
Scalable Parallel Data Mining
for Association Rules

Eui-Hong (Sam) Han, George Karypis, Member, IEEE, and Vipin Kumar, Fellow, IEEE

AbstractÐIn this paper, we propose two new parallel formulations of the Apriori algorithm that is used for computing association rules.

These new formulations, IDD and HD, address the shortcomings of two previously proposed parallel formulations CD and DD. Unlike

the CD algorithm, the IDD algorithm partitions the candidate set intelligently among processors to efficiently parallelize the step of

building the hash tree. The IDD algorithm also eliminates the redundant work inherent in DD, and requires substantially smaller

communication overhead than DD. But IDD suffers from the added cost due to communication of transactions among processors. HD

is a hybrid algorithm that combines the advantages of CD and DD. Experimental results on a 128-processor Cray T3E show that HD

scales just as well as the CD algorithm with respect to the number of transactions, and scales as well as IDD with respect to increasing

candidate set size.

Index TermsÐData mining, parallel processing, association rules, load balance, scalability.

æ

1 INTRODUCTION

ONE of the important problems in data mining [1] is
discovering association rules from databases of trans-

actions, where each transaction contains a set of items. The
most time consuming operation in this discovery process is
the computation of the frequencies of the occurrence of
subsets of items, also called candidates, in the database of
transactions. Since, usually, such transaction-based data-
bases contain a large number of distinct items, the total
number of candidates is prohibitively large. Hence, current
association rule discovery techniques [2], [3], [4], [5] try to
prune the search space by requiring a minimum level of
support for candidates under consideration. Support is a
measure of the number of occurrences of the candidates in
database transactions. Apriori [2] is a recent state-of-the-art
algorithm that aggressively prunes the set of potential
candidates of size k by using the following observation: A
candidate of size k can meet the minimum level of support
only if all of its subsets also meet the minimum level of
support. In the kth iteration, this algorithm computes the
occurrences of potential candidates of size k in each of the
transactions. To do this task efficiently, the algorithm
maintains all potential candidates of size k in a hash tree.
This algorithm does not require the transactions to stay in
main memory, but requires the hash trees to stay in main
memory. If the entire hash tree cannot fit in the main
memory, then the hash tree needs to be partitioned and
multiple passes over the transaction database need to be
performed (one for each partition of the hash tree). Even
with the highly effective pruning method of Apriori, the
task of finding all association rules in many applications can

require a lot of computation power that is available only in
parallel computers.

Two parallel formulations of the Apriori algorithm were
proposed in [6], Count Distribution (CD) and Data Distribu-
tion (DD). The CD algorithm scales linearly and has
excellent speedup and sizeup behavior with respect to the
number of transactions [6]. However, there are two
problems with this algorithm. First, it does not parallelize
the computation for building the hash tree. On a serial
algorithm, this step takes relatively small amount of time.
But on parallel computations, it can become a major
bottleneck. Second, if the hash tree does not fit in the main
memory, then the extra disk I/O for the multiple passes
over the transaction database can be expensive on machines
with slow I/O systems. Hence, the CD algorithm, like its
sequential counterpart Apriori, is unscalable with respect to
the increasing size of the candidate set. The DD algorithm
addresses these problems of the CD algorithm by partition-
ing the candidate set and assigning a partition to each
processor in the system. However, this algorithm suffers
from three types of inefficiency. First, the algorithm results
in high communication overhead due to an inefficient
scheme used for data movement. Second, the schedule for
interactions among processors is such that it can cause
processors to idle. Third, each transaction has to be
processed against multiple hash trees causing redundant
computation.

In this paper, we present two new parallel formulations
of the Apriori algorithm for mining association rules. We
first present the Intelligent Data Distribution (IDD) algorithm
that improves upon the DD algorithm by minimizing
communication overhead and processor idling time, and
by eliminating redundant computation. However, the static
partitioning of the hash tree results in load imbalance that
becomes severe for a large number of processors. Further-
more, even with the optimized communication scheme, the
communication overhead of IDD grows linearly with the
number of transactions. Our second formulation, the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000 337

. The authors are with the Army HPC Research Center and the Department
of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN 55455.
E-mail: {han, karypis, kumar}@cs.umn.edu.

Manuscript received 12 Aug. 1997; revised 14 Dec. 1998; accepted 9 Sept.
1999.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 105496.

1041-4347/00/$10.00 ß 2000 IEEE

Hybrid Distribution (HD) algorithm, combines the advan-
tages of both the CD algorithm and the IDD algorithm by
dynamically grouping processors and partitioning the
candidate set accordingly to maintain good load balance.
The experimental results on a Cray T3E parallel computer
show that the HD algorithm scales very well and exploits
the aggregate memory efficiently.

The rest of this paper is organized as follows: Section 2
provides an overview of the serial algorithm for mining
association rules. Section 3 describes existing and proposed
parallel algorithms. Section 4 presents the performance
analysis of the algorithms. Experimental results are shown
in Section 5. Section 6 contains conclusions. A preliminary
version of this paper appeared in [7].

2 BASIC CONCEPTS

Let T be the set of transactions where each transaction is a
subset of the item-set I. Let C be a subset of I, then we
define the support count of C with respect to T to be:

��C� �j ft j t 2 T;C � tg j :
Thus, ��C� is the number of transactions that contain C. For
example, consider a set of transactions from the super-
market as shown in Table 1. The items set I for these
transactions is (Bread, Beer, Coke, Diaper, Milk). The
support count of (Diaper, Milk) is ��Diaper;Milk� � 3�,
whereas ��Diaper;Milk; Beer� � 2.

An association rule is an expression of the form X �)s;� Y ,
where X � I and Y � I. The support s of the rule X �)s;� Y is
defined as ��X [Y �= j T j , and the confidence � is defined
as ��X [Y �=��X�. For example, consider a rule
(Diaper, Milk) �) (Beer), i.e., presence of diaper and milk
in a transaction tends to indicate the presence of beer in the
transaction. The support of this rule is

���Diaper;Milk; Beer�=5 � 40 percent:

The confidence of this rule is

��Diaper;Milk; Beer�=��Diaper;Milk� � 66 percent:

A rule that has a very high confidence (i.e., close to 1.0) is
often very important because it provides an accurate
prediction on the association of the items in the rule. The
support of a rule is also important since it indicates how
frequent the rule is in the transactions. Rules that have very
small support are often uninteresting since they do not
describe significantly large populations. This is one of the
reasons why most algorithms [2], [3], [4] disregard any rules

that do not satisfy the minimum support condition
specified by the user. This filtering, due to the minimum
required support, is also critical in reducing the number of
derived association rules to a manageable size. Note that the
total number of possible rules is proportional to the number
of subsets of the item-set I, which is 2jIj. Hence, the filtering
is absolutely necessary in most practical settings.

The task of discovering an association rule is to find all
rules X �)s;� Y , such that s is greater than or equal to a given
minimum support threshold and � is greater than or equal
to a given minimum confidence threshold. The association
rule discovery is composed of two steps. The first step is to
discover all the frequent item-sets (candidate sets that have
more support than the minimum support threshold
specified). The second step is to generate association rules
from these frequent item-sets. The computation of finding
the frequent item-sets is much more expensive than finding
the rules from these frequent item-sets. Hence, in this paper,
we only focus on the first step. The parallel implementation
of the second step is straightforward and is discussed in [6].

A number of sequential algorithms have been developed
for discovering frequent item-sets [8], [2], [3]. Our parallel
algorithms are based on the Apriori algorithm [2] that has
smaller computational complexity compared to other
algorithms. In the rest of this section, we briefly describe
the Apriori algorithm. The reader should refer to [2] for
further details.

