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Abstract

The knowledge of a pharmacophore, or the 3D arrange-
ment of features in the biologically active molecule that is
responsible for its pharmacological activity, can help in
the search and design of a new or better drug acting upon
the same or related target. In this paper we describe two
new algorithms based on the frequent clique detection in
the molecular graphs. The first algorithm mines all fre-
quent cliques that are present in at least one of the con-
formers of each (or a portion of all) molecules. The sec-
ond algorithm exploits the similarities among the different
conformers of the same molecule and achieves an order of
magnitude performance speedup compared to the first al-
gorithm. Both algorithms are guaranteed to find all com-
mon pharmacophores in the dataset, which is confirmed
by the validation on the set of molecules for which phar-
macophores have been determined experimentally. In ad-
dition, these algorithms are able to scale to datasets with
arbitrarily large number of conformers per molecule and
identify multiple ligand binding modes or multiple binding
sites of the target.

1 Introduction

The concept of a pharmacophore is widely used in modern
drug design and it is generally defined as the 3D arrange-
ment of certain features in the ligand that are responsible
for its activity against a particular protein target.1,2 The
importance of the pharmacophore stems from the fact that
once it has been identified, it can be used to rationally de-
sign new ligands that contain it and thus have a greater
chance of producing the desired pharmacological effect.

The pharmacophore can be relatively easily identified
if the 3D structure structure is available for several lig-

ands bound to the same binding site of the same protein
by aligning the features of all the ligands and finding their
largest common arrangement, referred to as the common
pharmacophore (CP). The underlying assumption behind
such an approach is that the structurally conserved charac-
teristics of a set of active ligands are responsible for their
biological activity against the specific protein target.1,2

However, the number of ligands for which the 3D structure
has been determined represents a very small fraction of all
the binding data currently available. In most cases such as
in high-throughput screening assays,3 the actual 3D geom-
etry of the binding conformation is not known and only the
activity is provided. In order to identify a common phar-
macophore in a set of ligands for which exact 3D struc-
tures are not known, one can usually enumerate all pos-
sible low-energy conformations of all ligands, identify a
potential binding conformation for each ligand and then
align those binding conformations to find the largest com-
mon arrangement of features. However, the identification
of the binding conformation is not an easy task. It can be
further complicated by the fact that different ligands may
have different binding modes or bind to different sites of
the target.4

A number of methods and associated programs have
been developed for identifying a common pharmacophore
using the information from the active ligands. One of
the earliest programs for CP identification is DISCO,5

which tries to align conformers of different ligands to
the one rigid conformation of the reference ligand. Cat-
alyst/HipHop6 uses a pruned exhaustive search method by
building a pharmacophore model starting with the smallest
arrangements of features until no larger CP exists. GASP7

uses a genetic algorithm to align flexible molecules to the
most rigid one in the set. The more recent PHASE8 pro-
gram uses a tree-based partitioning technique to find all
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k–point pharmacophores in the active ligands. A recursive
distance partitioning (RDP)9 and Gibbs sampling10 algo-
rithms have also been employed recently in the identifica-
tion of a common pharmacophore.

In this paper we take an entirely different approach for
identifying a common pharmacophore that is based on fre-
quent graph mining. We model each conformation by a
graph, referred to as the conformer graph, whose vertices
are the pharmacophore points and the edges are the binned
distances between the points. Our method then mines
these graphs to find all vertex- and edge-labeled cliques
(i.e., fully-connected subgraphs) that are present in at least
one conformer graph of each ligand (or a large fraction
of them). Each of these cliques represents a set of phar-
macophore points whose pairwise distances are conserved
and thus, they correspond to a common pharmacophore.

