
Parallel Algorithms for Mining Sequential Associations:

Issues and Challenges �

Mahesh V. Joshiy George Karypisy Vipin Kumary

Abstract

Discovery of predictive sequential associations among events is becoming increas-

ingly useful and essential in many scienti�c and commercial domains. Enormous sizes

of available datasets and possibly large number of mined associations demand e�cient

and scalable parallel algorithms. In this paper, we �rst present a concept of universal

sequential associations. Developing parallel algorithms for discovering such associations

becomes quite challenging depending on the nature of the input data and the timing

constraints imposed on the desired associations. We discuss possible challenging sce-

narios, and propose four di�erent parallel algorithms that cater to various situations.

This paper is written to serve as a comprehensive account of the design issues and

challenges involved in parallelizing sequential association discovery algorithms.

�This work was supported by NSF grant ACI-9982274, by Army Research O�ce grant DA/DAAG55-98-1-

0441, by Army High Performance Computing Research Center cooperative agreement number DAAH04-95-

2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reect the position or

the policy of the government, and no o�cial endorsement should be inferred. Access to computing facilities

was provided by AHPCRC, Minnesota Supercomputer Institute. Related papers are available via WWW at

URL: http://www.cs.umn.edu/~kumar.
yDepartment of Computer Science, University of Minnesota, Minneapolis, MN 55455

1 Introduction

One of the important problems in data mining [CHY96] is discovering associations present

in the data. Such problems arise in the data collected from scienti�c experiments, or mon-

itoring of physical systems such as telecommunications networks, or from transactions at a

supermarket. In general, this data is characterized in terms of objects and events happening

on these objects. As an example, a customer can be an object and items bought by him/her

can be the events. In experiments from molecular biology, an organism or its chromosome

can be an object and its behavior observed under various conditions can form events. In

a telecommunication network, switches can be objects and alarms happening on them can

be events. The events happening in such data are related to each other via the temporal

relationships of together and before (or after). The association rules originally proposed in

[AIS93] utilize only the together part of the relationship to come up with associations be-

tween the events. The concept was extended to the discovery of sequential patterns [AS96]

or episodes [MTV95], which take into account the sequential (before/after) relationship as

well. The formulation in [AS96] was motivated by the supermarket transaction data, and

the one in [MTV95] was motivated by the telecommunication alarm data. Formulation in

[JKK99] uni�es and generalizes these formulations.

The algorithms that discover sequential associations are mainly motivated by those de-

veloped for non-sequential associations. Various serial and parallel algorithms have been

proposed to discover non-sequential association rules (or simply, associations rules). The

most time consuming operation in this discovery process is the computation of the frequen-

cies of the occurrence of candidate subsets of events. Many databases have a large number of

distinct events, which yields prohibitively large number of candidates. Hence, most current

association rule discovery techniques try to prune the search space by requiring a minimum

level of support for candidates under consideration. Support is de�ned as the number of oc-

currences of the candidates in the database transactions. Apriori [AS94] is a one of the �rst

and most widely used algorithms that aggressively prunes the set of potential candidates of

size k by using the following observation: a candidate of size k can meet the minimum level

of support only if all of its subsets also meet the minimum level of support. Candidates for

(k + 1)st iteration are generated using only those event-sets from kth iteration that satisfy

the support requirement. E�cient techniques, such as hash trees, are used to count the

occurrence frequencies of candidates. The parallel algorithms developed for non-sequential

associations [HKK97] try to e�ectively parallelize the phases of candidate counting and can-

didate generation.

The sequential nature of the data, depicted by the before/after relationships, is important

from the discovery point of view as it discovers more powerful and predictive associations.

It is important from the algorithmic point of view also, as it increases the complexity of the

problem enormously. The number of sequential associations possible is much larger than non-

sequential associations. Various formulations proposed so far [AS96, MTV95, SA96, JKK99],

try to contain the complexity by imposing various temporal constraints, and by using the

monotonicity of the support criterion as the number of events in the association increases

(the Apriori principle). In this paper, we mainly concentrate on the discovery of general-

1

ized universal sequential patterns proposed in [JKK99]. It is believed that this formulation

is applicable over a wide range of application domains, and encapsulates di�erent ways of

de�ning interestingness of the discovered associations. We present a serial algorithm that

discovers these universal sequential associations. The enormity and high dimensionality of

the data can make these serial algorithms computationally very expensive; and hence, e�-

cient parallel algorithms are very essential for discovering sequential associations. Di�erent

issues and challenges arise mainly due to the sequential nature of the associations, and the

way in which their interestingness measure is de�ned (counting strategies). We discuss all

these issues and challenges, and propose formulations for resolving them. Essential idea is

to extend the parallel formulations used for non-sequential associations [HKK97], so as to

take into account the challenges introduced by the sequential nature. In the �rst formulation

called Event Distribution (EVE), we distribute input data alone and replicate the candidate

hash tree on all the processors. Di�erent parallelization strategies are possible depending

on the number of objects in the input data, the number of events happening on these ob-

jects, and the timing constraints. Three algorithms Simple Event Distribution (EVE-S),

Event Distribution with Partial Replication (EVE-R), and Event Distribution for Complex

Scenario (EVE-C) are proposed. EVE formulations might become ine�cient when the num-

ber of candidate sequences becomes large, because they generate the candidates serially and

these candidates are replicated on all processors. In the second formulation called Event and

Candidate Distribution (EVECAN), we partition the input data similar to EVE and also

partition the candidates. The candidate generation phase is parallelized using a distributed

hash table mechanism, whereas the counting phase is parallelized using an approach similar

to IDD[HKK97] approach used for non-sequential associations.

