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Connected component labeling is a key step in a wide-range of applications, such as com-
munity detection in social networks and coherent structure identification in massively-
parallel scientific simulations. There have been several distributed-memory connected
component algorithms described in literature; however, little has been done regarding
their scalability analysis. Theoretical and experimental results are presented for five algo-
rithms: three that are direct implementations of previous approaches, one that is an imple-
mentation of a previous approach that is optimized to reduce communication, and one that
is a novel approach based on graph contraction. Under weak scaling and for certain classes
of graphs, the graph contraction algorithm scales consistently better than the four other
algorithms. Furthermore, it uses significantly less memory than two of the alternative
methods and is of the same order in terms of memory as the other two.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Due to the increasing rate at which scientists are able to gather data, graph analysis applications often require the pro-
cessing power of large, distributed-memory machines. Whether this is due to the size of the problem or the computational
resources required, scientists need efficient algorithms to utilize these large machines. One fundamental algorithm used in
many graph analysis applications is connected component labeling, which can be used to identify and track regions of inter-
est throughout the life of a simulation [1–3] or locating communities in social network graphs [4]. Identifying connected
components is a well understood problem on serial machines and usually employs a breadth/depth first traversal technique
or utilizes the union-find data structure.

Mapping these techniques to work efficiently on distributed-memory machines is not necessarily straight-forward. As a
result, there is a considerable body of research associated with developing parallel connected component labeling algo-
rithms. This research includes development of novel algorithms that are easier to parallelize [5–11], approaches to efficiently
implement connected component labeling algorithms on distributed-memory systems [3,12–16], and studies of their scala-
bility [3,15]. However, despite this prior work, various aspects related to the computational and memory complexity of these
algorithms and their scalability have not been thoroughly analyzed in a unified way. Understanding how these methods per-
form and scale is important due to the wide range of hardware configurations in existing and emerging distributed-memory
parallel architectures.
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In this paper, five algorithms for computing connected component labeling on distributed-memory parallel systems are
investigated. Of these five methods, three are direct implementations of previously published algorithms, one is an imple-
mentation based on a previous method that is optimized to reduce communication overhead, and the last is a novel method,
based on repeatedly contracting the input graph at successive steps of a reduction process. Each of the algorithms is analyzed
from an asymptotic perspective, providing parallel runtimes and memory requirements, assuming an equally distributed
graph. Each of the algorithms is experimentally evaluated with a set of strong and weak scaling experiments, and these
experimental results are compared against the expected theoretical performance. Under weak scaling and for certain classes
of graphs, the graph contraction algorithm introduced in this work scales consistently better than the four other algorithms.
Furthermore, it uses significantly less memory than two of the alternative methods and is of the same order in terms of
memory as the other two.

The rest of the paper is organized as follows. In Section 2, definitions for terms and language used throughout the paper is
provided. In Section 3, two serial algorithms for computing a connected component labeling are presented and analyzed. In
Section 4, the framework for computing connected component labeling on distributed-memory parallel systems is intro-
duced. In Section 5, five distributed-memory connected component algorithms are presented and their runtimes and mem-
ory requirements analyzed. In Section 6, the experimental design is outlined and in Section 7, the results of the experiments
are presented along with a discussion of the findings. Finally, in Section 8, conclusions about this work is presented along
with directions for future research regarding connected component labeling on distributed-memory systems.

2. Definitions and notation

A graph G ¼ ðV ; EÞ consists of a set of vertices V and a set of edges E. The maximum shortest path between any two con-
nected vertices in G will be referred to as dðGÞ, also known as the diameter of G. Note that if d1; d2; . . . ; dn are the diameters of
the subgraphs induced by the connected components of G, then dðGÞ ¼maxðd1; d2; . . . ; dnÞ.

Throughout the paper, it is assumed that the connected component labeling (CCL) is being performed in a distributed-
memory system made up of P processes, connected together by an interconnect network. When a message is passed between
two processes, the cost of starting the communication in hardware is represented by the variable ts and the cost of com-
municating a single word of data by tw. The cost of a unit of local computation time is denoted tc .

When computing the runtime of algorithms, Ts is the time elapsed between the beginning and the end of the algorithm
execution on a serial computer. In the case of a parallel system, the elapsed time is measured from the time that the first
process starts executing until the last process stops executing and is referred to as Tp. A summary of these notations is pre-
sented in Table 1.

A key element to the distributed-memory CCL algorithms is the notion of the component adjacency graph (CAG), which is
used to represent the connected components identified locally by the individual processes. The component adjacency graph
Gc ¼ ðVc; EcÞ, contains a vertex for each connected component that was identified by the various processes based on their
local portion of the graph. Two vertices ui;uj 2 Vc are connected, i.e., ðui;ujÞ 2 Ec , if there is at least one edge in G that con-
nects a vertex in G’s connected component corresponding to ui with a vertex in G’s connected component corresponding to
uj. Section 4 contains a more detailed discussion of the CAG and its construction.

3. Serial algorithms for finding connected-components

There are two algorithms for efficiently finding connected components on a serial machine. The first is based on perform-
ing a breadth-first or depth-first traversal [17]. This algorithm finds the connected components by repeatedly starting a
Table 1
Summary of notations.

Notation Definition

ts Cost of starting a communication
tw Cost of communicating a single word over network
tc Cost of local computation
Ts Serial runtime
Tc Execution time to build CAG
Tc

p Execution time to resolve global connectivity

Tp Parallel runtime
To Parallel overhead

Gc Component adjacency graph (CAG)
Vc Vertices of CAG, representing connected components of G
Ec Edges of CAG, signifying at least one edge in G which connects a vertex from each of the corresponding components

dðGÞ Max shortest path between two connected vertices in G
b Number of adjacent processes
x Relationship between size of input graph and size of CAG



J. Iverson et al. / Parallel Computing 44 (2015) 53–68 55
traversal from unvisited vertices. Any vertex reached during the traversal is marked as visited and is assigned to the same
connected component as the root vertex of the traversal. The cost of the traversal based approach is linear on the size of the
input, i.e., OðjV j þ jEjÞ.