Even though in recent years a number of efficient al-
gorithms have been developed for frequent subgraph min-
ing such as FSG,11 gSpan,12 FFSM,13 and CLAN,14 these
algorithms cannot be used to find the frequent cliques
needed in order to identify the common pharmacophore.
This is because the notion of the frequency utilized in the
above algorithms is entirely different from that required
for common pharmacophore identification. The existing
methods define the frequency in terms of the entire set of
conformations, whereas in the case of the common phar-
macophore the frequency is defined in terms of ligands.
In addition, the existing algorithms are designed to solve
different problems. FSG, gSpan, and FFSM find all fre-
quent subgraphs instead of only the cliques, thus spend-
ing a large amount of time finding unnecessary subgraphs,
whereas CLAN is designed to find frequent cliques in
graphs that have only labels on the vertices but not on the
edges. Labeled edges are critical for finding the common
pharmacophore as they are used to capture the distance
between each pair of pharmacophore points.

In this paper we present two algorithms for mining the
graphs corresponding to low-energy conformations of a
set of active ligands for the same protein target. These al-
gorithms, referred to as multiple conformer miner (MCM)
and unified conformer miner (UCM), are designed to
find the frequently occurring cliques suitable for solving
the common pharmacophore identification problem. The
MCM algorithm is modeled after existing clique-mining
methods, mines the conformer graphs using a depth-first
approach, operates on edge-labeled graphs, and correctly
determines the frequency of a common pharmacophore
based on its embeddings in the pharmacophore graphs of
the various ligands. The UCM algorithm improves the

computational complexity of MCM by leveraging the fact
that there is a high degree of structural similarity among
subsets of the 3D conformations of each molecule. The
computational requirements of both methods are relatively
small as the they do not perform any explicit structural
alignments. Moreover, by assigning multiple labels to
each edge (corresponding to overlapping distance bins),
our methods provide a flexible framework which allows
the identification of common pharmacophores even when
their overall structure is somewhat variable. The experi-
mental evaluation of these methods on a number of syn-
thetic datasets and datasets with known pharmacophores
shows that they have very low computational requirements
and that they can identify the known common pharma-
cophores. In addition, the UCM’s exploitation of the
structural similarity of conformers improves performance
by an order of magnitude.

2 Methods

2.1 Definitions and Notations

Each labeled and undirected graph G is represented as a
tuple G = {V, E, L,L}, where V is a set of vertices or
nodes, E ⊆ V × V is a set of undirected edges of G, L is a
set of disjoint vertex and edge labels, and L : V ∪ E → L
is a function that maps the vertices and edges to their cor-
responding labels. A graph is represented by its |V | × |V |
adjacency matrix M in which each off-diagonal element
Mi, j contains the label of the edge (vi, v j) and each diago-
nal element Mi,i contains the label of the vertex vi,

Two graphs G1 = {V1, E1, L,L1} and G2 =

{V2, E2, L,L2} are considered isomorphic if |V1| = |V2|,
|E1| = |E2| and there exists a bijection f : V1 → V2

such that ∀v ∈ V1, L1(v) = L2( f (v)) and ∀(v, u) ∈ E1,
L1((v, u)) = L2(( f (v), f (u))) (i.e., there is a one-to-one
correspondence of the vertices and edges between the two
graphs). Graph G′ = {V ′, E′} is called a subgraph of
G = {V, E}, denoted by G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. If
there exists a subgraph g′ of a graph G that is isomorphic
to a graph g, then g′ is called an embedding of g in graph
G. If a graph G contains at least one embedding of a graph
g, then g is said to be supported by G.

A clique is a fully connected graph, i.e., for each pair of
vertices in V there exist an edge in E. The size of a clique
is defined by the number of vertices it contains, i.e., |V |.
A clique with n vertices is called an n-clique. As a result,
the number of edges in the n-clique is n × (n − 1)/2. For
example, Fig. 1 contains two graphs G1 and G2. G1 is a
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Figure 1: Example of graphs. G1 is a clique, G2 is not a
clique.

clique because every node is connected to all other in the
graph. On the other hand, graph G2 is not a clique be-
cause it lacks an edge between nodes v3 and v5. Looking
at Fig. 1, one can see that the set of vertices v1, v2, and
v5 and the edges connecting them in the graph G2 are iso-
morphic to the graph G1, which is a clique, because they
have the identically labeled vertices and edges. Thus, the
set of vertices v1, v2, and v5 and the connecting edges are
the embedding of the clique G1 in the graph G2.