The rest of this paper is organized as follows. Section 2 contains a description of a serial

algorithm for �nding sequential associations. In Section 3, we elaborate on the challenges of

parallelizing these algorithms, and propose di�erent parallel formulations. Section 4 contains

conclusions.

2 Mining the Sequential Relationships

The data collected from scienti�c experiments, or monitoring of physical systems such as

telecommunications networks, or from transactions at a supermarket, have inherent sequen-

tial nature to them. Sequential nature means that the events occurring in such data are

related to each other by relationships of the form before (or after) and together. This infor-

mation could be very valuable in �nding more interesting patterns hidden in the data, which

could be useful for many purposes such as prediction of events or identi�cation of better

sequential rules that characterize di�erent parts of the data.

In this section, we discuss the concept of sequential associations, more commonly known

as sequential patterns, and serial algorithms to discover them.

2

Object timestamp events

D 14 1, 8, 7

B
B
B
B

11
17
21
28

4, 5, 6
2
7, 8, 1, 2
1, 6

A
A
A

10
20
23

2, 3, 5
6, 1
1

(a)

Timeline:

10 3530252015

Obj A:

Obj B:

2
3
5

1
6 1

2
5
6

7
8
1
2

1
6

Obj D:

1

7
8

4

(b)

Figure 1: Example Input Data: (a) Flat representation, (b) Timeline Representation

2.1 Generalized Sequential Associations: De�nition

Sequential associations are de�ned in the context of an input sequence data characterized

by three columns: object, timestamp, and events. Each row records occurrences of events

on an object at a particular time. An example is shown in Figure 1(a). Alternative way to

look at the input data is in terms of the time-line representations of all objects as illustrated

in Figure 1(b). Note that the term timestamp is used here as a generic term to denote a

measure of sequential (or temporal) dimension.

Various de�nitions of object and events can be used, depending on what kind of informa-

tion one is looking for. For example, in one formulation, object can be a telecommunication

switch, and event can be an alarm type occurring on the switch. With this, the sequences

discovered will indicate interesting patterns of occurrences of alarm types occurring at a

switch. In another formulation, object can be a day, and event can be a switch or a pair of

switch and type of the alarm occurring on it. This will give interesting sequential relations

between di�erent switches or switch-alarm type pairs over a day.

Given this input data, the goal is to discover associations or patterns of the form given

in Figure 2. A pattern is essentially a sequence of sets of events, which conform to the

given timing constraints. As an example, the sequential pattern (A) (C,B) (D), encodes an

interesting fact that event D occurs after an event-set (C,B), which in turn occurs after event

A. The occurrences of events in a sequential pattern are governed by the following timing

constraints:

� Maximum Span(ms): The maximum allowed time di�erence between the latest and

earliest occurrences of events in the entire sequence.

� Event-set Window Size(ws): The maximum allowed time di�erence between the

3

latest and earliest occurrences of events in any event-set.

� Maximum Gap(xg): The maximum allowed time di�erence between the latest oc-

currence of an event in an event-set and the earliest occurrence of an event in its

immediately preceding event-set.

� Minimum Gap(ng): The minimum required time di�erence between the earliest

occurrence of an event in an event-set and the latest occurrence of an event in its

immediately preceding event-set.

We assume the interestingness of a sequence to be de�ned based on how many times it

occurs in the input data; i.e. its support. If the support is greater than a user-speci�ed

support threshold, then the sequence is called frequent or interesting. The the number of

occurrences of a sequence can be computed in many ways, which are illustrated using the

example shown in in Figure 3(a). The method COBJ counts at most one occurrence of a

sequence for every object, as long as it is found within the given timing constraints. In the

example, (1)(2) has two occurrences, one for each object. This method may not capture

the sequences which are exhibited many times within a single object, which could really

determine its interestingness. In the method CWIN, the support of a sequence is equal to

the number of span-size windows it appears in. Each span-size window has a duration of

ms, and consecutive windows have an overlap of ms� 1 units. Windows can span across a

single object; i.e., no window can span across multiple objects. The support is added over

all objects to get �nal support for a sequence. As shown in Figure 3(b), sequence (1)(2) has

support of 3 for Object A, because it occurs in windows starting at time-points 0, 1, and 2.

For object B, it occurs in 5 windows, hence the total support is 8. In other counting methods,

instead of counting the span-windows, actual occurrences of a sequence are counted. Two

options CDIST and CDIST O are illustrated in Figure 3(c) and Figure 3(d), respectively.

In CDIST, an event-timestamp pair is considered at most once in counting occurrences of

a given sequence. So, there is only 1 occurrence of (1)(2) for Object A in the example,

because there is no corresponding event 2's occurrence for event 1@2, 2@4 was used up in

�rst occurrence. In CDIST O, the occurrences are counted such that each new occurrence

found has at least one di�erent event-timestamp pair than previously found occurrences. So,

(1)(2) has 3 occurrences for object B, and total of 5 occurrences, using this method.

The choice of which counting method to use is dependent on the problem and the judg-

ment of the person using the discovery tool. For the purpose of our discussion in this paper,

we will assume the method depicted in part (b), which counts the number of span-windows,

because it is fairly general in the way it assigns interestingness to a sequence (especially

when compared to method in part (a)).

The de�nition of sequential association presented above is a special case of the generalized

universal sequential patterns described in [JKK99]. It combines the notions of generalized

sequential patterns (GSPs) proposed in [SA96] and episodes proposed in [MTV97]. The

GSPs do not have thems constraint and counts according to method COBJ. The episodes are

counted in just the same way as CWIN, but they do not have the xg, ng, and ws constraints.

