253 0.741/0.389 SS Cp Rf 0.713/0.417 0.729/0.338 SS Pc Cf Rp 0.722/0.366 0.749/0.566
Cf Cp 0.723/0.337 0.735/0.264 SS Cf Cp 0.718/0.284 0.738/0.307 SS Cf Cp Rp 0.720/0.367 0.745/0.506
Abbreviations for objectives: SS: SS dotp Pc: Picasso Cf: Correlf Cp: Correlp Rf: Rankf Rp: Rankp
Description of columns: Linear: A linear combination of objectives. EA: Evolutionary algorithm. MS: Match score. FIM: Fraction improved.
Values other than FIM are average match scores over 588 protein pairs
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TABLE 8
Various performance metrics describing the runtime and quality of the solutions generated by the

evolutionary algorithm.
Number of objectives Alignment time Percent false positives Frontier coverage Unit-space OPW Best Mean

2 1282.717 96.731 3.154 0.678 0.694 0.703 0.643
3 1882.757 96.671 3.168 0.790 0.790 0.804 0.748
4 1820.837 95.382 4.117 0.825 0.826 0.842 0.795

Description of columns: Linear: a linear combination of objectives. EA: Evolutionary algorithm. FIM: Fraction improved. OPW: Objective
Performance Weighted. Best: The MS of the best solution generated by the evolutionary algorithm. Mean: The average MS generated by
the evolutionary algorithm. We have omitted the Unit-z method results due to space constraints and their close similarity to the Unit-space
method

overlap between the approximate and exact frontiers is
small (see Table 5), the overall degradation in the quality
of the alignments (as measured by their match score) is
also small. However, there is an increase in the relative
quality degradation with increased speedup. This is to
be expected, as in these cases there is a higher degree of
approximation. Note that it is possible for the alignment
on the approximate frontier to be better with respect to
match score because this is not the value being optimized
by the alignment process.

6.4 Solution Selection
The results in Table 4 indicate that high-quality solutions
to the global sequence alignment problem exist on the
Pareto frontier, but they also show that for a given
frontier, the mean match score is usually lower than
the best match score. Table 6 shows the performance
of the various solution selection schemes described in
Section 4.3 over the 588 protein pairs from the ce ref set.
Comparing Table 6 with Table 4, we see that all three of
the selection schemes (Unit-space, Unit-z and Objective
Performance Weighted) do better than the mean match
score. However, their performance is worse than the
performance achieved by the best corresponding single
objective.

In quite a few cases, the average match score is slightly
worse than that of the best corresponding single objec-
tive (though the best on the frontier tends to be superior
to it). These results suggest that although the Pareto
optimal frontier contains some high quality solutions,
being able to select the one that achieves the best match
score is non-trivial.

6.5 Comparisons with other Algorithms
Table 7 shows the performance of linear combinations of
objectives and the best solution generated by the evolu-
tionary algorithm (see Section 5.6.2). Note that these re-
sults are not directly comparable with one another, as the
linear combination results in a single alignment, while
the evolutionary algorithm produces many alignments,
among which the one that achieves the best match score
is selected and reported.

Comparing the results for the linear combination of
objectives (Table 7) with the selection methods (Table 6),
we see that for both the average match score and FIM
values the selection methods show slightly better match

scores than the linear combination, irrespective of the
number of objectives involved. Additionally, comparing
Tables 2 and 7 we see that linear combinations of ob-
jectives produce worse results than Picasso in isolation,
with a selected alignment from the Pareto optimal fron-
tier being marginally better.

Comparing the results for the evolutionary algorithm
(Table 7) with the “Best” column in Table 4, we see that
for both the average match score and FIM values the best
solution on the Pareto optimal frontier is superior to the
best alignment generated by the evolutionary algorithm.
This is the case for all combinations of objectives, regard-
less of the number of objectives involved. These gains are
considerably bigger than those of the selection methods
over the linear combinations of objectives. However, it
is important to note that at this point the best alignment
on the frontier cannot be reliably selected from the
rest of the frontier without knowing the true alignment
(see Section 6.4).

Regarding the evolutionary algorithm as a method for
generating a Pareto frontier of alignments, few of the
alignments generated by this approach are on the exact
Pareto frontier, regardless of the combinations of objec-
tives used and despite the long running times. With four
objectives, the evolutionary approach produces around
4% coverage in around 1820 seconds (see Table 8) which
is considerably more than the time required for the
dynamic programming approach to generate the ex-
act Pareto optimal frontier (around 241 seconds). The
evolutionary approach only rarely generates alignments
with higher objective scores than those obtained from
single-objective measures, while our Sample approach
frequently generates them. The Sample technique gener-
ates 57.69%, 35.84% and 35.05% coverage of the frontier
for sets of two, three and four objectives (Table 5), while
the evolutionary algorithm generates 3.15%, 3.17% and
4.12% (Table 8). An interesting observation from the FIM
values in Tables 4, 6 and 7 is that neither the evolution-
ary algorithm, a linear combination of objectives, nor
selecting an alignment from a Pareto optimal frontier
consistently outperforms the best corresponding single
objective.