The high level structure of the Apriori algorithm is given
in Fig. 1. The Apriori algorithm consists of a number of
passes. Initially, F1 contains all the items (i.e., item set of
size one) that satisfy the minimum support requirement.
During pass k, the algorithm finds the set of frequent item-
sets Fk of size k that satisfy the minimum support
requirement. The algorithm terminates when Fk is empty.
In each pass, the algorithm first generates Ck, the candidate
item-sets of size k. Function apriori_gen (Fkÿ1) constructs Ck
by extending frequent item-sets of size kÿ 1. This ensures
that all the subsets of size kÿ 1 of a new candidate item-set
are in Fkÿ1. Once the candidate item-sets are found, their
frequencies are computed by counting how many transac-
tions contain these candidate item-sets. Finally, Fk is
generated by pruning Ck to eliminate item-sets with
frequencies smaller than the minimum support. The union
of the frequent item-sets,

S
Fk, is the frequent item-sets

from which we generate association rules.

338 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

TABLE 1
Transactions from the Supermarket

Fig. 1. Apriori algorithm.

Computing the counts of the candidate item-sets is the
most computationally expensive step of the algorithm. One
naive way to compute these counts is to perform string-
matching of each transaction against each candidate item-
set. A faster way of performing this operation is to use a
candidate hash tree in which the candidate item-sets are
hashed [2]. Here, we explain this via an example to facilitate
the discussions of parallel algorithms and their analysis.

Fig. 2 shows one example of the candidate hash tree with
candidates of size 3. The internal nodes of the hash tree
have hash tables that contain links to child nodes. The leaf
nodes contain the candidate item-sets. A hash tree of
candidate item-sets is constructed as follows: Initially, the
hash tree contains only a root node, which is a leaf node
containing no candidate item-set. When each candidate
item-set is generated, the items in the set are stored in
sorted order. Note that since C1 and F1 are created in sorted
order, each candidate set is generated in sorted order
without any need for explicit sorting. Each candidate item-
set is inserted into the hash tree by hashing each successive
item at the internal nodes and then following the links in
the hash table. Once a leaf is reached, the candidate item-set
is inserted at the leaf if the total number of candidate
item-sets are less than the maximum allowed. If the total

number of candidate item-sets at the leaf exceeds the
maximum allowed and the depth of the leaf is less than k,
the leaf node is converted into an internal node and child
nodes are created for the new internal node. The candidate
item-sets are distributed to the child nodes according to the
hash values of the items. For example, the candidate item
set {1 2 4} is inserted by hashing Item 1 at the root to reach
the left child node of the root, hashing Item 2 at that node to
reach the middle child node, and hashing Item 3 to reach
the left child node which is a leaf node.

The subset function traverses the hash tree from the root
with every item in a transaction as a possible starting item
of a candidate. In the next level of the tree, all the items of
the transaction following the starting item are hashed. This
is done recursively until a leaf is reached. At this time, all
the candidates at the leaf are checked against the transaction
and their counts are updated accordingly. Fig. 2 shows the
subset operation at the first level of the tree with transaction
{1 2 3 5 6}. Item 1 is hashed to the left child node of the root,
and the following transaction {2 3 5 6} is applied recursively
to the left child node. Item 2 is hashed to the middle child
node of the root and the whole transaction is checked
against two candidate item-sets in the middle child node.
Then, Item 3 is hashed to the right child node of the root,
and the following transaction {5 6} is applied recursively to
the right child node. Fig. 3 shows the subset operation on
the left child node of the root. Here, the Items 2 and 5 are
hashed to the middle child node and the following
transactions {3 5 6} and {6}, respectively, are applied
recursively to the middle child node. Item 3 is hashed to
the right child node and the remaining transaction {5 6} is
applied recursively to the right child node.

3 PARALLEL ALGORITHMS

In this section, we will focus on the parallelization of the
task that finds all frequent item-sets. We first discuss two

HAN ET AL.: SCALABLE PARALLEL DATA MINING FOR ASSOCIATION RULES 339

Fig. 2. Subset operation on the root of a candidate hash tree.

Fig. 3. Subset operation on the left most subtree of the root of a

candidate hash tree.

parallel algorithms proposed in [6] to help motivate our
parallel formulations. We also briefly discuss other parallel
algorithms. In all our discussions, we assume that the
transactions are evenly distributed among the processors.

3.1 Count Distribution Algorithm

In the Count Distribution (CD) algorithm proposed in [6],
each processor computes how many times all the candi-
dates appear in the locally stored transactions. This is done
by building the entire hash tree that corresponds to all the
candidates and then performing a single pass over the
locally stored transactions to collect the counts. The global
counts of the candidates are computed by summing these
individual counts using a global reduction operation [9].
This algorithm is illustrated in Fig. 4. Note that since each
processor needs to build a hash tree for all the candidates,
these hash trees are identical at each processor. Thus,
excluding the global reduction, each processor in the CD
algorithm executes the serial Apriori algorithm on the
locally stored transactions.

This algorithm has been shown to scale linearly with the
number of transactions [6]. This is because each processor
can compute the counts independently of the other
processors, and needs to communicate with the other
processors only once at the end of the computation step.
However, this algorithm does not parallelize the computa-
tion of building the candidate hash tree. This step becomes
a bottleneck with large number of processors. Furthermore,
if the number of candidates is large, then the hash tree does
not fit into the main memory. In this case, this algorithm has
to partition the hash tree and compute the counts by
scanning the database multiple times, once for each
partition of the hash tree. The cost of extra database
scanning can be expensive in the machines with slow I/O
system. Note that the number of candidates increases if

either the number of distinct items in the database increases
or if the minimum support level of the association rules
decreases. Thus, the CD algorithm is effective for small
number of distinct items and a high minimum support
level.

3.2 Data Distribution Algorithm

The Data Distribution (DD) algorithm [6] addresses the
memory problem of the CD algorithm by partitioning the
candidate item-sets among the processors. This partitioning
is done in a round-robin fashion. Each processor is
responsible for computing the counts of its locally stored
subset of the candidate item-sets for all the transactions in
the database. In order to do that, each processor needs to
scan the portions of the transactions assigned to the other
processors as well as its locally stored portion of the
transactions. In the DD algorithm, this is done by having
each processor receive the portions of the transactions
stored in the other processors as follows: Each processor
allocates P buffers (each one page long and one for each
processor). At processor Pi, the ith buffer is used to store
transactions from the locally stored database and the
remaining buffers are used to store transactions from the
other processors. Now each processor Pi checks the P
buffers to see which one contains data. Let l be this buffer
(ties are broken in favor of buffers of other processors and
ties among buffers of other processors are broken arbitra-
rily). The processor processes the transactions in this buffer
and updates the counts of its own candidate subset. If this
buffer corresponds to the buffer that stores local transac-
tions (i.e., l � i), then it is sent to all the other processors (via
asynchronous sends) and a new page is read from the local
database. If this buffer corresponds to a buffer that stores
transactions from another processor (i.e., l 6� i), then it is

340 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 4. Count Distribution (CD) algorithm.

cleared and this buffer is marked available for the next
asynchronous receive from any other processors. This
continues until every processor has processed all the
transactions. Having computed the counts of its candidate
item-sets, each processor finds the frequent item-sets from
its candidate item-set and these frequent item-sets are sent
to every other processor using an all-to-all broadcast
operation [9]. Fig. 5 shows the high level operations of the
algorithm. Note that each processor has a different set of
candidates in the candidate hash tree.

This algorithm exploits the total available memory better
than CD as it partitions the candidate set among processors.
As the number of processors increases, the number of
candidates that the algorithm can handle also increases.
However, as reported in [6], the performance of this
algorithm is significantly worse than the CD algorithm.
The run time of this algorithm is 10 to 20 times more than
that of the CD algorithm on 16 processors [6]. The problem
lies with the communication pattern of the algorithm and
the redundant work that is performed in processing all the
transactions.