Also, the formulation presented in [MTV97] assumes presence of only one object. We believe

4

(A) (C,B) (D) (F,E,G)

? ?
[ws]

{ng,xg}

<0,ms>

[ws]

An Example of Discovered Pattern:

Formulation:

<= xg <= ws> ng

0 <= span <= ms

Can add more edges and nodes

filled by discovery
algorithm.

? : Event-sets to be

Figure 2: Generalized Formulation of Sequential Patterns

that our notion of sequential associations is fairly general for a wide variety of sequential

data.

2.2 Serial algorithms for Sequential Associations

The complexity of discovering frequent sequences is much more than the complexity of mining

non-sequential associations. To get an idea, the maximum number of sequences having k

events is O(mk2k�1), where m is the total number of events in the input data. Compare this

to the (m
k
) possible item-sets of size k. Using the de�nition of interestingness of a sequence,

and the timing constraints imposed on the events occurring in a sequence, many of these

sequences can be pruned. If a sequence does not occur su�cient number of times or if it

does not satisfy the timing constraints, it will not be present in the �nal result. But in

order to contain the computational complexity, the search space needs to be traversed in a

manner that searches only those sequences that would potentially satisfy both the support

and timing constraints. As was done in the Apriori algorithm for non-sequential associations,

the sequence discovery process can be guided by using the monotonicity property of support

of a sequence. This property implies that as we add more events to the sequence, its support

will decrease monotonously. So, if the frequent sequences having only one event are found

�rst, then these can be used to build potential sequences having two events. All events

occurring in such potential sequences are themselves frequent. Taking this notion further

in an inductive manner, the frequent sequences having k � 1 events can be used to build

potential frequent sequences having k events. A potential k-sequence will be such that all

its (k � 1)-subsequences are themselves frequent.

The procedure outlined above is used in the GSP algorithm [SA96], but it discovers

restrictive sequential patterns de�ned in [SA96]. We present below, a modi�ed GSP algo-

5

(b) CDIST Method

(a) CWIN Method

(c) CDIST_O Method

1

0 1 2 3 4

2

1

1

0 1 2 3 4

2

0 1 2 3 4

2
1

1

11

1 1 1

0 1 2 3 4

2

Object A:

0 1 2 3 4

Object B:

2

0 1 2 3 4

2
1

0 1 2 3 4

Object B:

2

0 1 2 3 4

2

Object A:

0 1 2 3 4

2

0 1 2 3 4

2

Object B:

1
2

Object A:

Figure 3: Illustration of Methods of Counting Support

6

rithm that discovers patterns according to our generalized sequential associations de�ned in

previous subsection.

Similar to GSP, the algorithm works in iterations over the number of events in the

sequence. In every iteration it has two phases. The �rst phase of join-and-prune generates

the potentially frequent k-sequences, called candidates, from frequent (k�1)-sequences. The

second phase counts the occurrences of candidates in object time-lines, and forms the set

of frequent k-sequences, which seeds the next iteration. The structure of this algorithm is

given in Figure 4.

As an illustration of the join-and-prune phase of the algorithm, consider the following

example. Let the set of frequent 2-sequences be F2 = f(1)(2), (1)(3), (1 3), (2 3), (3)(4)g.

Now, in the join phase, (1)(2) will join with (2 3) to give a potential 3-sequence (1)(2 3).

This sequence will not be pruned away because all of its 2-subsequences (1)(2), (1)(3), and (2

3) are in F2. Now, consider the join between (1)(3) and (3)(4). This will generate a sequence

(1)(3)(4), but it will be pruned away because (1)(4) is not present in F2. This example

assumes that the xg constraint is absent. If xg was speci�ed, it would not be correct to

prune (1)(3)(4) based on the absence of (1)(4), because it is not necessary for (1)(4) to

satisfy the xg timing constraint in order for (1)(3)(4) to satisfy it.

The candidates that are generated after the join-and-prune phase need to searched in

the input sequence data to count their occurrences. One simple way is to scan each object

once for the occurrence of each candidate. This may become very expensive if the number

of candidates is large, and if the number of of events occurring on input objects is large.

Another possibility is to generate all the k-sequences present in all the span-size windows

of an object's timeline and see if they are present in the set of candidates generated. This

approach can also be very expensive especially because it ignores the information obtained

from the previous pass that counted (k � 1)-sequences in the timeline. Such information

is implicitly stored in the set of candidate k-sequences generated by the join-and-prune

phase. An e�cient way to search occurrences of candidates is by storing them in a hash tree

structure similar to the Apriori algorithm for non-sequential associations. An example of a

hash tree is shown in Figure 5. A candidate is inserted into the hash tree by hashing on the

events in that candidate. ith event in the candidate is hashed at ith level of the tree, where

root is considered to be at �rst level. For example, while storing (1)(5)(9), event 1 is hashed

at the root node N1, which leads to the leftmost child N2, where event 5 is hashed to reach

its middle child N3, and �nally event 9 is hashed to reach the rightmost leaf child of node

N3. The depth of the hash tree and the number of internal nodes in the hash tree can be

controlled by tuning the size of the hash table at internal nodes and the maximum number

of candidates allowed to be stored at a leaf node.