The second algorithm is based on the disjoint-set forest data structure and is called the union-find algorithm [18]. In this
algorithm, the connected components are represented by disjoint-sets of vertices, which are encapsulated in a union-find
data structure. In this data structure, each element (vertex) has a pointer to an element in its disjoint-set and exactly one
element from each disjoint-set points to itself. This element with a self-pointer is designated as the root element and is used
as a reference to identify the set of elements that belong to the same disjoint-set. The disjoint-set to which an element
belongs can be determined using the FIND operation, which follows the pointers of the elements until it reaches an element
pointing to itself, at which point the id of the representative vertex becomes the label of the disjoint-set. Two disjoint-sets
can be combined using the UNION operation, which sets the pointer of the root element of one set to point to an element in
the other set. To identify connected components, the union-find algorithm starts by making each vertex to belong to its own
disjoint-set. Then, each of the edges of G are visited and the endpoints of each edge are unioned together. Each of these steps
has an amortized cost of OðaðjV jÞÞ (using union-by-rank and path-compression heuristics), where aðÞ is the inverse
Ackermann function [18]. Since a connected component labeling requires iterating all vertices and performing a UNION
of the endpoints of every edge, the complexity of this algorithm is OðjV j þ aðjV jÞjEjÞ. In [18] it is shown that aðÞ is effectively
less than four for all practical input sizes. Since aðÞ is constant for all potential inputs covered in this paper, the complexity
can be simplified to OðjV j þ jEjÞ, which is the same as algorithms based on graph traversal. This means that the cost of
computing CCL in serial is
Ts ¼ ðjV j þ jEjÞ: ð1Þ
4. Distributed-memory connected-component framework

The distributed-memory connected component algorithms studied herein, consist of the following steps. First, the graph
is divided equally among the processes. Next, each process identifies the connected components that exist in its local sub-
graph using either of the two approaches discussed in Section 3. However, because the input graph may contain components
which become fragmented when the graph is distributed among the processes, another step that identifies and merges those
connected components that span process boundaries, is required. This step, which is referred to as global connectivity res-
olution, is the key element of the studied distributed-memory CCL algorithms and is discussed in Section 5. The final step
is to use the mapping from local component labels to globally merged labels to assign the final labeling to the vertices of
the input graph. This process is summarized in Algorithm 1.

Algorithm 1. Distributed-memory CCL
1: Each process calculates its local CCL
2: Processes give local components globally unique labels
3: Generate CAG by collapsing edges that do not span process boundaries
4: Find CCL of CAG
4.1. Component adjacency graph

The key data structure used in the global connectivity resolution algorithms is the component adjacency graph (CAG),
which is a graph whose vertices represent the connected components identified locally by the individual processes, see
Section 2. The CAG is constructed in parallel as follows. Given a CCL of the local portion of the input graph G, each process
initializes its portion of the CAG to contain a single vertex for each of its locally identified connected components.

Next, the processes assign globally unique labels to each of their connected components. This can be as simple as assign-
ing to each connected component a label derived from the smallest vertex label contained in the connected component, see
Fig. 1. If consecutive labels are required per process, then a distributed prefix sum of local connected component counts can
be computed, at which point, each process will assign consecutive labels to its local connected components starting from its
computed prefix sum value.

Then, the globally unique labels of the CAG vertices are propagated to the corresponding local vertices of G (see Fig. 1b).
Consider the component composed of vertices 7, 8, and 12 in Fig. 1a, of which vertices 7 and 8 are in process 0 and assigned
to a local component with the globally unique label of 2 in Fig. 1b, while the single vertex 12 is in process 2 and assigned to
the local component with the globally unique label of 6.

Next, adjacent processes exchange the labels of their local vertices of G, at which point each process contains all the infor-
mation it needs to generate the CAG edges that it owns. This is done by iterating the local edges of G. Whenever an edge
crosses the process boundary, a new edge is added to the CAG between the vertices of Gc corresponding to the connected



Fig. 1. An input graph, G, along with the corresponding CCL of the local graphs, labeled with globally unique labels—each process is assigned the vertices
located in its quadrant.

Fig. 2. The CAG, Gc , corresponding to the input graph from Fig. 1a.
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components that each endpoint of the local edge belongs to. If the CAG edge already exists, it is not added again. Again, con-
sider the component composed of the vertices labeled 2, 2, and 6 in Fig. 1b. In this component there is a single edge between
the vertices labeled 2, which will be discarded since it is an edge local to process 0 and an edge between the vertex labeled 6
and each of the vertices labeled 2. Since both of the edges from the vertex labeled 6 will be represented as (2, 6), this edge
need only be added once, which can be seen in Fig. 2.

Note that based on this construction, it is possible that vertices will exist within Vc , which have no outgoing edges. These
vertices represent connected components which are contained completely within the boundaries of a single process, i.e., a
connected component which contains no edges that cross process boundaries. Thus, the size of Gc can be substantially
reduced if during construction, or as a post-processing step, these zero degree vertices of Vc are removed. In the discussion
that follows it is assumed that this simplification in Gc has been done and Vc contains only vertices with non-zero degree.

The cost of constructing the CAG in parallel is 3ðjV j=P þ jEj=PÞtc for the creation of CAG nodes, propagation of globally
unique labels, and creation of CAG edges. When the communication required for globally unique labels is implemented using
a prefix scan, there is also a cost of ðts þ twÞ log P. Finally, the exchange of labels with adjacent processes, carries a cost of
bts þ ðjEj=PÞtw, where b is the number of adjacent processes. Putting these together, the parallel runtime for constructing
the CAG is
Tc ¼ 3
jV j
P
þ jEj

P

� �
tc þ ðts þ twÞ log P þ bts þ

jEj
P

� �
tw: ð2Þ
5. Resolving global connectivity

The critical step in the distributed-memory connected component framework described in the previous section is the
method used to resolve the global connectivity. It is easy to show that the problem of resolving global connectivity among
local connected components becomes the problem of finding the connected components of the component adjacency graph
Gc . Given the distribution of G among the processes, each edge in Gc will connect components identified by different
processes, and as such, that edge will cross process boundaries.