The communication pattern of this algorithm causes
three problems. First, during each pass of the algorithm,
each processor sends to all the other processors the portion
of the database that resides locally. In particular, each
processor reads the locally stored portion of the database
one page at a time and sends it to all the other processors by
issuing P ÿ 1 send operations. Similarly, each processor
issues a receive operation from each other processor in
order to receive these pages. If the interconnection network
of the underlying parallel computer is fully connected (i.e.,
there is a direct link between all pairs of processors) and
each processor can receive data on all incoming links
simultaneously, then this communication pattern will lead

to a very good performance. In particular, if O�N=P � is the
size of the database assigned locally to each processor, the
amount of time spent in the communication will be
O�N=P �. However, even on the parallel computer with
fully connected network, if each processor can receive data
from (or send data to) only one other processor at a time,
then the communication will be O�N�. On all realistic
parallel computers, the processors are connected via sparser
networks (such as 2D, 3D, or hypercube) and a processor
can receive data from (or send data to) only one other
processor at a time. On such machines, this communication
pattern will take significantly more than O�N� time because
of contention within the network.

Second, in architectures without asynchronous commu-
nication support and with finite number of communication
buffers in each processor, the proposed all-to-all commu-
nication scheme causes processors to idle. For instance,
consider the case when one processor finishes its operation
on local data and sends the buffer to all other processors.
Now if the communication buffer of any receiving
processors is full and the outgoing communication buffers
are full, then the send operation is blocked.

Third, if we look at the size of the candidate sets as a
function of the number of passes of the algorithm, we see
that in the first few passes, the size of the candidate sets
increases and after that it decreases. In particular, during
the last several passes of the algorithm, there are only a
small number of items in the candidate sets. However, each
processor in the DD algorithm still sends the locally stored
portions of the database to all the other processors. Thus,
even though the computation decreases, the amount of
communication remains the same.

The redundant work is introduced due to the fact that
every processor has to process every single transaction in

HAN ET AL.: SCALABLE PARALLEL DATA MINING FOR ASSOCIATION RULES 341

Fig. 5. Data Distribution (DD) algorithm.

the database. In CD (see Fig. 4), only N=P transactions go
through each hash tree of M candidates, whereas in DD
(see Fig. 5), all N transactions have to go through each hash
tree of M=P candidates. Although, the number of candi-
dates stored at each processor has been reduced by a factor
of P , the amount of computation performed for each
transaction has not been proportionally reduced. If the
amount of work required for each transaction to be checked
against the hash tree of M=P candidates is 1=P of that of the
hash tree of M candidates, then there is no extra work. As
discussed in Section 4, in general, the amount of work per
transaction will go down by a factor much smaller than P .

3.3 Intelligent Data Distribution Algorithm

We developed the Intelligent Data Distribution (IDD) algo-
rithm that solves the problems of the DD algorithm
discussed in Section 3.2. In IDD, the locally stored portions
of the database are sent to all the other processors by using
a ring-based all-to-all broadcast described in [9]. This
operation does not suffer from the contention problems of
the DD algorithm and it takes O�N� time on any parallel
architecture that can be embedded in a ring. Fig. 6 shows
the pseudocode for this data movement operation. In our
algorithm, the processors form a logical ring and each
processor determines its right and left neighboring proces-
sors. Each processor has one send buffer (SBuf) and one
receive buffer (RBuf). Initially, the SBuf is filled with one
block of local data. Then each processor initiates an
asynchronous send operation to the right neighboring
processor with SBuf and an asynchronous receive operation
to the left neighboring processor with RBuf. While these
asynchronous operations are proceeding, each processor
processes the transactions in SBuf and collects the counts of
the candidates assigned to the processor. After this
operation, each processor waits until these asynchronous
operations complete. Then the roles of SBuf and RBuf are
switched and the above operations continue for P ÿ 1 times.
Compared to DD, where all the processors send data to all
other processors, we perform only a point-to-point com-
munication between neighbors, thus, eliminating any
communication contention. Furthermore, if the time to

process a buffer does not vary much, then there is little time
lost in idling.

In order to eliminate the redundant work, due to the
partitioning of the candidate item-sets, we must find a fast
way to check whether a given transaction can potentially
contain any of the candidates stored at each processor. This
cannot be done by partitioning Ck in a round-robin fashion.
However, if we partition Ck among processors in such a
way that each processor gets item-sets that begin only with
a subset of all possible items, then we can check the items of
a transaction against this subset to determine if the hash
tree contains candidates starting with these items. We
traverse the hash tree with only the items in the transaction
that belong to this subset. Thus, we solve the redundant
work problem of DD by the intelligent partitioning of Ck.

Fig. 7 shows the high level picture of the algorithm. In
this example, Processor 0 has all the candidates starting
with Items 1 and 7, Processor 1 has all the candidates
starting with 2 and 5, and so on. Each processor keeps the
first items of the candidates it has in a bit-map. In the
Apriori algorithm, at the root level of hash tree, every item
in a transaction is hashed and checked against the hash tree.
However, in our algorithm, at the root level, each processor
filters every item of the transaction by checking against the
bit-map to see if the processor contains candidates starting
with that item of the transaction. If the processor does not
contain the candidates starting with that item, the proces-
sing steps involved with that item as the first item in the
candidate can be skipped. This reduces the amount of
transaction data that has to go through the hash tree; thus,
reducing the computation. For example, let {1 2 3 4 5 6 7 8}
be a transaction that Processor 0 is processing in the subset
function discussed in Section 2. At the top level of the hash
tree, Processor 0 will only proceed with Items 1 and 7
(i.e., 1� 2 3 4 5 6 7 8 and 7� 8). When the page containing
this transaction is shifted to Processor 1, this processor will
only process items starting with 2 and 5 (i.e., 2� 3 4 5 6 7 8
and 5� 6 7 8). Fig. 8 shows how this scheme works when a
processor contains only those candidate item-sets that start
with 1, 3, and 5. Thus, for each transaction in the database,
our approach partitions the amount of work to be
performed among processors, thus, eliminating most of
the redundant work of DD. Note that both the judicious
partitioning of the hash tree (indirectly caused by the
partitioning of candidate item-set) and the filtering step are
required to eliminate this redundant work.

The intelligent partitioning of the candidate set used in
IDD requires our algorithm to have a good load balancing.
One of the criteria of a good partitioning involved here is to
have an equal number of candidates in all the processors.
This gives about the same size hash tree in all the processors
and, thus, provides good load balancing among processors.
Note that in the DD algorithm, this was accomplished by
distributing candidates in a round robin fashion. A naive
method for assigning candidates to processors can lead to a
significant load imbalance. For instance, consider a database
with 100 distinct items numbered from 1 to 100 and that the
database transactions have more data items numbered with
1 to 50. If we partition the candidates between two
processors and assign all the candidates starting with items

342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 6. Pseudocode for data movements.

1 to 50 to Processor P0 and candidates starting with items
51 to 100 to Processor P1, then there would be more work
for Processor P0.

To achieve an equal distribution of the candidate item-
sets, we use a partitioning algorithm that is based on bin-
packing [10]. For each item, we first compute the number of
candidate item-sets starting with this particular item. Note
that at this time, we do not actually store the candidate
item-sets but just store the number of candidate item-sets
starting with each item. We then use a bin-packing
algorithm to partition these items in P buckets such that
the sum of numbers of the candidate item-sets starting with
these items in each bucket are roughly equal. Once the
location of each candidate item-set is determined, then each
processor locally regenerates and stores candidate item-sets
that are assigned to this processor. Note that bin-packing is
used per pass of the algorithm and the amount of time
spent on bin-packing is minor compared to the overall
runtime. Fig. 7 shows the partitioned candidate hash tree
and its corresponding bitmaps in each processor.