The advantage gained out of constructing a hash tree is that the timeline of an object can

be streamed through the branches of hash tree to identify only those candidates that could

potentially occur in that object's timeline. An example of streaming a timeline is shown in

Figure 5. The timeline is streamed through the hash tree by assuming that any event in

the timeline can be the potential �rst event of a sequence, hence each event is hashed at the

root node. The next event to hash is found using the timing constraints. As an example,

let ms = 10, xg = 9, and ws = 0 be the timing constraints. If event 1 occurring at time

7

Structure of the Algorithm: (Based on GSP [SA96])

form Set of Frequent Sequences, F1 each having 1 event;

k = 2;

while (Fk�1 is not empty)

Ck = join-and-prune(Fk�1). Ck is the set of Candidates having k events

[Store Ck in a hash tree access structure]

for each object's timeline

repeat

[hash-tree-traversal]

stream the timeline through hash tree to search presence

of possible candidates, until leaf node is encountered; �

[leaf-count]

count the occurrences of candidates at leaf nodes; �

until (no more traversing is possible)

end

form Fk from Ck by retaining only the large candidates (having count above

support threshold);

end

function join-and-prune(Fk�1): returning Ck

begin

if (k = 2) then

for every pair of events, e1 and e2 in F1,

form c = (e1)(e2); add c to Ck

for every pair of events, e1 and e2 in F1, such that e1 < e2

form c = (e1 e2); add c to Ck

else

for every c1 in Fk�1

search c2 in Fk�1 such that

deleting �rst event of c1 and last event of c2 yield same subsequences

for every such c2, form k-sequence c such that

c = (c1)(e) if (e) is the last event-set of c2; otherwise c = (c1 e)

[e is the last event of c2]

if every (k � 1) subsequence of c is present in Fk�1, then

add c to Ck

end

end

end

Figure 4: Structure of the Algorithm. Similar to GSP. The phases where modi�cation is

made are shown with an arrow (�).

8

(1 4)(5)
(1)(1)(9)

(1)(2 5)
(4 5 8)

(1)(5)(9)
(1)(2 3)
(4)(8 9)

(1)(3)(3)
(7)(6 9)

(2@5)
(5@5)

Function
Hash

(1@0)
(4@0)
(1@11)

Four Interesting Paths:
1@0, 2@5, 3@5:

Leads to (1)(2 3)’s leaf, and counting
phase indeed finds occurrences of (1)(2 3).

1@0, 3@5:
Leads to (1)(3)(3)’s leaf, but the occurrence captured
in counting phase is the one in [12,20] window.

4@0, 5@5:
Path does not end up in any leaf.

1@11, 1@15:
Re-traversal of a path if path flagging is
absent. 1@0, 4@0 visited same path before.

2
5
3

1
9
3

5 10 15 200

3
21

1
4

Object 1:

3,6,91,4,7
2,5,8

(1@15)

(3@5)

(3@5)

Part of the Candidate Sequence Hash Tree for k=3

Figure 5: Illustrating the candidate hash tree, and the concept of streaming an object's

timeline through the hash tree. The signi�cance of using a hash tree can be understood by

studying the four interesting paths listed.

9

0 (abbreviated as 1@0) is hashed at the root, then the only events eligible to be hashed at

node N2 are 4@0, 2@5, 3@5, and 5@5. After hashing 5@5 at N2, although the event 1@12

satis�es the xg constraint, it does not satisfy the ms constraint, so it is not hashed at N3.

Formally, if an event hashed at the root node occurs at time t0, and if an event occurring at

time t is just hashed at some node, then the event that is eligible to be hashed next must

occur in the time-window de�ned by [t� ws, min(t0 +ms, max(t+ xg,t + ws))].

In the process of streaming, when a timeline for an object reaches a leaf node, the

algorithm counts all the occurrences of all the candidates stored at that leaf. Remember

that we have de�ned the number of occurrences to be the number of span-size windows

in which a sequence occurs. The �rst occurrence of a sequence is found using the method

described in [SA96]. This search is based on searching event-sets in the order they appear

in the sequence. The ws constraint is checked while searching an individual event-set. If

an event-set is not found, search terminates. If event-set is found but it does not satisfy

the ng and xg constraints with respect to the previous event-set, then a search is performed

in the reverse direction to �nd occurrences of all previous event-sets within the ng and xg

constraints. If the event-set is found, but is over the ms limit, then a new search is started

from time te �ms, where te is the time of the latest event occurrence in the recently found

event-set.

After �nding the �rst occurrence, instead of stopping the search as done in GSP [SA96],

our algorithm continues to search for the next occurrence. This next search starts at time

t+ 1, where t is the time at which the earliest event occurred in previously found sequence.

Let the �rst occurrence of a sequence be found in the range [ts,te]. Then the number of

span-windows, that this occurrence contributes to, is equal to (ts � (te � ms + 1)). Now,

the next sequence search starts at time ts + 1. If the next occurrence is found in time

range [t
0

s
,t

0

e
], then the number of span-windows that this occurrence contributes to is equal

to (t
0

s
� max(t

0

e
� ms; ts + 1)]; i.e. count all the span-windows that start after the time ts

and lie within ms duration of t
0

e
. As an example, consider the object 1's timeline shown in

Figure 5. The constraint ms is 10. The �rst occurrence of (1)(2 3) is found in the range [0,5],

contributing to all the span-windows that which start at time-points between -4 and 0. The

next occurrence of (1) (2 3) is found in the range [11,20]. This contributes to the windows

starting at time-points 11 and 12. The next occurrence is found to be in the range [15,20],

this accounts for the windows starting at time-points 13, 14, and 15. This discussion is

relevant when CWIN method is used for counting. For other methods, appropriate changes

need to be made. For example, when CDIST method is used, each event-timestamp pair

must be agged to indicate if it has been used towards counting the occurrence of a given

sequence. When CDIST O method is used, the counting process is similar to CWIN, but

instead of counting the windows, just one occurrence is added each time a search succeeds.