2.2 Canonical Representation of Cliques

Almost all graphs can be represented in more than one
way depending on the order of vertices and edges in the
representative string. This fact can significantly reduce the
performance of most graph mining algorithms that will try
to find the embeddings of the same graph multiple times
due to multiple available representations. In order to avoid
such redundancy, one needs to use a canonical graph la-
beling. Canonical label is the unique code of a given
graph.15,16 The canonical code of a graph G (denoted by
can(G)) should be the same regardless of its representa-
tion as long as the topological structure of the graph and
its vertex and edge labels remain the same.

The canonical code that we use is based on the mini-
mum adjacency matrix code.11,13 This code is constructed
by taking an adjacency matrix and rewriting it in one
line by concatenating all its rows. The minimum adja-
cency matrix code is the lexicographically minimum code
among all possible adjacency matrix codes for a given
graph. This canonical code has a prefix preservation prop-
erty, i.e., for each graph G there exists a subgraph Gs ⊆ G

such that the canonical code of the Gs is a prefix of the
G’s canonical code. In this study, we used a modified ver-
sion of a minimum adjacency matrix code to represent the
cliques to have all node labels in the code be in lexico-
graphic order. The code is simply a string consisting of
node labels followed by the edge labels to each preceding
node in the clique in order. For example, the clique rep-
resented by graph G1 in Fig. 1 can have several codes:
ABaCba ≺ ACbBaa ≺ BAaCab ≺ BCaAab ≺ CAbBaa ≺
CBaAba. However, since the code ABaCba lexicographi-
cally precedes all other codes, it is the canonical code for
that clique. Now, consider a clique formed by vertices v2,
v3, and v4 and the connecting edges in graph G2 in Fig. 1.
This clique can also be represented by several codes, two
of which, viz. AAaCbc and AAaCcb, have the same alpha-
betical order of the node labels. However, since AAaCbc ≺
AAaCcb, the AAaCbc is the canonical code for that clique.

2.3 Graph Representation of Conforma-
tions

Each molecular conformation is represented as a graph,
where pharmacophore points are the vertices and edges
are the inter-point distances. From here on we will use the
terms pharmacophore points and vertices as well as inter-
point distances and edges interchangeably.

For each graph G = {V, E, L,L}, there are two sets of
labels in L = LV ∪ LE : one for vertices (LV ) and an-
other one for edges (LE). The labels of the vertices are
used to capture the type of the pharmacophore points and
they are user-defined. In the current study we used a total
of six vertex labels corresponding to the following types
of pharmacophore points: P (positive ionizable atom), N
(negative ionizable atom), A (hydrogen-bond acceptor), D
(hydrogen-bond donor), R (aromatic ring centroids), and
H (hydrophobic).

The labels of the edges are used to capture the dis-
tance between the pair of pharmacophore points associ-
ated with the vertices. In our graph model, the actual dis-
tances are discretized into a finite number of bins. Specifi-
cally, the distance range between [dmin, dmax] is discretized
into l equal-size intervals with the corresponding labels
0, . . . , l − 1. Based on the actual distance between a pair
of pharmacophore points, each edge can be assigned up
to two labels. The first label corresponds to the bin that
its distance falls in. The second label is designed to max-
imize the identification of common pharmacophores due
to the above distance binning. In particular, if the actual
length of an edge is within δ (where δ ≤ 0.5) of the bin size
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from a bin boundary, then the label corresponding to the
adjacent left or right bin is also assigned to that edge. The
parameters dmin, dmax, l, and δ are user-defined. Also, any
distances that fall outside the [dmin, dmax] range are ignored
and they are treated to represent vertices that are either too
close to actually represent different pharmacophore points
(e.g., same atom was assigned more than one label) or they
are too far away to be meaningful pharmacophore points.