Note that this scheme will not be able to achieve an equal
distribution of candidates if there are too many candidate
item-sets starting with the same item. For example, if there
are more than M=P candidates starting with the same item,
then one processor containing candidates starting with this
item will have more than M=P candidates even if no other
candidates are assigned to it. This problem gets more
serious with increasing P . One way of handling this
problem is to partition candidate item-sets based on more
than the first items of the candidate item-sets. In this
approach, whenever the number of candidates starting with
one particular item is greater than the threshold, this item
set is further partitioned using the second item of the
candidate item-sets.

Note that the equal assignment of candidates to the

processors does not guarantee the perfect load balance

among processors. This is because the cost of traversal and

checking at the leaf node are determined not only by the

size and shape of the candidate hash tree, but also by the

actual items in the transactions. However, in our experi-
ments, we have observed a reasonably good correlation

between the size of candidate sets and the amount of work

done by each processor. For example, with four processors,

we were able to obtain the the load imbalance of 1.3 percent

in terms of the number of candidate sets, and this translated

into 5.4 percent load imbalance in the actual computation

time. With eight processors, we had 2.3 percent load

imbalance in the number of candidate sets and this resulted

HAN ET AL.: SCALABLE PARALLEL DATA MINING FOR ASSOCIATION RULES 343

Fig. 7. Intelligent Data Distribution (IDD) algorithm.

Fig. 8. Subset operation on the root of a candidate hash tree in IDD.

in 9.4 percent load imbalance in the computation time. Since
the effect of transactions on the work load cannot be easily
estimated in advance, our scheme only ensures that each
processor has roughly equal number of candidate item-sets
in the local hash tree.

3.4 Hybrid Algorithm

The IDD algorithm exploits the total system memory by
partitioning the candidate set among all processors. The
average number of candidates assigned to each processor is
M=P , where M is the number of total candidates. As more
processors are used, the number of candidates assigned to
each processor decreases. This has two implications: First,
with fewer number of candidates per processor, it is much
more difficult to balance the work. Second, the smaller
number of candidates gives a smaller hash tree and less
computation work per transaction. Eventually, the amount
of computation may become less than the communication
involved. This would be more evident in the later passes of
the algorithm as the hash tree size further decreases
dramatically. This reduces overall efficiency of the parallel
algorithm. This will be an even more serious problem in a
system that cannot perform asynchronous communication.

The Hybrid Distribution (HD) algorithm addresses the
above problem by combining the CD and the IDD
algorithms in the following way. Consider a P -processor
system in which the processors are split into G equal size
groups, each containing P=G processors. In the HD
algorithm, we execute the CD algorithm as if there were
only P=G processors. That is, we partition the transactions
of the database into P=G parts each of size N=�P=G� and
assign the task of computing the counts of the candidate set
Ck for each subset of the transactions to each one of these
groups of processors. Within each group, these counts are
computed using the IDD algorithm. That is, the transactions
and the candidate set Ck are partitioned among the
processors of each group, so that each processor gets
roughly j Ck j =G candidate item-sets and N=P transactions.
Now, each group of processors computes the counts using
the IDD algorithm, and the overall counts are computing by
performing a reduction operation among the P=G groups of
processors.

The HD algorithm can be better visualized if we think of
the processors as being arranged in a two-dimensional grid
of G rows and P=G columns. The transactions are
partitioned equally among the P processors. The candidate
set Ck is partitioned among the processors of each column
of this grid. This partitioning of Ck is identical for each
column of processors; i.e., the processors along each row of
the grid get the same subset of Ck. Fig. 9 illustrates the HD
algorithm for a 3� 4 grid of processors. In this example, the
HD algorithm executes the CD algorithm as if there were
only four processors, where the four processors correspond
to the four processor columns. That is, the database
transactions are partitioned in four parts and each one of
these four hypothetical processors computes the local
counts of all the candidate item-sets. Then the global counts
can be computed by performing the global reduction
operation discussed in Section 3.1. However, since each
one of these hypothetical processors is made up of three
processors, the computation of local counts of the candidate

item-sets in a hypothetical processor requires the computa-
tion of the counts of the candidate item-sets on the database
transactions sitting on the three processors. This operation
is performed by executing the IDD algorithm within each of
the four hypothetical processors. This is shown in the Step 1
of Fig. 9. Note that processors in the same row have exactly
the same candidates and candidate sets along each of the
column partition of the total candidate set. At the end of this
operation, each processor has complete count of its local
candidates for all the transactions located in the processors
of the same column (i.e., of a hypothetical processor). Now
a reduction operation is performed along the rows such that
all processors in each row have the sum of the counts for the
candidates in the same row. At this point, the count
associated with each candidate item-set corresponds to the
entire database of transactions. Now each processor finds
frequent item-sets by dropping all those candidate item-sets
whose frequency is less than the threshold for minimum
support. These candidate item-sets are shown as shaded in
Fig. 9b. In the next step, each processor performs an all-to-
all broadcast operation along the columns of the processor
mesh. At this point, all the processors have the frequent sets
and are ready to proceed to the next pass.

The HD algorithm determines the configuration of the

processor grid dynamically. In particular, the HD algorithm

partitions the candidate set into a big enough section and

assigns a group of processors to each partition. Let m be a

user specified threshold. If the total number of candidates

M is less than m, then the HD algorithm makes G equal to 1,

which means that the CD algorithm is run on all the

processors. Otherwise G is set to dM=me. Table 2 shows

how the HD algorithm chose the processor configuration

based on the number of candidates at each pass with

64 processors and m � 50K.

The HD algorithm inherits all the good features of the

IDD algorithm. It also provides good load balance and

enough computation work by maintaining minimum

number of candidates per processor. At the same time,

the amount of data movement in this algorithm has been

cut down to 1=G of the IDD.

3.5 Other Parallel Algorithms

In addition to CD and DD, four parallel algorithms (NPA,

SPA, HPA, and HPA-ELD) for mining association rules were

proposed in [11]. NPA is very similar to CD and SPA is very

similar to DD. HPA and HPA-ELD both have some

similarities with IDD, as all three algorithms essentially

eliminate the redundant computation inherent in DD.

However, the approach taken in HPA(and HPA-ELD) is

quite different than that taken in IDD. In pass k of HPA, for

each transaction containing I items,

C � I
k

� �
potential candidates of size k are generated. Each of these

potential candidates is hashed to determine which proces-

sor might contain the candidate itemset matching these

344 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

potential candidate. These C potential candidates are sent

only to the corresponding processors. Then each processor

checks these potential candidates collected from all the

processors against the locally stored subset of candidate

item-sets. The distribution of the candidate item-sets over

processors is determined by the hash function. This may

HAN ET AL.: SCALABLE PARALLEL DATA MINING FOR ASSOCIATION RULES 345

Fig. 9. Hybrid Distribution (HD) algorithm in 3� 4 processor mesh (G � 3; P � 12).

make it difficult to ensure that each processor receives equal

number of candidates. Furthermore, the number of poten-

tial candidates of size k generated for a transaction

containing I items is

O� I
k

� �
�:

Hence, for values of k greater than 2, HPA can have much
larger communication volume than that for DD and IDD.
For small values of k (e.g., k � 2), it is possible for HPA to
incur smaller communication overhead than IDD.

Several researchers have proposed parallel formulations
of association rule algorithms [12], [13], [14]. Park, Chen,
and Yu proposed PDM [12], a parallel formulation of the
serial association rule algorithm DHP [15]. PDM is similar
in nature to the CD algorithm. In [14], Zaki et al. presented a
parallelization of a serial algorithm originally introduced in
[16]. This serial algorithm is of an entirely different nature
than Apriori, hence, its parallel formulations cannot be
compared to the algorithms discussed in this paper.