Following points should be noted regarding the algorithm discussed above.

� The role of a hash tree to increase the e�ciency of search can be ful�lled only if the

hash tree is not too deep and/or too large, because in the worst case the amount of

work involved in streaming a timeline through the hash tree is equal to the amount of

work done in �nding �rst occurrence of each candidate using a straight-forward search

(when every candidate is stored at a di�erent leaf in the hash tree). On the other

10

hand, if the number of candidates is very large and the tree is very shallow or small,

then the advantage of building a hash tree would be lost again. Hence, the size of the

hash table at each node and the maximum number of candidates allowed to be stored

at leaf nodes play an important role in determining the e�ciency of the algorithm.

� If an object's timeline is very large, then the operation of streaming a timeline needs

to be optimized to ag the paths which are impossible and the root-to-leaf paths which

are already traversed. This avoids their repeated traversal.

� If an object's timeline is very large, then the counting operation at the leaf can possibly

take a very long time because the entire timeline would need to be traversed for each

candidate at every leaf reached.

3 Parallel Formulation: Issues, Challenges, and Some

Solutions

If the input sequence data has following features, then the points mentioned at the end of

previous section depict the limitations of serial algorithms1.

� Enormity; i.e., large number of objects and/or large time-lines for many objects. Serial

algorithms would take a very long time to in the counting phase for such datasets.

� High dimensionality; i.e., large number of events. The number of candidates generated

for such datasets will be very large; hence, either they may not �t in the memory

available for a single processor, or they would make the hash tree data structures act

counter-productively if their size and structure is not optimally managed.

This motivates the need for parallel formulations. In this section, we will briey discuss

the issues and research challenges involved in developing e�ective parallel formulations of

sequential pattern discovery algorithm.

The parallel formulation should be able to divide two entities among processors. One

is the computational work and other is the memory requirement. These should be divided

such that the time and memory limitations faced by serial algorithms could be minimized,

and it should be possible to achieve this with as little overhead as possible. In parallel

formulations, the overheads come mainly from load imbalance (causing idling of processors)

and the communication required to co-ordinate the computations performed by di�erent

processors.

The computational load in sequential pattern discovery algorithm consists of candidate

generation and counting of candidates. The memory requirements come from storing the

1The terms serial and sequential should not be confused. Traditionally, sequential and serial are both used

to describe algorithms that would run on single processor machines. Here, we use the term serial to represent

such algorithms, and reserve the term sequential to indicate the temporal or sequential nature of the input

data

11

input datasets and the candidates generated. Depending on how the candidates and object

time-lines are distributed among processors, di�erent parallel algorithms are possible. One

set of parallel algorithms is given in [SK98]. These algorithms assume the sequential pat-

tern format given in [SA96]; hence, their algorithms do not have concepts of span (ms) and

counting multiple occurrences of a sequence in a single timeline. Also they assume a market

transaction type of dataset, in which the object time-lines are usually very short. So, their

formulation distributes the transaction database as discussed above in the �rst possibility

of distributing objects. Then they use straight-forward extensions of their NPA, SPA, HPA

algorithms for non-sequential associations to get algorithms which do not partition the can-

didates (NPSPM), or partition the candidates in a simple round-robin manner (SPSPM) or

in a more intelligent manner using hash functions (HPSPM). The last formulation, HPSPM,

is similar in concept to the idea discussed above for partitioning candidates for use with

the hash join method. The way the count phase is performed in NPSPM is similar to the

CD algorithm for non-sequential associations [HKK97]. The occurrences for all candidates

are �rst counted in the local dataset, and then they are broadcast to all other processors

to determine the set of frequent sequences. The counting in SPSPM is performed in a way

similar to the DD algorithm for non-sequential associations, where every object's timeline is

sent to every processor. HPSPM, in kth iteration, generates all k-sequences present in each

object's timeline and hashes them using the same hash function as was used for hashing the

candidates to distribute them among processors. Each sequence is sent to the processor it

hashes to, and searched for in the list of candidates stored there. The HPSPM algorithm

is shown to perform better than the rest two, but it also faces severe limitations when the

object time-lines are very large, and when it is extended to use the counting method used

in our generalized sequential pattern formulation.

In the following, we present several parallel formulations of our own, that take into

account the generalized nature of sequential patterns. The intention is to bring out the

challenges involved in designing e�ective parallel formulations.

In the �rst formulation called EVE (event distribution), we distribute input data and

replicate the candidate hash tree on all the processors. The candidate generation phase is

done serially on all the processors. Three di�erent variations of EVE algorithm are presented

to cater to di�erent scenarios emerging depending on the number of objects, the length of

the time-lines in terms of the number of events happening on them, and the value of ms.

After presenting these variations, we will present an algorithm EVECAN, which distributes

events as well as candidates among processors, to overcome some of the problems that EVE

might face.

3.1 EVE-S: Simple Event Distribution Algorithm

For shorter time-lines and relatively large number of objects, the input data is distributed

such that the total number of event points is as evenly distributed as possible within the

constraint that a processor gets all the entire timeline of every object allocated to it. In this

case, the algorithm is similar to the NPSPM algorithm discussed before. It is embarrassingly

parallel as far as counting phase is concerned, except for the �nal communication operation

12

Global Reduction of Candidate Counts

Count
Local

Count
Local

Count
Local

P0 P1 P2

Objects

Figure 6: Illustration of EVE-S algorithm.

required to accumulate the candidate counts. EVE-S is illustrated in Figure 6.