The multiple label assignment guarantees that all fre-
quent cliques in which the variation of the distances be-
tween any pairs of vertices does not exceed 2δ of the bin
size will be discovered even if the corresponding distances
in different molecules are assigned different labels. For
example, if the bin size l = 1Å and δ = 0.25, then all of
the distances differing by up to 2 × δ × l = 0.5Å will be
assigned at least one common label. Selecting a smaller
value of δ will decrease the runtime but will only find very
high-quality (low RMSD values) pharmacophores; select-
ing a larger value will find looser pharmacophores at the
expense of more computational requirement. For exam-
ple, selecting δ = 0.5 will always assign two labels to
every edge and the algorithm will be guaranteed to find all
cliques in which identical inter-point distances differ by
no more than the bin size l.

2.4 Problem Definition

Let D = {G1, . . . ,Gn} be a set of sets of graphs, one for
each of the active molecules {M1, . . . ,Mn}. Each Gi is a
set of graphs {Gi1 , . . . ,Gimi

} for each of the mi conforma-
tions of the molecule Mi. For a given clique C, the sup-
port of a clique in the D is defined as sup(C) = |M|, where
M ⊆ {M1, . . . ,Mn} is a set of molecules that each have at
least one conformer graph G that supports C. Thus, pro-
vided the above, the common pharmacophore identifica-
tion problem is defined as follows: Given D and the min-
imum support fraction σ, find all cliques in D whose sup-
port is ≥ σ · |D|. Setting σ to 100% restricts the search to
only pharmacophores supported by all molecules. On the
other hand, allowing σ to be less than 100% allows to find
pharmacophores supported by only a portion of molecules
which is required in cases when multiple binding sites,
multiple binding modes or noisy data is a possibility.

2.5 Algorithms

In this section we describe the two proposed algorithms
for common pharmacophore identification using frequent
clique mining in the graphs representing low-energy con-
formations of the active molecules, or ligands. The MCM

algorithm is based on existing clique-mining methods and
mines the conformer graphs using a depth-first approach
and operating on edge-labeled graphs, and correctly deter-
mines the frequency of a common pharmacophore based
on its embeddings in the pharmacophore graphs of the var-
ious ligands. The UCM algorithm improves the computa-
tional complexity of MCM by capitalizing on the fact that
there is a high degree of structural similarity among the
3D conformations of a molecule. Both algorithms produce
identical results and differ only in the execution time.

2.5.1 Multiple Conformer Miner Algorithm

The MCM algorithm described in this section uses a
depth-first approach to discover all frequent cliques. Dur-
ing each step, it generates a new candidate n + 1-clique by
growing the size of the current frequent n-clique via ad-
dition of a single new vertex and n new edges. All added
edges are taken from the set of all frequent 2-cliques gen-
erated at the beginning of the algorithm. The clique is
grown in such a way that the canonical code of the current
clique is a prefix of the candidate clique. The latter ensures
that the same clique is not enumerated multiple times. Af-
ter the candidate generation step, the clique is enumerated
(i.e., the embeddings of the clique are mined) and, if found
frequent, reported and used for further growth.

MCM algorithm uses a simple adjacency matrix M to
store each conformer separately for each molecule. When
a two-bin assignment is used, the two different labels
(differing by 1) corresponding to the distance between
the same two vertices are stored in Mi, j and M j,i. If a
single-bin assignment is selected, then all off-diagonal el-
ements in the lower triangular matrix are assigned –1, i.e.,
∀ j < i : Mi, j = −1. Sample adjacency matrices for
conformers depicted in Fig. 2 are presented in Fig. 3a
(for visualization purposes, the numeric edge labels were
replaced with alphabetical ones to avoid confusion with
conformer IDs used by the unified conformer matrix de-
scribed in the following section).