In the rest of this section, five distributed-memory algorithms for finding the connected components of Gc are described
and their parallel runtimes and memory requirements analyzed. When computing the parallel runtime, it is assumed that
the CAG is distributed evenly across the processes, i.e., each process is responsible for jVcj=P vertices and jEcj=P edges. The
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memory requirements for each algorithm will focus on the amount of memory they require beyond that needed for con-
structing and storing the CAG, which is the same for all algorithms.

5.1. All-reduce (AR)

The first approach for resolving global connectivity is based on a distributed-memory algorithm introduced in [15]. In this
algorithm, all processes communicate their edges of the CAG with every other process, then redundantly compute the con-
nectivity resolution, requiring no further communication. Each process shares its portion of the CAG via an all-gather opera-
tion, which costs ts log P þ ðjVcj þ jEcjÞtw [19]. Once all edges have been received, each process computes locally the global
connectivity resolution by performing a CCL of the CAG. The local CCL, which can be performed using either of the algorithms
described in Section 3, will have a computational cost of ðjVcj þ jEcjÞtc , resulting in a theoretical runtime for the AR algorithm
of:
Fig. 3.
This is
which l
Tc
p ¼ ts log P þ ðjVcj þ jEcjÞtw þ ðjVcj þ jEcjÞtc: ð3Þ
Since each process needs to store the entire CAG, the memory complexity of AR is
Mc
p ¼ OðjVcj þ jEcjÞ: ð4Þ
5.2. Union-find merging (UFM)

The second approach for resolving global connectivity is based on a parallel random-access machine (PRAM) algorithm
for merging union-find data structures that was introduced in [7]. The algorithm uses a reduction tree to merge partially
complete union-find data structures, that initially resides on each process. This can be done in log P steps and results in a
single process storing the union-find structure corresponding to all processes.

The first step is for each process to compute its partial union-find data structure. This local data structure is of size jVcj
and is computed by traversing the vertices and edges of the local portion of the CAG and unioning the endpoints of each of
the edges (i.e., 8ðui;ujÞ 2 Ec , UNIONðui;ujÞ). Computing the local union-finds carries a cost of ðjVcj=P þ jEcj=PÞtc.

Next, a reduction tree communication pattern is used to progressively merge these local union-find data structures. At
each level of the reduction tree, pairs of processes communicate by having the process with the higher rank, send its partial
union-find to the process with the lower rank. The lower rank process then merges the two partial union-find structures,
creating a more complete partial union-find structure. This process continues until the final level of the reduction tree, at
which point, the last active process creates the complete union-find which captures all the information encoded in the par-
tial union-finds.

The merging of two union-find data structures, UF1 and UF2 is performed as follows. Since each of the union-find data
structures has size equal to the number of vertices in the CAG, the ith element in UF1 corresponds to the same vertex, ui,
as the ith element of UF2. Therefore, the disjoint-set that ui belongs to in UF2 can be identified by performing
FIND(UF1; i), and likewise for UF2. Then, if there is a discrepancy between the disjoint-set to which ui belongs, the two sets
can be unioned, UNION(FIND(UF1; i), FIND(UF2; i)). This can be thought of as updating the first union-find with the informa-
tion contained in the second. Thus, after all elements of the two union-finds have been iterated, the first union-find will
contain all the merges which it had previously contained, as well as those of the second union-find. Since merging two
union-finds is based on iterating over their elements, the cost of this procedure is jVcjtc . The process of merging union-find
data structures is illustrated on an example in Fig. 3 with four processes using the CAG from Fig. 1a. In each of the three steps,
the state of the parent pointers in the union-find data structure of each active process is shown using a different line type. In
Step 1, each process has a view based only upon the outgoing edges of its vertices in the CAG. In Step 2 P0 and P1 exchange as
do P2 and P3, resulting in the states seen in Step 2. Then P0 and P2 exchange their states from Step 2, giving the final result
which can be seen in Step 3 as the complete union-find.
Step-by-step walk through of the UFM algorithm. In the UFM algorithm, each active process has its own local view of the union-find data structure.
represented in each of the three steps by assigning a unique line type to the pointers belonging to each process’ local view. The legend indicates
ine type is assigned to each process.
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To reduce the amount of local work and data exchanged during each of the log P steps, the process sending its partial
union-find to its partner, sends only those entries which do not point to themselves. Recall that each entry in the union-find
represents a connected component which was identified in some process’ local portion of G. In this case, the entries which do
not point to themselves, identify those components identified in local portions of G, which belong to the same global
connected component in G.

Assuming that the CAG is evenly distributed among the processes, one can expect that the amount of data being com-
municated will double in each of the log P steps of the reduction tree. Since the communication performed in the first step

is jVcj=P, the aggregate amount of data being communicated over the log P steps to is
PlogðPÞ

i¼0 2ijVcj=P ¼ jVcj. Since the receiv-
ing process receives only those entries which have been updated in previous steps, the aggregate amount of local work
required to merge the union-find structures is also reduced. In fact, with this optimization, merging the union-find structures
requires only that the receiving process iterate through those entries which it received, meaning that the aggregate amount
of local work, over all log P steps, is also jVcj.

Once all partial union-finds have been merged into a complete union-find located on a single process, the complete
union-find is broadcast back to the remaining processes. The cost of this operation is 2ðts log P þ jVcjtwÞ, using the broadcast
algorithm which performs a scatter followed by an all-gather, which is described in [19]. This cost, along with the previously
discussed costs, give a parallel runtime for the UFM algorithm of:
Fig. 4.
process
Tc
p ¼

jVcj
P
þ jEcj

P

� �
tc þ 3ðts log P þ jVcjtwÞ þ jVcjtc: ð5Þ
Since each process needs to store a complete union-find data structure, the memory requirement of UFM is
Mc
p ¼ OðjVcjÞ: ð6Þ
5.3. Graph contraction (GC)

The GC algorithm takes the idea of distributed union-find data structures one step further. This algorithm resembles the
UFM algorithm in that it also uses a reduction tree. However, to reduce the runtime of the algorithm, the GC algorithm only
communicates the vertices whose connected components have not yet been completely resolved. As a result, the amount of
data being communicated between processes reduces in the course of the successive communication steps.