3.2 EVE-R: Event distribution with partial data replication

This formulation is designed for the scenario in which there are relatively small number of

objects (less than the number of processors), each object has a large timeline, and the span

value (ms) is relatively small. The input data is distributed as follows. The timeline for

each object is split across di�erent processors such that the total number of events assigned

to di�erent processors is similar. Note that the sequence occurrences are computed in span-

size windows. We assume that the span value is small such that no span window spans

across more than two processors. But, still one processor will have some span-windows

that do not have su�cient data to declare the occurrence of an sequence in them. This

is resolved in EVE-R by gathering such missing data from neighboring processors. Each

processor gathers data that is required to process the last span-window beginning on that

processor. This is illustrated in Figure 7. Since we assume that span-windows do not straddle

more than two processors, just the neighbor-to-neighbor communication is su�cient. Once

every span-window is complete on all processors, each processor processes only those span-

windows which begin at the events points originally assigned to it. For example, processor

P0 processes windows that begin at time instances 0, 1, 2, and 3, whereas processor P1 will

process windows that begin at 4, 5, 6, and 7. By distributing the event points equitably,

load balance can be achieved. As in EVE-S algorithm, the occurrences are collected by a

global communication (reduction) operation, in the end.

13

0 1 2 3 4 5 6 7 8 9 10 11

P2P0 P1

span-window

P0

0 1 2 3 4 5 6 7

P1

8 9 10 114 5 6 7

P2

8 9 10 11

Figure 7: Illustration of EVE-R algorithm.

3.3 EVE-C: Complex Event Distribution Algorithm

This formulation depicts the most complex scenario as far as distribution of the counting

workload is concerned. This happens when there are small number of objects, each object

has a large timeline, and the span value is large such that after splitting the object time-lines

across processors, the span-windows straddle more than two processors. There are two ways

to handle this.

One way is to replicate the data across processors such that no processor has any incom-

plete or partial span-window. This is the same idea used in EVE-R, what makes it di�erent

is the fact that the amount of replication can become very large in this case. So, if processors

do not have enough disk space to hold the entire replicated information, this approach may

not be feasible. Even when there is enough disk space available on each processor, the repli-

cation of data may result in a lot of replication of work. This is illustrated using a simple

example in Figure 8. Consider counting the number of occurrences for the sequence (3)(5).

If the entire span-window [1,5] was available on a single processor, the serial algorithm would

just count a single occurrence of (3)(5) in the range [4,5] and increment its count by 4 in one

single operation. Now, let the span-window be split across processors, and it is replicated on

processors P0, P1, and P2 as done in EVE-R. Each processor is assigned to count occurrences

of (3)(5) in windows beginning at their respective event points. Processor P0 will search for

an occurrence of (3)(5) in window beginning at 1, similarly P1 will search for occurrence of

(3)(5) for windows beginning at 2 and 3. Thus, the occurrence of (3)(5) is being searched

by all the three processors resulting in replication of work. In order to avoid this replication

of work, a processor can be restricted to �nd only those occurrences which have at least one

of the events assigned to that processor. With this restriction, in our example, P0 and P1

do not count (3)(5)'s occurrence, only P2 does. For (3)(5), P2 can �nd the correct count by

using the same formula as a serial algorithm would use. But, consider the case of counting

(1)(3)(5). With the restriction just imposed, if occurrences are counted using the formula

of a serial algorithm, P0 counts for occurrence in window starting at 1, and P2 counts for

14

1 1 2 1 3 5

0 1 2 3 4 5

P0 P1 P2

Span-window

1 1 2 1 3 5

Original Object Timeline After Replication on Processors

P0

P1

2 1 3 5

2 3 4 5

P2

4 5

3 5

0 1 2 3 4 5

Figure 8: Illustration of EVE-C algorithm when data is replicated across processors.

occurrences in windows starting at 1 and 2! Thus, there is a danger of double counting. If P1

communicates its range of occurrence of (1)(3)(5) to P0 (or vice versa), incorrect counting

can be avoided. In general, a processor would have to communicate information for all the

occurrences that might belong to windows starting on other processors. This may result in

a lot of communication, especially when the number of candidates is large.

Thus, when data is replicated, there is trade-o� between the approach of replicating the

work with no communication cost (except for the data replication cost), and the approach

of avoiding work replication by paying the extra cost of communicating the occurrences.

The second way to handle this is not to replicate the data. Now, two kinds of situations

need to be handled. We will use the timeline shown in Figure 9(a) to illustrate this.

� Those occurrences that are found completely on a single processor might contribute

to span-windows that begin on other processors. For example, (1 4) is found on both

P0 and P1 in Figure 9(a). Care should be taken to avoid counting (1 4) twice in the

[1,9] window. This can be done by simply restricting each processor to count for only

those windows that begin at event-points assigned to it. For example, P1 will associate

(1 4)'s occurrence only with windows beginning at 4 and 5. But, if this is done, the

counting algorithm could miss counting occurrences in some span-windows that begin

on other processors. For example, (1 4) also occurs in windows beginning at 2 and

3, but this will not be accounted for using above strategy. In this case, P1 should

communicate the range of its (1 4) occurrence to P0 so as to account for windows

beginning at 2 and 3. As can be seen, for such occurrences, the situation is similar to

the one encountered while avoiding replication of work with data replication approach.

� Some occurrences cannot be declared to occur in some span-windows because there

may not be su�cient data available on a single processor. For example, occurrence of

(2)(1)(2) cannot be found unless all processors co-operate. This gives rise to the most

complex method of parallelizing the counting process.