The embeddings of the cliques are stored in a set E =

{EM1 , . . . ,EMn } whose members are the molecular struc-
tures representing each molecule Mi containing at least
one conformer graph supporting the clique. Each molec-
ular structure EMi consists of two members: molecule ID
and a set of conformer structures {EC1 , . . . ,ECn }. Each
conformer structure ECi contains a conformer ID and a set
of embeddings {EE1 , . . . ,EEn }. Each embedding EEi is a
list of vertices (i.e., vertex IDs) in that conformer that have
the appropriate vertex labels and edges. For the simplicity
of the pseudocode, we omit the IDs of the molecules and
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Figure 2: Three graphs representing three conformations of the same molecule. The edge labels represent two-bin
assignment of the distances.

A a b
b B a
c b C

A a a
b B c
b d C

A b a
c B b
b c C

A a 7→ {1,2} a 7→ {2,3}
b 7→ {–1} b 7→ {–1}
c 7→ {3} c 7→ {1,3}
B a 7→ {1}

b 7→ {1,3}
c 7→ {2,3}
d 7→ {2}
C

a b

Figure 3: Representations of graphs in Fig. 2: a) adjacency matrices for each conformer and b) unified conformational
matrix.

conformers in the EMi and ECi and treat them simply as
sets of conformers and embeddings, respectively.

The MCM algorithm consists of three main programs:
The FIND FREQ CLIQUES (Program 1) that is the entry
point of the algorithm, GROW CLIQUE (Program 2) that
recursively finds frequent cliques larger than the currently
discovered one, and MCM ENUMERATE (Program 3)
that finds the embeddings of a particular clique.

The FIND FREQ CLIQUES starts by enumerating all
2-cliques in the graphs contained in D and storing the em-
beddings of those 2-node cliques that are determined to be
frequent. For each of these cliques, the GROW CLIQUE
function is called to find all cliques of size larger than two
that have a canonical code of the passed 2-clique as their
prefix.

GROW CLIQUE records the pharmacophore and its
embeddings that are passed to it as an argument. Record-
ing can be restricted by user to, for example, only 4-point
pharmacophores or larger. On line 2, all candidate cliques
of size 1 vertex larger than the one passed to it and for
which all subcliques of size 2 are frequent and for whose
canonical code the canonical code of the passed clique is

Program 1 FIND FREQ CLIQUES(D)
1: F2 ← find all frequent 2-cliques in D
2: sort F2 in lexicographic order
3: for each f ∈ F2 do
4: E2 ← find all embeddings of f in D
5: GROW CLIQUE( f , E2)

a prefix are generated. A pruning step on line 3 removes
all cliques in which any three vertices and the edges be-
tween them fail the triangular inequality. Each candidate
clique is then enumerated and, if found to be frequent (i.e.,
the support for the clique, or the size of the set of em-
beddings Ec of the clique c is not less than the minimum
support), used for generation of larger candidate cliques
with a recursive call to GROW CLIQUE. In other words,
the algorithm performs a depth-first search of all present
frequent cliques by growing the currently discovered fre-
quent clique by an intelligent addition of a single vertex in
each of the recursive calls.

The pseudocode for enumeration program
MCM ENUMERATE is presented in Program 3.
This program takes three arguments: the canonical code

5



Program 2 GROW CLIQUE( f , E)
1: record f ,E
2: C← {c| |c| = | f | + 1 AND

∀ 2-clique ⊂ c, 2-clique ∈ F2 AND
can( f ) is a prefix of can(c) }

3: Prune geometrically impossible cliques
4: for each c ∈ C do
5: Ec ← ENUMERATE( f ,E, c)
6: if sup(c) ≥ σ · |D|
7: then GROW CLIQUE(c, Ec)

Program 3 MCM ENUMERATE( f ,E, c)
1: E′ ← {}
2: l← L(Vc − V f )
3: B ← L(Ec − E f )
4: for each moleculeM with embeddings EM ∈ E do
5: V← {v ∈ VM |L(v) = l}
6: E′