The GC algorithm is able to identify the connected components that have been resolved by repeatedly modifying the CAG
at each reduction step. Specifically, at each level of the reduction tree, the active processes are split into pairs and each pro-
cess communicates its local portion of the current CAG to its partner. Let Gc;i ¼ ðVc;i [ Vc;j; Ec;i [ Ec;jÞ be the portion of the CAG
stored at process Pi, that contains both its local portion of the CAG and the portion which it just received from process Pj. The
GC algorithm then identifies the connected components that exist in Gc;i and generates its new local portion of the CAG, G�c;i,
by collapsing all the vertices in Vc;i [ Vc;j that belong to the same connected components. During this process, E�c;i is updated
accordingly and any vertices that have zero degree are removed from V�c;i. This process is shown in Fig. 4, where the edges
being collapsed are represented by solid lines.

If one assumes that half of the vertices and their associated edges in Gc;i are eliminated, then the size of each active
processes’ portion of the CAG will not increase in successive steps. Therefore, at each step, the time required for data com-
munication by an active process is ðjVcj=P þ jEcj=PÞtw. Under the same assumptions, at each step, the cost of merging two
CAGs is ðjVcj=P þ jEcj=PÞtc , as it can be done in time linear to the number of vertices/edges in the graphs involved. Thus,
the overall parallel runtime of GC is
Tc
p ¼ ts þ

jVcj
P
þ jEcj

P

� �
tw þ

jVcj
P
þ jEcj

P

� �
tc

� �
log P: ð7Þ
Note that if the above assumption does not hold, then the communication and computation cost will be higher and in the
worst case will be equivalent to that of an all-to-one gather of the graph.
Step-by-step walk through of the GC algorithm. The dotted lines (� � �) in the figure above represent the process boundaries. In the GC algorithm, the
boundaries change in each step, signifying the transfer of a local portion of the CAG from one process to another.
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Since a receiving process is required to store its local portion of the CAG as well the portion it receives, it must reserve
memory for both. Storage for the local portion is the same as the storage required for the portion being received, making the
memory requirement for the GC algorithm:
Fig. 6.
dotted
retains
Mc
p ¼ O

jVcj
P
þ jEcj

P

� �
: ð8Þ
5.4. Label propagation (LP)

The LP algorithm diverges from the approaches described thus far as it repeatedly updates the label of each vertex in the
CAG until the labels converge. This approach consists of a series of iterations. The iterations start with each process assigning
a label matching the vertex id to each of its vertices in Vc , so lðuiÞ ¼ i. Then, for each edge in the CAG, the labels of the adja-
cent vertices are exchanged. Each process then updates its local labels by assigning to each vertex the minimum of its label
and the label of its adjacent vertices. The algorithm terminates when no labels have changed in a single iteration.

Each iteration requires every process to communicate its vertices with adjacent processes and then to iterate through
each of its vertices and edges to see if a given vertex-label should be updated, incurring a cost of
ts þ ðjEcj=PÞtw þ ðjVcj=P þ jEcj=PÞtc . To detect that no changes have occurred, an all-to-all reduction (sum) on a count of each
of the processes local changes is performed. When the result of the reduction is 0, the algorithm is finished. This operation
carries a cost of ðts þ twÞ log P. If one assumes that there are dðGcÞ relabeling iterations before convergence, then the asymp-
totic runtime is
Tc
p ¼ ts þ

jEcj
P

tw þ
jVcj

P
þ jEcj

P

� �
tc þ ðts þ twÞ log P

� �
dðGcÞ: ð9Þ
Since the LP algorithm is based on repeatedly updating the labels of the CAG vertices, it requires storage for the labels of
adjacent vertices, of which there are OðjEcj=PÞ. Thus, its memory requirement is
Mc
p ¼ O

jEcj
P

� �
: ð10Þ
5.5. Distributed union-find (DUF)

The DUF algorithm, which is a modification of the concurrent read concurrent write PRAM algorithm of [6], is similar to
the LP algorithm. It however, updates edges during each relabel iteration in order to reduce the number of iterations required
for label convergence.

Once the CAG has been constructed, each process assigns its local vertices of Gc a parent pointer, which initially points to
themselves. In Figs. 5, 6, any vertex without an outgoing parent pointer is assumed to have a parent pointer to itself. These
Fig. 5. Step-by-step walk through of the marking parent-pointer phase of the DUF algorithm.

Step-by-step walk through of the short-cutting phase of the DUF algorithm, assuming the corresponding parent-pointers at each step of Fig. 5. The
lines (� � �) in Figs. 5 and 6 above represent the process boundaries. In the DUF algorithm, the process boundaries do not change, as each process
its local portion of the CAG throughout and only changes the parent pointers associated with each of its vertices.
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were left out however to avoid congestion in the graph. Then, each process iterates through its local vertices of the CAG and
updates the parent pointer of each vertex to point to the first adjacent vertex which has an id higher than itself. This is
demonstrated in the first step of Fig. 5, which shows the original edges left as dashed edges and the parent pointers as solid
lines with an arrow pointing toward the parent. This constraint maintains acyclic relationships among parent pointers.
Updating parent pointers requires that each process communicates, with its adjacent processes, the parent pointer of each
of the shared endpoints. This whole operation will incur a cost of ts þ ðjEcj=PÞtw þ ðjVcj=P þ jEcj=PÞtc .

The next step is to shortcut the parent pointers. This is achieved by updating each vertex’ parent pointer to point to its
grandparent. This is visualized in Fig. 6, which shows the short-cut counter-part for each step of Fig. 5. This requires the pro-
cesses to again share the parent pointer information of their vertices and to again iterate through the vertices and edges,
possibly updating parent pointers along the way, costing ts þ ðjEcj=PÞtw þ ðjVcj=PjEcj=PÞtc . Finally, each process must pass
each of its edges to its parent. Fig. 6 also shows the result of each vertex giving ownership of its remaining input edges
(dashed) to its parent. For example it can be seen that edge (5, 11) in Step 1 of Fig. 5 becomes edges (9, 11) in Fig. 6. It is
possible that a sequence of steps can occur when no new parent pointers are introduced, but only existing pointers are
updated and input edges moved to new parents.