15

The �rst phase of hash tree traversal determines which leaves of the tree are reachable

by a given timeline. The traversal would reach an internal node, and realize that it

cannot �nd next eligible event to hash because the event may lie on the next processor.

In such case, instead of terminating the search on that path, the search is suspended.

The state of suspension is stored at every such node. All the suspended states need

to be passed to the processor having the next consecutive segment of the timeline.

The receiving processor will start traversing the hash tree from the suspended states

that it receives. Using this procedure, each processor will �nd a set of leaves that are

reachable by the timeline. This set needs to be broadcast to all the processors.

Once every processor knows the set of candidates that needs to be actually searched

for in the timeline, the second part of the counting phase starts. Remember the way

counting happens serially. Occurrences of sequences are searched one after another,

starting from the smallest time-point in the timeline. The number of span-windows that

each occurrence contributes to is counted based on the range in which that occurrence

is found and the starting time of the previously found occurrence. In order to do this

in parallel for partial occurrences, a processor needs to transfer all its partially found

occurrences along with their timestamps to the next processor (which has the next

consecutive part of the timeline). The serial (chain-like) nature of this procedure is

inevitable. The worst case is when each processor �nds all its partial occurrences before

communicating them to the next processor, in which case the parallelism achieved for

the these occurrences is minimal. This can be slightly alleviated by sending some partial

occurrences before �nding next, in a pipeline manner, with the hope of achieving some

overlap of communication and computation.

This entire approach can become very expensive if any of the following happens:

1. The amount of partial work transferred, both in the hash tree traversal phase

(suspended hash tree states) and in the counting phase (partial occurrences), can

quickly become very large. This is due to the nature of the association discovery

problem in which each span window has a potential of supporting exponential

number of sequences. The cost arising due to performing hash tree traversal

phase in parallel can be avoided by just deciding not to build any hash tree access

structure. But, that might increase amount of partial sequence occurrences that

need to be sent in counting phase. So, the decision of whether to build the hash

tree would depend on the number of candidates found. For some earlier passes,

building a hash tree might pay o� by reducing communication in the counting

phase.

2. In the counting phase, if a search for a sequence needs to be backtracked, then

the formulation becomes much more complex. There needs to be a back and forth

communication between processors to do backtracking in parallel. This can be

avoided by making a processor search for all possible occurrences of each event-set

in the sequence and passing them onto the next processor. But, this would imply

an enormous amount of work to be transferred, much more than what was eluded

to in the �rst point above.

16

To P1 To P2 To P0

Transfer Suspended Hash Tree States

P1P0 P2

Transfer Partial Occurrences

To P1 To P2 To P0

Objects0

0

(b)

1
4 2

3
1
4

2
3

1 2 3 4 5 6 7 8 9 10 110

Span-window

(a)

P0 P1 P2

Figure 9: Illustration of EVE-C algorithm when data is not replicated across processors. (a)

An example timeline used to illustrate issues in counting occurrences, (b). A schematic of

the process used to handle partial occurrences.

This leads us to consider a trade-o� between the choices of replicating and not repli-

cating the input dataset. The scenarios described above, in which the formulation with no

replication of data can become very expensive, are not rare. So, we believe that in many

cases, the formulation which replicates the data on all processors might be desirable for

lower complexity as well as better execution time. The worst case cost of having the entire

dataset residing on all processors, and incurring either the work replication cost or the cost

of communicating occurrence ranges, might be much less than the cost of transferring partial

work. Moreover, we believe that the computational concurrency extracted by the replication

approach could be more than the non-replication approach.

Finally, a point to note is that the above description assumed the CWIN counting method.

With CDIST counting method, which requires each event-timestamp pair to be considered

at most once for each candidate sequence, the parallelization becomes much more complex.

17

3.4 Event and Candidate Distribution (EVECAN) Algorithm

In the set of EVE algorithms described above, it is assumed that the candidates are replicated

over all the processors. This may not be desirable when the number of candidates is very

large, and with the complexity of sequential patterns such scenarios are not uncommon.

Large number of candidates results in two things. The set of candidates may not �t in

the memory of a processor, in which case the hash tree needs to be built in parts. This

involves multiple I/O passes over the disk for counting the candidates. Secondly, since

EVE algorithm builds candidates serially on all processors, thus losing out on extracting the

possible concurrency, the amount of time spent in generating the large number of candidates

can be signi�cantly large.

These issues are addressed in our second formulation, called EVECAN (event and can-

didate distribution). In this algorithm, we partition the input data similar to EVE. But,

now the candidates are also distributed. They are stored in a distributed hash table. The

hashing criterion is designed to maintain equal number of candidates on all processors. One

simple hash function can be based on the lexicographical ordering of candidates and splitting

them among processors such that all candidates assigned to one processor have a common

pre�x sequence. The non-local candidates required for the join-and-prune phase are obtained

using the scalable communication structure of the parallel hashing paradigm introduced in

[JKK98]. Now since all the processors must count all the candidates, there are two options.

In the �rst option, we keep the candidates stationary at processors and a local hash tree

access structure is built for these candidates. The input data is circulated among proces-

sors in a fashion similar to that of the round-robin scheme proposed for IDD algorithm of

[HKK99]. But this option may work only when the span value is small, in which case we will

circulate the span-windows. For large span-values, it could be very expensive to send all the

span-windows to all the processors. In such cases, second option can be used, which is to

move around the candidates in a round robin fashion. Building a new hash tree for every set

of candidates received can be prohibitively expensive, so no access structure may be built

for this option. In both the options, a hash function is used to do a relatively quick search

of whether a span-window can contain the candidates stored at that processor. Figure 10

pictorially depicts the EVECAN algorithm.