4 PERFORMANCE ANALYSIS

In this section, we analyze the amount of work done by each
algorithm and the scalability of each algorithm. In this
analysis, a parallel algorithm is considered scalable when
the efficiency can be maintained as the number of
processors is increased, provided that the problem size is
also increased [9]. Let Tserial be the runtime of a serial
algorithm and Tp be the runtime of a parallel algorithm.
Efficiency [9] (E) of a parallel algorithm is

E � Tserial
P � Tp:

A parallel algorithm is scalable if P � Tp and Tserial remain
of the same order [9]. The problem size (i.e., the serial
runtime) for the Apriori algorithm increases either by
increasing N or by increasing M (as a result of lowering the
minimum support) in the algorithms discussed in Section 3.
Table 3 describes the symbols used in this section.

As discussed in Section 2, each iteration of the algorithm
consists of two steps: 1) candidate generation and hash tree
construction and 2) computation of subset function for each
transaction. The derivation of the runtime of the subset
function is much more involved. Consider a transaction that
has I items. During the kth pass of the algorithm, this
transaction has

C � I
k

� �
potential candidates that need to be checked against the
candidate hash tree. Note that for a given transaction, if
checking for one potential candidate leads to a visit to a leaf
node, then all the candidates of this transaction are checked
against the leaf node. As a result, if this node is revisited
due to a different candidate from the same transaction, no
checking needs to be performed. Clearly, the total cost of
checking at the leaf nodes is directly proportional to the
number of distinct leaf nodes visited with the transaction.
We assume that the average number of candidate item-sets
at the leaf nodes is S. Hence, the average number of leaf
nodes in a hash tree is L �M=S. In the implementation of
the algorithm, the desired value of S can be obtained by

346 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

TABLE 3
Symbols Used in the Analysis

TABLE 2
Processor Configuration and Number of Candidates of the HD Algorithm with 64 Processors and with m � 50K at Each Pass

Note that 64� 1 Configuration is the same as the IDD Algorithm and 1� 64 is the same as the CD Algorithm. The total number of pass with 13 and all
passes after 6 had 1� 64:

adjusting the branching factor of the hash tree. In general,

the cost of traversal for each potential candidate will

depend on the depth of the leaf node in the hash tree

reached by the traversal. To simplify the analysis, we

assume that the cost of each traversal is the same. Hence,

the total traversal cost is directly proportional to C. For each

potential candidate, we define ttravers to be the cost

associated with the traversal of the hash tree and tcheck to

be the cost associated with checking the candidate item-sets

of the reached leaf node.
Note that the number of distinct leaves checked by a

transaction is in general smaller than the number of

potential candidates C. This is because different potential

candidates may lead to the same leaf node. In general, if C

is relatively large with respect to the number of leaf nodes

in the hash tree, then the number of distinct leaf nodes

visited will be smaller than C. We can compute the

expected number of distinct leaf nodes visited as follows:

To simplify the analysis we assume that each traversal of

the hash tree, due to a different potential candidate, is

equally likely to lead to any leaf node of the hash tree.
Let Pv be the probability of reaching a previously visisted

node and Pn be the probability of reaching a new node.

Then, Vi;j, the expected number of distinct leaf nodes visited

when the transaction has i potential candidates, and the

hash tree has j leaf nodes is:

V1;j � 1

Vi;j � Viÿ1;j � Pv � �Viÿ1;j � 1� � Pn
� Viÿ1;j

Viÿ1;j

j
� �Viÿ1;j � 1� jÿ Viÿ1;j

j

� 1� jÿ 1

j
Viÿ1;j

�
1ÿ jÿ1

j

� �i
1ÿ jÿ1

j

� �
� ji ÿ jÿ 1� �i

jiÿ1
:

�1�

Note that for large j, Vi;j ' i. This can be shown by taking

limit on (1):

lim
j!1

Vi;j � lim
j!1

ji ÿ jÿ 1� �i
jiÿ1

� i�iÿ 1� � � � 3 � 2� �jÿ i�iÿ 1� � � � 3 � 2� ��jÿ 1�
�iÿ 1��iÿ 2� � � � 2 � 1

� ijÿ i�jÿ 1�
� i:

�2�

This shows that if the hash tree size is much larger than the

number of potential candidates in a transaction, then each

potential candidate is likely to visit a distinct leaf node in

the hash tree.
Serial Apriori algorithm. Recall that in the serial Apriori

algorithm, the average number of leaf nodes in the hash tree

is L �M=S. Hence, the number of distinct leaf visited per

transaction is VC;L, and the computation time per transac-

tion for visiting the hash tree is:

Ttrans � C � ttravers � VC;L � tcheck:
So, the run time of the serial algorithm for processing N

transactions is:

Tserialcomp � N � Ttrans|�������{z�������}
subset function

� O�M�|��{z��}
hash tree construction

�N � C � ttravers �N � VC;L � tcheck
�O�M�:

�3�

The CD algorithm. In the CD algorithm, the entire set of

candidates is replicated at each processor. Hence, the

average number of leaf nodes in the local hash tree at each

processor is L �M=S, which is the same as in the serial

Apriori algorithm. Thus, the CD algorithm performs the

same computation per transactions as the serial algorithm,

but each processor handles only N=P number of transac-

tions. Hence, the run time of the CD algorithm is:

TCDcomp �
N

P
� Ttrans|�������{z�������}

subset function

�

O�M�|��{z��}
hash tree construction

� O�M�|��{z��}
global reduction

�N
P
� C � ttravers �N

P
� VC;L � tcheck �

O�M�:

�4�

Comparing (4) to (3), we see that CD performs no

redundant computation. In particular, both the time for

traversal and for checking scales down by a factor of P .
However, the cost of hash tree construction is the same

as the serial algorithm, and CD has additional cost of global

reduction. Hence, P � TCDcomp will grow as O�PM� with

respect to O�M�, whereas Tserialcomp grows only as O�M�. This

shows that CD does not scale with respect to the increasing

M. If M is too large to fit in the main memory, then the set

of transaction needs to be read from the disk M
Mcapacity

times,

adding another O N
P � M

Mcapacity

� �
term to the runtime. On

some architectures, this can be significant. But in our

discussion in the rest of the paper, we will ignore this term.
The DD algorithm. In the DD algorithm, the number of

candidates per processor is M=P , as the candidate set is

partitioned. Hence, the average number of leaf nodes in the

local hash tree of each processor is L=P . Therefore, the

number of distinct leaf nodes visited per transaction is VC;LP ,

and the computation time per transaction is:

TDDtrans � C � ttravers � VC;LP � tcheck
The number of transactions processed by each processor is

N , as the transactions are shifted around the processors.

Hence, the computation per processor of the DD algorithm is:

HAN ET AL.: SCALABLE PARALLEL DATA MINING FOR ASSOCIATION RULES 347

TDDcomp �N � TDDtrans�
O�M
P
�|��{z��}

hash tree construction

� O�N�|��{z��}
data movement

�N � C � ttravers �N � VC;L
P
� tcheck�

O�M
P
� �O�N�:

�5�

Comparing (5) with the serial complexity (3), we see that the

DD algorithm does not reduce the computation associated

with the hash tree traversal. For both the serial Apriori and

the DD algorithm, this cost is N � C � ttravers. However, the

DD algorithm is able to reduce the cost associated with the

checking at the leaf nodes. In particular, it reduces the serial

cost of N � VC;L � tcheck down to N � VC;LP � tcheck. However,

because VC;LP > VC;L=P , the reduction achieved in this part is

less than a factor ofP . We can easily see this if we consider the

case whenL is very large. In this case, VC;LP ' C and VC;L=P '
C=P by (2). Thus, the number of leaf nodes checked over all

the processors by the DD algorithm is higher than that of the

serial algorithm. This is why the DD algorithm performs

redundant computation.
Furthermore, DD has an extra cost of data movement.