These two steps are repeated until no parent pointers can be updated, in which case each connected component in the
CAG is be represented by a star graph, which can be seen in the last step of Fig. 6. The same termination detection algorithm
as described in Section 5.4 can be used here, costing ðts þ twÞ log P. At this point, the labels of each component can be
assigned simply as the id of the root vertex of each star. Since the constraint mentioned above prohibits forming cycles of
parent pointers, the maximum number of iterations of this algorithm will be equal to logðdðGcÞÞ, since when pointers are
updated the second time during each iteration, the distance each node is from the root is halved. Putting this all together
parallel runtime can be stated as:
Tc
p ¼ 2ðts þ

jEcj
P

tw þ
jVcj

P
þ jEcj

P

� �
tcÞ þ ðts þ twÞ log P

� �
logðdðGcÞÞ: ð11Þ
To keep track of the parent pointers for the CAG vertices, each process in the DUF algorithm must maintain an array of
parent pointers, incurring a storage cost of OðjVc=PjÞ. During the execution of the algorithm, edges are transferred to the pro-
cess of the parent pointer. A given process is equally likely to transfer edges out of its local view as it is to receive edges
because the parent pointer of a remote vertex exists in its local view. Thus, during successive steps of the DUF algorithm,
the number of edges which exist on a given process does not increase significantly, meaning that no extra storage is required
for the process’ new view of the CAG. Thus, the memory requirements for the DUF algorithm can be expressed as:
Mc
p ¼ O

jVcj
P

� �
: ð12Þ
5.6. Scalability analysis

In Section 5.1–5.5, all parallel runtimes for resolving global connectivity, Tc
p, were computed in relation to the average

runtime, assuming that the CAG graph was distributed evenly across processes. These expressions are summarized in
Table 2.

To understand the theoretical scalability of these algorithms, their isoefficiency functions [19] were computed. This was
done using the same set of assumptions as those used to derive the runtime expressions (Table 2). The isoefficiency function,
which defines the rate at which the problem size must grow in-order to achieve a fixed efficiency as the number of processes
is increased, has been shown to be an effective method for analyzing and comparing the scalability of different algorithms
[19]. These isoefficiency functions are shown in Table 3. In deriving these expressions, it is assumed that the size of the CAG
is related to the size of the original graph G via the expression jVcj ¼ jV jx for 0 6 x < 1.

To illustrate how these expressions were derived, the steps required for the derivation of the isoefficiency function for the
AR algorithm is presented below. The derivation of the other isoefficiency functions is similar.
Table 2
Parallel runtimes for resolving global connectivity.

Algorithm Tc
p

AR ts log P þ ðjVc j þ jEc jÞtw þ ðjVc j þ jEc jÞtc

UFM jVc j
P þ

jEc j
P

� �
tc þ 3ðts log P þ jVc jtwÞ þ jVc jtc

GC ts þ jVc j
P þ

jEc j
P

� �
tw þ jVc j

P þ
jEc j
P

� �
tc

� �
log P

LP ts þ jEc j
P tw þ jVc j

P þ
jEc j
P

� �
tc þ ðts þ twÞ log P

� �
dðGcÞ

DUF 2ðts þ jEc j
P tw þ jVc j

P þ
jEc j
P

� �
tcÞ þ ðts þ twÞ log P

� �
logðdðGcÞÞ



Table 3
Isoefficiency functions, where jGc j ¼ jGjx with 0 6 x < 1.

Algorithm Isoefficiency

AR max P2; Pð1=ð1�xÞÞ
� �

UFM max P2; Pð1=ð1�xÞÞ
� �

GC max ðP2; log PÞð1=ð1�xÞÞ

LP max P2; dðGcÞð1=ð1�xÞÞ
� �

DUF max P2; log ðdðGcÞÞð1=ð1�xÞÞ
� �

Table 4
Information about datasets d1, d2, and d3, each with three variants. jVc j and dðGcÞ are listed for 2–32 processes.

d1 d2 d3

jV j 16.7 M 41.4 M 100.6 M
jEj 50.1 M 122.0 M 185.5 M
# CC 5.4 K 13.6 K 5.4 K
jVc j 695, 851, 1.1 K, 1.8 K, 2.7 K 8 K, 21 K, 46 K, 94 K, 188 K 10 K, 30 K, 76 K, 189 K, 466 K
dðGcÞ 3, 5, 8, 9, 13 8, 14, 28, 60, 112 9, 17, 38, 82, 162
# CC 280.5 K 683.9 K 438.7 K
jVc j 11 K, 18 K, 27 K, 39 K, 51 K 25 K, 68 K, 163 K, 327 K, 610 K 112 K, 321 K, 723 K, 1.5 M, 3.2 M
dðGcÞ 3, 11, 16, 24, 28 6, 13, 20, 41, 79 12, 22, 46, 85, 171
# CC 4.1 M 2.8 M 2.9 M
jVc j 74 K, 112 K, 142 K, 194 K, 238 K 21 K, 59 K, 147 K, 309 K, 590 K 218 K, 634 K, 1.4 M, 2.8 M, 5.6 M
dðGcÞ 4, 10, 14, 22, 24 5, 11, 24, 47, 90 10, 14, 31, 50, 96

Table 5
Information about datasets d4 and d5, each with three variants. jVc j and dðGcÞ are listed for 2–32 processes.

d4 d5

jV j 4.8 M 18.5 M
jEj 85.7 M 523.6 M
# CC 11.8 K 1.1 M
jVc j 715 K, 1.2 M, 1.6 M, 1.9 M, 2.2 M 80 K, 129 K, 157 K, 175 K, 191 K
dðGcÞ 6, 6, 6, 6, 6 9, 9, 9, 9, 9
# CC 53.8 K 3.0 M
jVc j 711 K, 1.2 M, 1.6 M, 1.9 M, 2.1 M 83 K, 140 K, 171 K, 194 K, 209 K
dðGcÞ 7, 8, 8, 8, 8 11, 12, 12, 13, 15
# CC 110.3 K 4.3 M
jVc j 697 K, 1.2 M, 1.6 M, 1.9 M, 2.1 M 89 K, 149 K, 182 K, 206 K, 217 K
dðGcÞ 7, 7, 8, 8, 8 10, 10, 13, 14, 16