Note that, with the option of moving candidates around, the object time-lines can be

distributed according the most complex scenario of EVE algorithm. When this happens, the

possibility of using a EVE algorithm by itself (replicating the candidates over all processors)

needs to be weighed against the possibility of using EVECAN algorithm. EVECAN would

need to handle the large time-lines using method similar to EVE-C in every rotation of

candidates. This can be very expensive.

Here, we have not presented any implementation details or experimental results for the

EVE and EVECAN parallel formulations. This section was intended merely to bring out

the importance of sequential pattern discovery, the need for designing parallel algorithms for

discovery task, and the issues and challenges involved in designing e�cient parallel formula-

tions.

18

Rotate Candidates in
Round-Robin Manner

Rotate Objects in
Round-Robin Manner

P0 P1 P2

Objects

Count Count Count

OR

EITHER

Figure 10: Illustration of EVECAN algorithm for parallel discovery of generalized sequential

associations.

19

4 Conclusion

In this paper, we elaborated on the issues and challenges of parallelization, presented a

comparative review of existing parallel algorithms, and proposed new parallel algorithms for

mining generalized sequential associations.

We considered formulations that utilize the temporal and sequential information in the

datasets to discover sequential associations. A generalized universal formulation was pre-

sented, which characterizes a sequential association by various timing constraints and count-

ing strategies. Speci�cally, this formulation introduces the concept of maximum span, and

allows counting for more than one occurrences in an object's time-line. The modi�cation

of existing GSP algorithm was presented for discovering these more general sequential as-

sociations. A case was made for the need of parallel formulations. The maximum span

constraint and counting multiple occurrences in an object, give rise to challenging scenar-

ios for designing e�ective parallel algorithms to discover generalized sequential associations.

We elaborated on four di�erent parallel formulations which work for datasets of di�erent

characteristics.

For datasets having large number of objects with smaller time-lines, a simple event distri-

bution algorithm (EVE-S) is proposed. This algorithm is very similar to the CD approach of

parallelizing non-sequential associations, except for the di�erences in the details of counting

occurrences. The parallelization becomes challenging especially when the number of objects

is smaller than the number of processors and each object has large and dense time-line. This

situation can occur in many application domains depending on the formulations of objects

and events in the input dataset (for example, in telecommunications data, if an object is

the month in which the alarms are recorded, and events are pairs of switch and alarms

happening on them during the given month). We discussed various issues in parallelizing

under such circumstances. The formulation EVE-R tries to reduce the problem to EVE-S

algorithm by replicating the data over such that each processor has complete information

for the span-windows assigned to it. The data replication might become expensive when

the span values are large (possibly extending to large portions of the time-line). This leads

to the complex EVE-C formulation, where we discussed the pros and cons of replicating

versus not replicating the data. It was shown that, in most situations, the large amount

of work that needs to be shifted using the no-replication approach might quickly make it

ine�cient as compared to the replication-of-data approach even after paying the replication

cost and cost of communicating the occurrence information among processors. Finally, a

formulation EVECAN is presented using similar principles as the IDD parallel algorithm for

non-sequential associations. It speci�cally handles the combinations of minimum support

and datasets which generate large number of candidates. EVECAN is di�erent from IDD in

the way it introduces the movement of candidates, and in its parallelization of candidate gen-

eration phase by building and probing a distributed hash table of candidates using scalable

communication mechanisms.

Overall, this paper serves as a comprehensive account of various design issues, challenges,

and di�erent parallelization strategies for mining sequential associations.

20

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets

of items in large databases. In Proc. of 1993 ACM-SIGMOD Int. Conf. on Man-

agement of Data, Washington, D.C., 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.

of the 20th VLDB Conference, pages 487{499, Santiago, Chile, 1994.

[AS96] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the Int'l

Conference on Data Engineering (ICDE), Taipei, Taiwan, March 1996.

[CHY96] M.S. Chen, J. Han, and P.S. Yu. Data mining: An overview from database perspec-

tive. IEEE Transactions on Knowledge and Data Eng., 8(6):866{883, December

1996.

[HKK97] E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association

rules. In Proc. of 1997 ACM-SIGMOD Int. Conf. on Management of Data, Tucson,

Arizona, 1997.

[HKK99] E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association

rules. IEEE Transactions on Knowledge and Data Eng. (accepted for publication),

1999.

[JKK98] Mahesh V. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scalable and

e�cient parallel classi�cation algorithm for mining large datasets. In Proc. of the

12th International Parallel Processing Symposium, Orlando, Florida, April 1998.

[JKK99] Mahesh V. Joshi, George Karypis, and Vipin Kumar. Universal formulation of se-

quential patterns. Technical Report Under Preparation, Department of Computer

Science, University of Minnesota, Minneapolis, 1999.

[MTV95] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in

sequences. In Proc. of the First Int'l Conference on Knowledge Discovery and

Data Mining, pages 210{215, Montreal, Quebec, 1995.

[MTV97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent

episodes in event sequences. Technical Report C-1997-15, Department of Computer

Science, University of Helsinki, Finland, 1997.

[SA96] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and

performance improvements. In Proc. of the Fifth Int'l Conference on Extending

Database Technology, Avignon, France, 1996.

[SK98] Takahiko Shintani and Masaru Kitsuregawa. Mining algorithms for sequential pat-

terns in parallel: Hash based approach. In Research and Development in Knowl-

edge Discovery and Data Mining: Second Paci�c-Asia Conference (PAKDD'98),

pages 283{294, Melbourne, Australia, April 1998.

21