M
← {}

7: for each conformer C with embeddings EC ∈ EM do
8: E′

C
← {}

9: for each embedding EE ∈ EC do
10: Ve ← V − EE
11: E′

E
← {}

12: for each v ∈ Ve do
13: for i← 1 to |EE | do
14: u← EEi
15: if ∃(v, u) ∈ GMC ,L(v, u) = Bi
16: then i← i + 1
17: else break
18: if i > |EE |
19: then E′

E
← E′

E
∪ {EE ∪ v}

20: E′
C
← E′

C
∪ {E′

E
}

21: E′
M
← E′

M
∪ {E′

C
}

22: E′ ← E′ ∪ {E′
M
}

23: if |E′ |+ # remaining mol. in E < σ · |D|
24: then return {}
25: return E′

of the new clique to be enumerated f , a set of the current
clique embeddings E, and the canonical code c of the
current clique for which embeddings are supplied in
E. Note, that since the clique is growing only by one
vertex after it is confirmed to be frequent, the difference
between the f and c is a single vertex and the number of
edges equal to the number of vertices in c. The program
starts with creating an empty set of embeddings E′ for
the new clique f , and determining the label l of the new
node added to c and obtaining a list of labels B of the
edges from all nodes in c to the new node in order (lines
1-3). After that, a loop through all molecules in the E is
initiated. In each loop, a set of vertices V of the molecule
with the labels identical to that of the new node, or a set
of candidate vertices, is created (line 5).

In the main loop (lines 4–24), every conformer of the
molecule that has at least one embedding of c, and each
embedding is visited. Since the vertices participating in
the current embedding cannot be candidate vertices, a new

set of candidate vertices Ve is created by removing the ver-
tices in the current embedding from the candidate vertices
set V. Then, for each candidate vertex in Ve, the edge la-
bels to all other vertices in the clique c are looked up in
the adjacency matrices of the corresponding conformers
and checked against the labels in the new edge labels setB
(lines 12–17). If all corresponding edge labels are found,
the embedding is added to the set of new embeddings E′

E

(line 19). On lines 20–22, the sets of embeddings E′
E
, con-

formers E′
C

, and molecules E′
M

containing embeddings
are added to the sets of conformers E′

C
, molecules E′

M
, and

new clique embedding set E′, respectively. After process-
ing each molecule with embeddings, the algorithm checks
if the needed minimum support (the minimum number of
molecules) can be achieved given the size of the current
embedding set E′ and the number of molecules remaining
unprocessed in E. If the required minimum support can-
not be achieved, the program terminates by returning the
empty embedding set (lines 23–24). Finally, the program
returns the set of new clique embeddings E′.

Notice that in the cases when the pharmacophore be-
ing enumerated consists of four or more pharmacophore
points, the 3D arrangements that are mirror images of
each other (and, therefore, not superimposable) will be in-
distinguishable. Thus, for all 4-point and larger pharma-
cophores, the algorithm checks (just before the line 19) if
the last point is located above or below the plane formed
by the three immediately preceding points and saves the
vertices in one of two separate embeddings. Therefore,
the algorithm returns two sets of embeddings instead of
one for all 4-point or larger pharmacophores (for the sake
of simplicity this was omitted in the Program 3). Even
though these extra computations may seem to increase the
runtime of the algorithm, this is not necessarily the case
as it will in most cases prune infrequent pharmacophores
much earlier. Indeed, the MCM algorithm runtime for the
dataset described in the Section 3.1 decreased by 33% af-
ter this additional step was added.