Due to these two factors, DD does not scale with respect to
increasing N . However, the cost of building hash tree scales
is down by a factor of P . Thus, DD is scalable with respect
to increasing M.

The IDD algorithm. In the IDD algorithm, just like the
DD algorithm, the average number of leaf nodes in the local
hash tree of each processor is L=P . However, the average
number of potential candidates that need to be checked for
each transaction at each processor is much less than DD,
because of the intelligent partitioning of candidates set and
the use of bitmap to prune at the root of the hash tree. More
precisely, the number of potential candidates that need to
be checked for a transaction is roughly C=P assuming that
we have a good balanced partition. So, the computation per
transaction is:

TIDDtrans �
C

P
� ttravers � VC

P
;L
P
�tcheck:

Thus, the computation per processor is:

TIDDcomp �N � TIDDtrans�

O�M
P
�|��{z��}

hash tree construction

� O�N�|��{z��}
data movement

�N � C
P
� ttravers �N � VC

P
;L
P
�tcheck�

O�M
P
� �O�N�:

�6�

Comparing (6) to (3), we see that the IDD algorithm is

successful in reducing the cost associated with the hash tree

traversal linearly. It also reduces the checking cost from

N � VC;L � tcheck down to N � VC
P
;L
P
�tcheck. Note that for

sufficiently large L, VC;L ' C and VC
P
;L
P
' C=P . This shows

that IDD is also able to linearly reduce the cost of checking

at the leaf nodes, and, thus, unlike DD, it performs no

redundant work. The comparison of DD and IDD in terms

of the average number of distinct leaf node visited per

transaction is reported in our experiment (see Fig. 11 and

discussions in Section 5). However, P must be relatively

small for IDD to have a good load balance. If P becomes

large where M is fixed, the problem of load imbalance

discussed in Section 3 makes some processors work on

more than 1=P of items in a transaction at the root of the

hash tree.
If the parallel architecture has hardware support for

communication and computation to proceed concurrently
and the amount of computation in the subset function is
significant, the data movement cost in IDD can be made to
be negligible. In the absence of such hardware support, the
cost of data movement in IDD is O�N�. Thus, IDD is not
scalable with respect to N , but scales better than DD, as
IDD does not have redundant computations. Like DD,
IDD is also scalable with respect to increasing M.

The HD algorithm. In the HD algorithm, the number of
potential candidates per transactions is C=G and the
number of candidates per processor is M=G. So the
computation time per transaction is:

THDtrans �
C

G
� ttravers � VC

G
;L
G
�tcheck:

The total number of transactions each processor has to
process is GN=P . Thus, the computation per processor is:

THDcomp �
G�N
P

� THDtrans � O�M
G
�|��{z��}

hash tree construction

�

O�G�N
P
�|�������{z�������}

data movement

� O�M
G
�|��{z��}

global reduction

�G�N
P

� C
G
� ttravers�

G�N
P

� VC
G
;L
G
�tcheck�

O�M
G
� �O�G�N

P
�:

�7�

Compared to the serial algorithm, (7) shows that the HD

algorithm reduces the computation linearly with respect to

the hash tree traversal cost. The traversal cost is reduced from

N � C � ttravers downtoN � C � ttravers
P .Thecost ofchecking at

the leaf nodes is reduced from N � VC;L � tcheck down to (

G�N � VC
G
;L
G
�tcheck�=P . Note that for sufficiently large L,

N � VC;L ' NC and

G�N � VC
G
;L
G
=P ' N � C=P:

Thus, the HD algorithm has a linear speedup with respect
to the cost of checking at the leaf nodes.

HD also has data movement cost. However, when P is
increased with increasing N , the cost is almost constant
provided G is unchanged. Thus, HD is scalable with respect
to increasing N . Furthermore, HD scales with increasing M
provided G is chosen such that M

G is constant.

348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

We make a comparison of HD and CD using (4) and (7).

Equation 4 can be roughly summarized as O�NP � �O�M�,
and (7) can be similarly summarized as O�G� N

P � �O�MG�.
We show the condition where the run time for HD is less

than that of CD, i.e.,

O�G�N
P
� �O�M

G
� < O�N

P
� �O�M�:

Solving for G, which is the number of candidate partitions

in HDD, gives the following:

1 < G < O�M � P
N
�: �8�

Equation 8 shows that when M is relatively larger than

N , HD can outperform CD by selecting wide range of G

values. This equation also shows that as N becomes

relatively larger than M, HD can reduce G to have a

performance advantage over CD. When N is very large

compared to M � P , HD can choose G to be 1 and becomes

exactly same as CD.

5 EXPERIMENTAL RESULTS

We implemented our parallel algorithms on a

128-processor Cray T3E and SP2 parallel computers. Each

processor on the T3E is a 600 Mhz Dec Alpha (EV5), and

has 512 Mbytes of memory. The processors are intercon-

nected via a three-dimensional torus network that has a

peak unidirectional bandwidth of 430 Mbytes/second, and

a small latency. For communication, we used the message

passing interface (MPI). Our experiments have shown that

for 16 Kbyte messages, we obtain a bandwidth of

303 Mbytes/second and an effective startup time of 16

microseconds. SP2 nodes consist of a Power2 processor

clocked 66.7 MHz with 128 Kbytes data cache, 32 Kbytes

instruction cache, 256-bit memory bus, 256 Mbytes real

memory, and 1 Gbytes virtual memory. The SP High

Performance Switch (HPS) has a theoretical maximum

bandwidth of 110 Mbytes/second.

We generated a synthetic data-set using a tool provided
by [17] and described in [2]. The parameters for the data set
chosen are average transaction length of 15 and average size
of frequent item sets of 6. Data-sets with 1,000 transactions
(63Kbytes) were generated for different processors. Due to
the absence of a true parallel I/O system on the T3E system,
we kept a set of transactions in a main memory buffer and
read the transactions from the buffer instead of the actual
disks. For the experiments involving larger data sets, we
read the same data set multiple times. We also performed
similar experiments on an IBM SP2 in which the entire
database resided on disks. Our experiments (not reported
here) show that the I/O requirements do not change the
relative performance of the various schemes. We do present
the results of one experiment on 16-processor SP2 for
comparing CD to IDD, and HD when CD scans database
multiple times due to the partitioned hash tree.

To compare the scalability of the four schemes (CD, DD,
IDD, and HD), we performed scale-up tests with 50K
transactions per processor and minimum support of
0.1 percent. With minimum support of 0.1 percent, the
entire candidate hash tree fit in the main memory of one
T3E processor. For this experiment, in the HD algorithm, we
have set the threshold on the number of candidates for
switching to the CD algorithm to be 5K. With 0.1 percent
support, the HD algorithm switched to CD algorithm in
pass 5 of total 12 passes, and 88.4 percent of the overall
response time of the serial code was spent in the first four
passes. These scale-up results are shown in Fig. 10.

As noted in [6], the DD algorithm scales very poorly.

However, the performance achieved by IDD is much better

than that of the DD algorithm. In particular, on

32 processors, IDD is faster than DD by a factor of 5.6. It

can be seen that the performance gap between IDD and DD

widens as the number of processors increases. IDD per-

forms better than DD because of the better communication

mechanism for data movements and the intelligent parti-

tioning of the candidate set. To show the effects of these two

improvements, we replaced the communication mechanism

HAN ET AL.: SCALABLE PARALLEL DATA MINING FOR ASSOCIATION RULES 349

Fig. 10. Scale-up result of Cray T3E with 50K transactions and

0.1 percent minimum support.