J. Iverson et al. / Parallel Computing 44 (2015) 53–68 61
Derivation of AR isoefficiency. Given that the parallel runtime of an algorithm is Tp ¼ Tc þ Tc
p, and that the parallel over-

head of an algorithm is To ¼ PTp � Ts, the parallel overhead of the AR algorithm can be simplified as follows:
To ¼ Nðtc þ twÞ þ P log Pðts þ twÞ þ Pbts þ Nxðtw þ tcÞ: ð13Þ
In the equation, N ¼ ðjV j þ jEjÞ and Nx ¼ ðjVcj þ jEcjÞ. Then to find the isoefficiency of AR, the rate, in terms of P, at which N
must be increased in order to maintain a constant efficiency is found by examining each term in To.
N � Nðtc þ twÞ ! N � 1; ð14aÞ

N � P log Pðts þ twÞ ! N � P log P; ð14bÞ

N � Pbts ! N � Pb; ð14cÞ

N � Nxðtw þ tcÞ ! N � P1=1�x: ð14dÞ
Since b 6 P, Eq. 14c can be at most P2, making the asymptotically highest rate of increase of N to maintain constant efficiency,
the maximum of Eqs. 14c and 14d Thus, maxðP2; P1=1�xÞ is the isoefficiency function for the AR algorithm. In our experiments,
the value of x ranged from 0.39 up to 0.95 and had a mean value of 0.70. Given that x ¼ 0:70, then the isoefficiency function

for the AR algorithm becomes P3:�3, and likewise for the rest of the isoefficiency functions.



Fig. 7. Strong scaling parameter study for data sets d1, d2, and d3.

Fig. 8. Strong scaling parameter study for data sets d4 and d5.
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6. Experimental evaluation

6.1. Datasets

To explore the performance characteristics of these algorithms, five real world datasets obtained from UMN, NASA, SNL,
Stanford, and Rutgers were used. These first three of these datasets correspond to either the nodal or dual graphs of finite
element meshes used for a range of problems in the computational fluid dynamics domain. The last two represent net-
work graphs, specifically the link structure of LiveJournal, a social networking site, and the web graph of the United
Kingdom.

For the finite element meshes, the problem of coherent structure identification as the method for creating connected
components was used. The size and number of connected components is controlled by a parameter �, which specifies the
maximum allowed difference between the values associated with the nodes belonging to the same connected component
[20]. For the network graphs, the problem was simply to identify connected regions of the network. To evaluate the perfor-
mance of the CCL algorithms under different scenarios, for each dataset, three different graphs that have progressively larger
number of connected components were generated. For the finite element graphs, this was done by decreasing the value
of � and for the network graphs, this was achieved by removing increasing percentages of edges from the highest degree
Table 6
CAG size for each GC reduction step of 32 process experiment.

Step d3 d5

jVc j jEc j jVc j jEc j

1 466,152 1,078,202 219,974 869,404
2 189,853 485,311 206,430 785,464
3 76,842 183,721 183,463 601,048
4 31,373 65,047 150,109 401,014
5 10,741 19,688 91,152 198,835

Table 7
Aggregate strong scaling runtimes (s) for all datasets. Results are presented for the five algorithms for 2–32 processes.

P

2 4 8 16 32

d1
AR 5.65 2.37 1.37 0.79 1.22
UFM 5.64 2.37 1.40 0.80 1.19
GC 5.66 2.42 1.42 0.95 1.57
LP 5.67 2.39 1.42 0.80 1.81
DUF 5.62 2.37 1.46 0.80 1.75

d2
AR 8.02 3.07 1.65 0.95 1.45
UFM 8.05 3.08 1.75 0.95 1.87
GC 8.04 3.09 1.66 1.14 1.27
LP 8.10 3.09 1.65 1.13 7.98
DUF 8.06 3.08 1.66 1.04 1.55

d3
AR 23.33 10.37 5.45 2.99 3.03
UFM 23.37 10.29 5.43 3.05 3.13
GC 23.00 10.29 5.79 3.61 3.44
LP 23.23 10.47 5.70 3.57 19.53
DUF 23.47 10.72 5.88 3.75 4.35

d4
AR 4.06 4.33 3.85 3.01 2.52
UFM 4.06 5.43 3.73 2.86 2.14
GC 4.87 5.45 5.60 3.36 3.53
LP 3.93 8.63 11.40 15.20 16.50
DUF 4.90 5.55 5.81 3.42 3.56

d5
AR 3.05 1.74 1.05 0.60 0.42
UFM 3.05 1.74 1.03 0.57 0.33
GC 3.12 1.84 1.13 0.61 0.36
LP 3.10 1.87 1.83 0.99 0.85
DUF 3.14 1.85 1.17 0.62 0.38
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vertices. Various statistics about the original datasets and the three graphs that were generated for each of them are shown
in Tables 4, 5.

6.2. Experimental design

The performance evaluation is composed of three studies. The first is a strong scaling study in which the number of pro-
cesses was increased for a fixed problem size. The second is a weak scaling study, in which the problem size per process
remained fixed as the number of processes increased. The last is an input permutation study, where the vertices of the input
graph are renumbered to change the initial distribution of the input graph. Three input permutations are studied. The first is
no permutation, i.e., the data in the order in which it was generated, the second is a random permutation of the vertices, and
the last is a renumbering of the vertices based on the partitions identified by the graph partition software Metis [21], where
the graph is partitioned into a number of parts equal to the number of processes, then the vertices of each part are given
consecutive vertex ids.