2.5.2 Unified Conformer Miner Algorithm

A unique characteristic of frequent clique discovery in
the context of the common pharmacophore identification
problem is that there is a high degree of overlap between
the graphs corresponding to the multiple conformations of
the same molecule. Specifically, all the graphs in the set
GMi , i.e., all conformers of the same molecule Mi, have
exactly the same number and types of vertex labels and
our analysis showed that 40–60% of the edges between
pharmacophore points are conserved among the confor-
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mations of the same molecule. This degree of conserva-
tion stems from the facts that (i) some of the edges rep-
resent chemical bonds between underlying atoms that do
not vary during conformer generation using molecular me-
chanics force fields and (ii) parts of the molecule may be-
long to a rigid part of the molecule.

To take advantage of these overlaps and reduce the
amount of time required to solve the common pharma-
cophore identification problem we developed the unified
conformer miner (UCM) algorithm. The UCM algorithm
uses a new data structure, referred to as the unified confor-
mational matrix, to compactly store the information about
all conformers of the same molecule. The unified confor-
mational matrix M is the matrix of size n×n, where n is the
number of pharmacophore points in the molecule, with the
lower-left off-diagonal elements being unused. Each diag-
onal element Mi,i contains the label of the corresponding
vertex vi. The difference from the adjacency matrix used
by the MCM algorithm is in the contents of the upper-
right off-diagonal elements. Each off-diagonal element
Mi, j (i < j) is a map with the edge labels serving as the
keys and the sets of conformers (namely, conformer IDs)
of a molecule that support this distance between vertices
vi and v j serving as the mapped values. The unified con-
formational matrix for the molecule represented by three
conformers depicted in Fig. 2 is shown in Fig. 3b. One
can see from Fig. 2 that distance a between vertices v1

and v2 is supported by conformations 1 and 2. Thus, the
map in the matrix element M1,2 has the following entry:
a 7→ {1, 2}. Another significant improvement of the uni-
fied conformational matrix is the replacement of all sets
that contain all conformers’ IDs with a single-element set
{–1}. This should significantly improve the performance
of the clique enumeration as well as reduce the storage
requirements since about 40% to 60% of the distances be-
tween the same two vertices do not vary among the con-
formers, leading to a large number of the sets of conform-
ers being identical and containing all conformer IDs for
the molecule. For example, one can see from Fig. 2 that
the distance b between vertices v1 and v2 is supported by
all conformations. Thus, one of the elements in the map
stored in matrix element M1,2 is b 7→ {−1}.

UCM algorithm also consists of three programs. The
pseudocode of the first two programs is almost identical to
FIND FREQ CLIQUES and GROW CLIQUE from the
MCM algorithm, with only modification being that the el-
ements of the maps in the unified conformational matrices
that are infrequent (i.e., not used in any of the frequent
2-cliques) are completely removed after discovering all

Program 4 UCM ENUMERATE( f ,E, c)
1: E′ ← {}
2: l← L(Vc − V f )
3: B ← L(Ec − E f )
4: for each moleculeM with embeddings EM ∈ E do
5: V← {v ∈ VM |L(v) = l}
6: E′

M
← {}

7: for each key-value pair (εvert , εcon f ) ∈ EM do
8: Ve ← V − εvert

9: for each v ∈ Ve do
10: C ← εcon f

11: for i← 1 to |εvert |

12: u← εvert
i

13: if ∃(v, u) ∈ GM,L(v, u) = Bi
14: if MM[v][u][Bi] = {−1}
15: then continue
16: else C ← C ∩ MM[v][u][Bi]
17: else
18: C ← {}

19: break
20: if C = ∅

21: then break
22: i← i + 1
23: if C , ∅
24: εvert′ ← {εvert ∪ v}

25: εcon f ′ ← C

26: E′
M
← E′

M
∪ (εvert′, εcon f ′)

27: E′ ← E′ ∪ E′
M

28: if |E′ |+ # remaining mol. in E < σ · |D|
29: then return {}
30: return E′

frequent 2-cliques in the FIND FREQ CLIQUES to im-
prove the performance of the rest of the algorithm. Due
to the differences in the structure of the set D and in the
way the embeddings of the cliques are being enumerated
and stored in the two algorithms, the enumeration code in
the UCM ENUMERATE (Program 4) is significantly dif-
ferent from that used in the MCM algorithm.