Fig. 11. Comparison of DD and IDD in terms of average number of

distinct leaf node visited per transaction with 50K transactions per

processor and 0.2 percent minimum support.

of the DD algorithm with that of the IDD. The scale-up

result of this improvement is shown as ªDD+commº in

Fig. 10. Hence, the response time reduction from DD to

DD+comm is due to the the better communication mechan-

ism for data movements and the reduction from DD+comm

to IDD is due to the intelligent partitioning of the candidate

set. Same experiments of comparing DD, DD+comm, and

IDD on IBM SP2 also showed the similar pattern. We also

show the effect of IDD's intelligent partitioning over DD by

actually counting the number of distinct leaf node visited by

both algorithms. We want to verify that the average number

of distinct leaf node visited by IDD is indeed much less than

DD. Fig. 11 shows that VC
P
;L
P

of IDD goes down by factor of

P , but VC;LP of DD does not go down by factor of P .

Note that the response time of IDD increases as we
increase the number of processors. This is due to the load
balancing problem discussed in Section 3, where the
number of candidates per processor decreases as the
number of processors increases. Looking at the performance
of the HD algorithm, we see that the response time remains
almost constant as we increase the number of processors
while keeping the number of transactions per processor and
the minimum support fixed. Comparing against CD, we see
that HD actually performs better as the number of
processors increases. Its performance on 128 processors is
16.5 percent better than CD. This performance advantage of
HD over CD is due to the smaller cost of building candidate
hash tree and global reduction in HD.

In the previous experiment, we chose the minimum
support high enough such that the entire candidate hash
tree fits in main memory. When the candidate hash tree
does not fit in main memory, CD partitions it such that each
partition fits in the main memory. Now the entire set of
local transactions have to be read at each processor as many
times as the number of partitions. This method increases the
I/O cost. On the system in which I/O is scalable and fast
(e.g., IBM SP2), this cost may be acceptable. We implemen-
ted the CD algorithm to partition the hash tree and read
database multiple times in case the hash tree does not fit

into main memory. Fig.12 shows the performance compar-
ison of CD, IDD, and HD on 16-processor IBM SP2 machine
as the number of candidates increases by lowering mini-
mum support. Unlike the earlier experiments on Cray T3E
machine, the whole transactions were read in from the file.
Fig. 12 shows that as the number of candidates increases
both IDD and HD outperform CD. This is due to the cost of
building candidate hash tree, increased I/O time required
for multiple scan of the database, and increased commu-
nication time required for global reduction operation of
multiple partitions of the candidate frequencies. Note that
even on IBM SP2, the penalty due to these overheads is
about 8 percent for 1 million candidates, 11 percent for
3 million candidates and 25 percent for 11 million
candidates. For this particular experiments, the overhead
of building the hash tree was the dominant cost. However,
on systems with slower I/O, the I/O penalty can be
substantial in addition to the overhead of building the hash
tree.

In order to study the scalability of these algorithms, we
performed experiments on T3E with varying number of
processors (P), candidates (M), and transactions (N). For
these experiments, we measured performance for comput-
ing size 3 frequent item-sets only, as the computation for
size 3 item-sets took more than 55 percent of the total run
time.

Fig. 13 shows the speedup of three algorithms as P is
increased from 4 to 64 with N � 1:3 million and M � 0:7
million. Note that the whole candidate hash tree fit in main
memory and, thus, CD algorithm read in transactions only
once. The figure clearly shows that the HD algorithm
achieves better speedup than CD and IDD, and the
difference in performance increases for larger number of
processors. The reason for CD's poor speedup is the serial
bottleneck of hash tree construction and global reduction
operation. For four processors, the time taken for hash tree
construction is only 3.1 percent of the total runtime and the
time for global reduction is only 1.6 percent of the total
runtime. However, for 64 processors, these overheads are
24.8 percent and 31.0 percent, respectively. On the other

350 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 12. Response time on 16 processor IBM SP2 with 100K

transactions as the minimum support varies from 0.1 percent to

0.025 percent.

Fig. 13. Speedup of the three algorithms on Cray T3E as P is increased
from 4 to 64 with N � 1:3 million and M � 0:7 million. The processor
configurations for HD were 8� 2 for 16 processors, 8� 4 for
32 processors, and 8� 8 for 64 processors.

hand, IDD has poor speedup due to the load imbalance and
data movement cost. For this particular experiment, the
dominant overhead is load imbalance. In particular, for four
processors the load imbalance overhead is only 6.3 percent,
whereas for 64 processors this overhead is 49.6 percent. The
cost of data movement is 1.0 percent for four processors and
6.4 percent for 64 processors. The processor configuration
chosen for HD was 8� 8 for 64 processors. Hence, HD
performed one eighth of CD's reduction operation and
moved only one-eighth of the data among groups of eight
processors only.

In the next experiment, we fixed P and M, and varied N
from 1.3 million to 26.1 million. Fig. 14 shows the runtime of
this experiment. The figure shows that CD and HD scale
nicely with the increasing number of transactions. How-
ever, with fixed M and P , IDD suffers from the load
imbalance problem. In addition to that, the cost of data
movement adds up as N is increased. However, this data
movement cost is only 6.1 percent of the total runtime for
1.3 million candidate sets and 7.1 percent for 26.1 million
candidate sets. Hence, the majority of runtime difference
between IDD and the other two algorithms is due to the
load imbalance.

The final experiment compares the runtime of three
algorithms as M is increased from 0.7 million to 8.0 million
with fixed N and P . The main memory of T3E was large
enough to hold 0.7 million candidate sets. In CD, for the
candidate size of greater than 0.7 million, the candidate set
is partitioned and subset function was repeatedly called on
the partitioned candidate sets. Fig. 15 shows the runtime of
this experiment. The figure shows that the performance gap
between CD and HD widens as the number of candidate
sets increases. This is due to the fact that CD has O�M�
component in its runtime. HD scales with respect to M as it
has O�MG� which is constant and O�MP � as M becomes much
larger. For smaller size of M, IDD performs worse than CD.
As M increases, the performance of IDD improves and
eventually outperforms CD. This is due to the fact that IDD
has O�MP � component in its runtime compared to O�M� of
CD. Note that HD algorithm behaves exactly the same as
IDD for the candidate set size of 3.3 million and more. This
experiment shows that when M is much larger than N ,
IDD, and HD are much better algorithms than CD.

For these experiments, just like the previous experiments
on T3E, we simulated I/O and assumed that I/O cost is
negligible compared to the computation cost. Even though
CD algorithms repeatedly read transactions, no actual I/O
was performed. However, when the I/O cost is factored in,
the performance of CD would be worse than reported in
these experiments.

6 CONCLUSION

In this paper, we proposed two new parallel algorithms for
mining association rules. The IDD algorithm effectively
parallelizes the step of building hash tree and is, thus,
scalable with respect to the increasing candidate set size.
This algorithm also utilizes total main memory available
more effectively than the CD algorithm. This is important if
the I/O cost becomes dominant due to slow I/O system.
The IDD algorithm improves over the DD algorithm which
has high communication overhead and redundant work. As
shown in Section 4, for each transaction, the DD algorithm
performs substantially more work overall than the serial
Apriori algorithm. The communication and idling over-
heads were reduced using a better data movement
communication mechanism, and redundant work was
reduced by partitioning the candidate set intelligently and
using bitmaps to prune away unnecessary computation.
Another useful feature of IDD is that it is well suited for the
system environment with single source of data base. For
instance, when all the data is coming from a database server
or a single file system, one processor can read data from the
single source and pass the data along the communication
pipeline defined in the algorithm. However, as the number
of available processors increases, the efficiency of this
algorithm decreases due to load imbalance. Furthermore,
IDD also suffers from O�N� cost due to the communication
of transactions, and, hence, is unscalable with respect to the
number of transactions.

HD combines the advantages of CD and IDD. It is an
improvement over CD, as it partitions the hash tree and
thus avoids O�M� cost of hash tree construction and global
reduction. At the same time, it is an improvement over IDD,

HAN ET AL.: SCALABLE PARALLEL DATA MINING FOR ASSOCIATION RULES 351

Fig. 14. Runtime of three algorithms on Cray T3E as N is increased from

1.3 million to 26.1 million with M � 0:7 million and P � 64. The

processor configuration for HD was 8� 8.