To perform the weak scaling performance studies, the datasets used for the strong scaling studies were up-sampled. In
this case, only the finite element method datasets were used, as at the time of writing, the authors are unaware of an intui-
tive technique for up-sampling the network graphs. To up-sample the finite element datasets, triangles/squares in the tetra-
hedral and cube meshes, respectively, were located, and a new point placed inside the shape, with new edges connecting the
new point to each of the existing points. The purpose of this up-sampling technique is to keep similar characteristics
between the input graph and the up-sampled graph, i.e., number of components and communication patterns.

All experiments were run on the Minnesota Supercomputing Institutes Itasca machine, which is an HP Linux cluster with
1091 HP ProLiant BL280c G6 blade servers, each with two-socket, quad-core 2.8 Ghz Intel Xeon X5560 processors sharing
24 GB of system memory [22]. The system is connected with a 40-gigabit QDR InfiniBand interconnect. All algorithms were
implemented by the authors in C++ using MPI for message passing between processes. Timing of the algorithms was done
using the MPI_Wtime() function and the particular implementation of MPI used for testing was OpenMPI v1.5 with g++
v4.7.0. For all experiments, each application was run 20 times and the geometric mean of these execution times is reported
herein. For any given set of experimental run, the minimum and maximum execution times were within 15% of each other,
thus, detailed runtime error statistics have been omitted.
Table 8
Aggregate memory usage (MB) for all datasets. Results are presented for the five algorithms for 2–32 processes.

P

2 4 8 16 32

d1
AR 1.3 2.1 2.8 4.0 5.0
UFM 1.3 2.1 2.7 3.7 4.6
GC 1.5 2.5 3.4 4.2 4.7
LP 0.3 0.4 0.3 0.2 0.1
DUF 1.3 2.5 3.2 4.1 4.7

d2

AR 0.9 2.4 5.9 12.5 24.3
UFM 0.8 2.3 5.7 11.7 22.2
GC 1.0 2.2 3.4 4.5 5.9
LP 0.2 0.4 0.4 0.4 0.4
DUF 1.0 2.2 3.2 4.5 5.6

d3

AR 47.7 64.1 70.1 112.1 202.6
UFM 47.7 64.1 67.5 99.9 173.1
GC 47.7 64.1 59.6 60.5 67.6
LP 47.7 64.1 59.6 57.9 57.9
DUF 47.7 64.1 59.6 61.3 67.8

d4

AR 62.8 107.0 150.9 196.3 240.6
UFM 50.4 76.9 95.5 109.5 120.1
GC 100.0 168.9 222.8 267.8 302.3
LP 12.6 12.9 11.0 8.7 6.7
DUF 70.3 110.4 156.7 203.2 251.3

d5

AR 5.1 9.0 12.1 15.3 18.2
UFM 4.1 6.7 8.1 9.2 9.9
GC 7.5 13.1 17.2 20.5 22.6
LP 1.0 1.0 0.8 0.6 0.4
DUF 6.5 11.6 13.4 18.3 20.2
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7. Results

7.1. Strong scaling

Fig. 7 shows the results of the strong-scaling study on 2–32 processes for datasets d1, d2, and d3. The sub-figures along
each row correspond to results obtained for the same dataset but for different values of �. In all the rows, the number of
connected components increases from left-to-right and ranges from a few thousands to a few million connected
components.

In terms of application runtime, all algorithms exhibit very similar scaling behavior up to 16 processes. However, at 32
processes, LP performs considerably worse than the rest, and its overall runtime increases considerably. The poor perfor-
mance of LP on 32 processes can be attributed to the facts that (i) the number of iterations that it requires in order to ter-
minate increases (as it depends on the value of dðGcÞ in Table 4 and (ii) that each of these iterations needs to communicate
more data as the number of processes increases.

Fig. 8 shows the results of the strong-scaling study on 2–32 processes for datasets d4 and d5. The format of these results
are the same as the results presented for the first three datasets. For both datasets, AR, UFM, and DUF, exhibit scaling behav-
ior similar to their corresponding results in Fig. 7. However, LP exhibits much better scaling behavior than its corresponding
results for the CFD datasets. This is expected due to nature of the graph structures of datasets d4 and d5, both of which
require a small number of iterations to propagate labels throughout the graph, as can be seen in Table 4. Finally, this figure
shows the relatively poor performance of the GC algorithm on these datasets. Just as the superior performance of LP was
attributed to the structure of the two datasets, the inferior performance of GC can also be attributed to the structure of these
two datasets. Contrary to the CFD datasets, datasets d4 and d5 exhibit much less of a regular structure; regular in the sense
that adjacent vertices in the graph are adjacent to similar sets of vertices. This lack of regular structure, makes the reduction
steps of the GC algorithm expensive, since the merging of two CAGs does not lead to a large reduction in the size of the
resulting CAG. This is evidenced by Table 6, which shows the size of the CAG, aggregated across all processes, for each of
the reduction steps using 32 processes on datasets d3 versus d5.

In addition, Tables 7 and 8 show the amount of time and memory required by the different algorithms for the all five
datasets. These statistics were obtained by aggregating the time/memory required by all three graphs derived from that
dataset (i.e., aggregation of the runs corresponding to the bottom row of Fig. 7). Comparing the performance of the five
schemes, AR has the lowest aggregate runtime, with GC and UFM following right behind. However, the relative performance
of the algorithms is considerably different, when their memory footprint is taken into account. From Table 8, LP, GC, and DUF
require the least amount of memory, whereas the other two algorithms require significantly more memory for datasets d1,
Fig. 9. Weak scaling parameter study for data sets d1, d2, and d3.



66 J. Iverson et al. / Parallel Computing 44 (2015) 53–68
d2, and d3. The high memory requirements of AR and UFM are due to the fact that they require that the entire information
associated with their underlying algorithms (CAG or the entire disjoint-set data structure) is aggregated to a single processor.
Also, the low memory requirements of GC indicate that during the successive graph contraction operations, the size of the
contracted graph decreases substantially, and it does not lead to any significant increases in its memory footprint. The same
is not true for datasets d4 and d5, where GC’s inability to successfully contract at each step causes it to have a much higher
memory footprint. Furthermore, due to LP’s simple exchange of vertex labels, it is able to maintain a low memory footprint
for all datasets.
7.2. Weak scaling

Fig. 9 and Table 9 show the results of the weak-scaling parameter study on 8–512 processes. The per process problem size
was selected to be the original problem size divided by eight, formally jEj=8. The format of these results are similar to the
corresponding results presented for the strong-scaling study in the previous section.