6.5.1 Performance Summary
Table 9 shows the performance of the best objective
combination on ce ref for each alignment method, and
the performance of that alignment method and objective
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combination on the RV11 dataset. Examining this table,
we see that there is little difference in performance
between the various alignment methods. The one excep-
tion is the best solution on the Pareto frontier, but as
previously mentioned this solution cannot yet be reliably
identified without knowing the true alignment. This is
true for both the ce ref dataset and the RV11 dataset
from BAliBASE. Comparing the performance between
these two datasets, we see that the performance on RV11
is considerably worse than that on the ce ref set. How-
ever, the relative performance of the various techniques
within a dataset is consistent–all of the techniques are
roughly on par with one another. The performance is
also in-line with a recent study on this dataset [34] in
which ClustalW achieves an SPS score of 58.16. (The SPS
score is identical to the match score except that it only
considers core regions of an alignment).

7 DISCUSSION AND CONCLUSION

We have presented a technique to align pairs of protein
sequences using multiple profile-profile scoring func-
tions in a dynamic programming framework to produce
Pareto optimal frontiers of alignments, and techniques
to select a good alignment from such a frontier. Within
this framework, we have shown how to reduce the time
spent eliminating dominated solutions, and heuristic
techniques to reduce the sizes of intermediate frontiers.

The results presented here indicate that multi-objective
optimization using Pareto optimality leads to Pareto
frontiers that contain higher quality alignments than
those produced by other multi-objective approaches and
by single objectives. However, selecting a high-quality
solution is challenging, and the methods we have pre-
sented do not consistently select the best alignment. In
regard to the selection schemes, both the Unit-space and
Unit-z selection schemes perform on par with the Ob-
jective Performance Weighted scheme, even though the
results for the Objective Performance Weighted scheme
relies upon knowing the relative performance of the
scoring functions on the entire data set. Thus, it is
encouraging that these schemes show comparable per-
formance without such a requirement.

Concerning the elimination of dominated solutions,
implementing the Merge-front-B method results in mod-
est performance improvements, as it is not often that
only one of E or F is used in the construction of
V (see Section 4), a condition which is required for
Merge-front-B to have an advantage. In contrast, the
condition that Merge-front-A attempts to leverage is
somewhat common, but ironically difficult to detect. As
shown in Table 3, the cost associated with detecting this
condition actually overshadows the potential gains in
performance.

When aligning protein sequences using the SS dotp
objective in conjunction with other objective functions,
an interesting trend appears. Despite its poor perfor-
mance when used as a single objective, the SS dotp

TABLE 9
Best performing objective combinations for pairwise
alignment methods on ce ref and BAliBASE RV11

Alignment method Score (ce ref) Score (BAliBASE RV11)

Picasso alone 0.728 0.569
Linear combination 0.727 0.562
Evolutionary (Unit-z) 0.725 0.566
Evolutionary (best) 0.751 0.587
Pareto (Unit-z) 0.733 0.568
Pareto (best) 0.772 0.615
Values in the second column represent the average over alignments
between 588 protein pairs; values in the third column represent the
average over alignments between 913 different protein pairs. Objec-
tives combinations for each method: Pareto (best): SS dotp Picasso
Correlp Rankp pareto (Unit-z): SS dotp Picasso Correlf Evolutionary
(best): Picasso Correlf Correlp Rankp Evolutionary (Unit-z): SS dotp
Picasso Correlf Linear: SS dotp Picasso Correlp Rankf

objective is part of several top-performing combinations
of objectives. This is the case for both linear and Pareto
multi-objective formulations. On the one hand, the vec-
tor of predictions for an amino acid contains only three
values, and this could explain why using SS dotp in
isolation does not perform well. On the other hand,
secondary structure predictions are made by considering
a window around an amino acid, which includes more
information about its local environment, and may help
to explain the boost in performance it provides.

Due to the considerable diversity in the quality of the
solutions on the Pareto frontier, improving techniques
for selecting a high-quality solution is a direction for fu-
ture research. Another direction involves leveraging the
information contained within the Pareto frontiers. The
number and nature of solutions found on a Pareto fron-
tier contain considerably more information than a single-
objective alignment, and can potentially help explain the
relationship between the input sequences. For example,
multiple frontiers of alignments from different sequences
could serve as input to a multiple sequence alignment
program, resulting in better alignments. Also, agreement
between profile-profile scoring functions results in fewer
alignments on the Pareto frontier than when such func-
tions disagree, so the number of alignments produced
indicates the strength of the evolutionary signals in the
profiles. This could be used to produce more sensitive
algorithms for functional site identification by looking
at regions with particularly strong signals, for remote
homology detection, or for building better profiles.
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