Fig. 15. Runtime of three algorithms on Cray T3E as M is increased
from 0.7 million to 8.0 million with N � 1:3 million and P � 64. The
processor configurations for HD were as follows: 8� 8 for M � 0:7
million, 16� 4 for M � 1:7 million, 32� 2 for M � 2:3 million, and 64� 1
for M � 3:3 million.

as it does not move data among all the processors, but only
among a smaller subset of processors. Furthermore, HD
achieves better load balancing than IDD, because the
candidate set is partitioned into fewer buckets.

The experimental results on a 128-processor Cray T3E
parallel machine show that the HD algorithm scales just
as well as the CD algorithm with respect to the number
of transactions and scales as well as IDD with respect to
increasing candidate set size. However, it outperforms CD
when the number of candidate item-sets is large and
outperforms IDD when the number of transactions is very
large.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation
(NSF) grant ASC-9634719, Army Research Office contract
DA/DAAH04-95-1-0538, the Army High-Performance
Computing Research Center under auspices of the Depart-
ment of the Army, Army Research Laboratory cooperative
agreement number DAAH04-95-2-0003/contract number
DAAH04-95-C-008, Cray Research Inc. Fellowship, and
IBM partnership award, the content of which does not
necessarily reflect the policy of the government and no
official endorsement should be inferred. Access to comput-
ing facilities was provided by AHPCRC, Minnesota Super-
computer Institute, Cray Research Inc., and NSF grant
CDA-9414015.

REFERENCES

[1] M. Stonebraker, R. Agrawal, U. Dayal, E.J. Neuhold, and A.
Reuter, ªDBMS Research at a Crossroads: The Vienna Update,º
Proc. 19th Very Large Data Bases Conf., pp. 688±692, 1993.

[2] R. Agrawal and R. Srikant, ªFast Algorithms for Mining
Association Rules,º Proc. 20th Very Large Data Bases Conf., pp.
487±499, 1994.

[3] M.A.W. Houtsma and A.N. Swami, ªSet-Oriented Mining for
Association Rules in Relational Databases,º Proc. 11th Int'l Conf. on
Data Eng., pp. 25±33, 1995.

[4] A. Savasere, E. Omiecinski, and S. Navathe, ªAn Efficient
Algorithm for Mining Association Rules in Large Databases,º
Proc. 21st Very Large Data Bases Conf., pp. 432±443, 1995.

[5] R. Srikant and R. Agrawal, ªMining Generalized Association
Rules,º Proc. 21st Very Large Data Bases Conf., pp. 407±419 1995.

[6] R. Agrawal and J.C. Shafer, ªParallel Mining of Association
Rules,º IEEE Trans. Knowledge and Data Eng., vol. 8, no. 6, pp. 962±
969, Dec. 1996.

[7] E.H. Han, G. Karypis, and V. Kumar, ªScalable Parallel Data
Mining for Association Rules,º Proc. 1997 ACM-SIGMOD Int'l
Conf. Management of Data, 1997.

[8] R. Agrawal, T. Imielinski, and A. Swami, ªMining Association
Rules Between Sets of Items in Large Databases,º Proc. 1993 ACM-
SIGMOD Int'l Conf. Management of Data, 1993.

[9] V Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to
Parallel Computing: Algorithm Design and Analysis. : Redwood City:
Benjamin Cummings/ Addison Wesley, 1994.

[10] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall,
1982.

[11] T. Shintani and M. Kitsuregawa, ªHash Based Parallel Algorithms
for Mining Association Rules,º Proc. Conf. Paralellel and Distributed
Information Systems, 1996.

[12] J.S. Park, M.S. Chen, and P.S. Yu, ªEfficient Parallel Data Mining
for Association Rules,º Proc. Fourth Int'l Conf. Information and
Knowledge Management, 1995.

[13] D. Cheung, V. Ng, A. Fu, and Y. Fu, ªEfficient Mining of
Association Rules in Distributed Databases,º IEEE Trans. Knowl-
edge and Data Eng., vol. 8, no. 6, pp. 911±922, 1996.

[14] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ªNew Parallel
Algorithms for Fast Discovery of Association Rules,º Data Mining
and Knowledge Discovery: An International Journal, vol. 1, no. 4, 1997.

[15] J.S. Park, M.S. Chen, and P.S. Yu, ªAn Effective Hash-Based
Algorithm for Mining Association Rules,º Proc. 1995 ACM-
SIGMOD Int'l Conf. Management of Data, 1995.

[16] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ªNew
Algorithms for Fast Discovery of Association Rules,º Proc. Third
Int'l Conf. Knowledge Discovery and Data Mining, 1997.

[17] IBM Quest Data Mining Project, ªQuest Synthetic Data Generation
Code,ºhttp://www. almaden. ibm. com/cs/quest/syndata. html,
1996.

Eui-Hong (Sam) Han received the BS degree in
computer science from the University of Iowa,
the MS degree in computer science from the
University of Texas, at Austin, and the PhD
degree from the University of Minnesota. He is
currently a research associate in the Department
of Computer Science and Engineering at the
University of Minnesota. His research interests
include data mining, information retrieval, and
parallel processing. He has coauthored several

journal articles and conference papers on these topics. He is a member
of the ACM.

George Karypis received the PhD degree in
computer science from the University of Minne-
sota. He is currently an assistant professor in the
Department of Computer Science and Engineer-
ing at the University of Minnesota. His research
interests span the areas of parallel algorithm
design, data mining, applications of parallel
processing in scientific computing and optimiza-
tion, sparse matrix computations, parallel pre-
conditioners, and parallel programming

languages and libraries. His recent work has been in the areas of data
mining, serial and parallel graph partitioning algorithms, parallel sparse
solvers, and parallel matrix ordering algorithms. His research has
resulted in the development of software libraries for serial and parallel
graph partitioning (METIS and ParMETIS), hypergraph partitioning
(hMETIS), and for parallel Cholesky factorization (PSPASES). He has
coauthored several journal articles and conference papers on these
topics and a book, Introduction to Parallel Computing (Benjamin
Cummings/Addison Wesley, 1994). He is a member of the ACM, the
IEEE, and SIAM.

Vipin Kumar received the BE degree in
electronics and communication engineering from
the University of Roorkee, India, the ME degree
in electronics engineering from the Philips
International Institute, Eindhoven, Netherlands,
and the PhD degree in computer science from
the University of Maryland, College Park. He is
currently the director of Army High Performance
Computing Research Center and a professor of
computer science at the University of Minnesota.

His research interests include high performance computing and data
mining. His research has resulted in the development of the concept of
isoefficiency metric for evaluating the scalability of parallel algorithms,
as well as highly efficient parallel algorithms and software sparse matrix
factorization (PSPACES), graph partitioning (METIS, ParMetis), VLSI
circuit partitioning (hMetis), and dense hierarchical solvers. He has
authored over 100 research articles and coedited or coauthored five
books including the widely used text book, Introduction to Parallel
Computing (Benjamin Cummings/Addison Wesley, 1994). Dr. Kumar
has served as chair/co-chair for many conferences/workshops in the
area of parallel computing and high performance data mining, and is
program chair for the 15th International Parallel and Distributed
Processing Symposium. He serves on the editorial boards of IEEE
Concurrency, Parallel Computing, the Journal of Parallel and Distributed
Computing, and served on the editorial board of IEEE Transactions of
Data and Knowledge Engineering during 93-97. He is a fellow of the
IEEE Computer Society, a member of SIAM and the ACM, and a fellow
of the Minnesota Supercomputer Institute.

352 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