These results show that none of the algorithms scale linearly as the number of processors is increased and the per process
problem size is fixed. This should not be a surprise, as the parallel runtime complexity analysis presented for the various

algorithms indicate that they have an isoefficiency function that is at least O ðlog PÞð1=ð1�aÞÞ
� �

, see Table 3. However, these

results provide experimental evidence about the real-life scalability of the various algorithms and how their performance
is affected by the nature of the underlying problem (i.e., the number and size of the connected components). Specifically,
these experiments show that among all five algorithms, GC scales consistently better than the rest, both for graphs with
Table 9
Aggregate weak-scaling runtimes (s) and memory usage (MB) for dataset d1, d2, and d3. Results are presented for the five algorithms for 8–512 processes.

P

8 16 32 64 128 256 512

d1
Runtimes
AR 1.32 1.38 1.43 1.58 2.32 2.79 6.16
UFM 1.34 1.38 1.44 1.71 2.24 2.62 4.05
GC 1.40 1.51 1.53 1.73 1.93 2.19 2.89
LP 1.37 1.44 1.46 1.64 2.37 3.81 26.65
DUF 1.35 1.41 1.49 1.58 2.22 2.43 3.21

Memory
AR 5.37 4.76 4.29 4.84 5.44 5.46 5.47
UFM 5.37 4.76 4.29 4.75 5.23 5.25 5.26
GC 5.37 4.76 4.29 3.93 3.68 3.13 3.02
LP 5.37 4.76 4.29 3.93 3.68 3.11 2.99
DUF 5.37 4.76 4.29 3.93 3.68 3.14 3.04

d2
Runtimes
AR 1.33 1.38 1.39 1.57 2.36 2.88 6.18
UFM 1.33 1.40 1.44 1.66 2.18 2.59 4.07
GC 1.41 1.52 1.55 1.73 1.96 2.27 2.92
LP 1.35 1.42 1.46 1.71 2.43 3.88 26.90
DUF 1.38 1.39 1.42 1.63 2.15 2.45 3.31

Memory
AR 29.45 26.88 30.19 48.40 84.93 84.95 84.98
UFM 29.45 26.88 28.73 44.45 73.25 73.25 73.26
GC 29.45 26.88 25.58 24.96 23.20 12.01 10.10
LP 29.45 26.88 25.58 24.96 23.20 11.73 5.90
DUF 29.45 26.88 25.58 24.96 23.20 11.89 10.14

d3
Runtimes
AR 0.37 0.40 0.52 0.79 1.68 2.47 6.25
UFM 0.41 0.56 0.86 1.58 3.65 3.08 5.30
GC 0.84 1.20 1.76 2.46 2.99 3.71 4.69
LP 0.64 0.76 1.33 2.63 5.44 24.40 81.90
DUF 0.73 1.01 1.42 2.48 3.24 3.84 4.98

Memory
AR 70.1 112.1 202.6 395.7 603.1 603.0 607.0
UFM 67.5 99.9 173.1 323.7 482.8 481.4 482.9
GC 59.6 60.5 67.6 79.0 83.0 79.6 77.9
LP 59.6 57.9 57.9 58.3 58.3 59.5 57.6
DUF 59.6 61.2 68.3 79.7 84.2 80.0 77.9



Fig. 10. Input graph permutation study.
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few as well as many connected components. The performance of the other methods is more variable and it tends to get
worse as the number of connected components increases. This is especially true for the LP and AR algorithms. In terms of
overall execution time, Table 9 shows that GC requires less time than the rest, and that as the number of processes increases,
the time required by LP increases considerably. Also, the memory requirements of the different methods are similar to those
observed in the strong scaling study, with GC, LP, and DUF requiring significantly less memory than the other two methods.
Moreover, the memory requirements of GC, LP, and DUF remain roughly constant as the number of processes increases.

7.3. Input graph permutation

Fig. 10 shows the results of the input permutation study on 2–32 processes. Like the previous studies, each row of the
figure represents the results for a given dataset. In this case, the columns represent the different input permutations.

Firstly, these results show that for the datasets from the computational fluid dynamics domain, the original input
permutation is quite close to the Metis permutation. This should be expected, since the programs that run this type of sim-
ulation often rely on tools like Metis to determine vertex distribution in a parallel setting. Secondly, these experiments high-
light the importance of input permutation. Specifically, none of the algorithms performed well on a random permutation.
This is due to the increase in communication associated with having adjacent vertices distributed across processes.

The superior performance of the AR and UFM algorithms can be explained by their reliance on global communication
primitives. Both of these algorithms rely on gathering a global data structure to a single process, which means that the
amount of data being communicated in the course of the algorithms is independent of the data distribution. The communica-
tion time can still be affected by data distribution, since different distribution will put different pressures on the network,
but overall, the cost of these algorithms in terms of communication is independent of input permutation. In these experi-
ments, the trade-off for the increased memory to gather the data structure is acceptable, since the data structures fit into
the memory of a single process. However, as can be seen from Table 8, the memory footprint of the AR and UFM algorithms
is significantly higher than the others. Thus, for larger problem sizes, the memory requirement of these two algorithms will
be prohibitively high.

8. Conclusion

In this paper, five algorithms were explored for computing the connected component labeling of a graph that is dis-
tributed across nodes of a distributed-memory system. Theoretical complexity for each algorithm was derived under the
assumption that the intermediate component adjacency graph is evenly distributed. Experimental results were presented
for each method on a set of graphs arising from coherent structure identification in scientific computing and community
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detection in social network analysis. The experimental results showed that under weak scaling the graph contraction algo-
rithm, introduced in this work, scales more consistently than any of the other algorithms and uses approximately the same
amount of memory as the most memory efficient of the algorithms. Since in many applications, connected component label-
ing is a step that needs to be performed in parallel with other types of computations, being able to perform this operation
with minimal additional memory overheads, is an important requirement.
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