The embeddings in the UCM are also stored in a set
E of molecular structures EM with two members, one of
which is the molecule ID. However, the second element
in the structure is now a set of pairs (εvert, εcon f ), where
εvert is the list of vertices representing the embedding of
a clique in the molecule and εcon f is the set of conformer
IDs that contain the embedding with these vertices. In
the following algorithm descriptions we have omitted the
assignment of molecule and conformer IDs for simplicity.

In each iteration of the main loop of the
UCM ENUMERATE, after selecting an initial set of
candidate vertices on line 5, the algorithm visits every
vertices-conformers pair (εvert, εcon f ) in EM, the set of
embeddings in the molecule M. Since the εvert is a set
of vertices that represent the embedding of the clique c,
they cannot be candidate vertices for extension and must
be removed from the set of vertices V (line 8). The loop
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on lines 9–26 goes through every vertex in the candidate
set and computes the intersection of the set of conformers
εcon f that support current embedding with the sets of
conformers for each distance in B between the candidate
vertex and each vertex in the current embedding εvert

of the frequent clique c. If the set of conformations of
molecule M supporting a particular distance Bi between
two vertices v and u contains a single element –1 (line
14), which means that all conformations support that
edge, then no intersection needs to be calculated as it will
not change. Otherwise, the set of conformations C that
support the frequent clique c and all new edges processed
so far is updated by taking its intersection with the set
of conformations supporting the edge being currently
processed (line 16). Note, that since each new edge in
the f must be supported by at least one conformation,
whenever it is found that the edge is not supported, the
set C is emptied and the loop is terminated (lines 17–19).
If the intersection is not an empty set after processing all
edges from a vertex in the candidate set to all vertices
in the current clique, then an embedding for clique f in
the moleculeM is added to the E′

M
(lines 24–26). If the

set of the embeddings E′
M

is not empty, i.e., if there is at
least one conformer that contains an embedding of clique
f , then E′

M
is added to the new clique embedding set E′.

Just as in MCM enumeration, the possibility to achieve
the minimum support is checked after processing each
molecule and empty set is returned immediately (lines
28–29) if minimum support cannot be reached given the
size of the current set of embeddings E′ and the number
of remaining unprocessed molecules in E.

Like the MCM algorithm, UCM checks if the last point
of the 4-point or larger pharmacophore being enumerated
is above or below the plane formed by the three preced-
ing points (just before the line 24) to distinguish between
mirror images of the pharmacophores possessing the same
clique code. Therefore, it will return two instead of one
embedding set for the pharmacophores of size 4 points or
larger.

3 Results and Discussion

We have experimentally evaluated the performance of our
common pharmacophore identification algorithms using
various datasets. The purpose of these evaluations is the
validation of the exhaustiveness, correctness, scalability,
and ability to handle difficult situations such as multiple
binding modes or errors in the data. All calculations have
been performed on Linux workstation with Xeon 2.3 GHz

Table 1: The number of identified pharmacophores and
runtime with different multiple-bin labeling parameter δ
for a set of 196 conformers of the molecules in Fig. 4.

Runtime (s) Number of unique
δ MCM UCM pharmacophoresa

0.0 0.5 0.1 1
0.1 1.2 0.4 14
0.25 3.1 1.0 108
0.5 60.8 16.1 3,645
a Unique pharmacophores are defined here as

those with identical sets of embeddings (iden-
tical conformers and vertices) regardless of
the clique code.

processor.

3.1 Comparison to Other Computational
Methods

To compare the common pharmacophores identified by
the proposed frequent clique mining approach to those
identified by some recent computational methods, we
have obtained 196 conformers for the five highly simi-
lar molecules presented in Fig. 4 from the authors of the
RDP algorithm.9 The same molecules were used in an-
other study17 as well as in PHASE8 User’s Guide. The
CP identification in this dataset is complicated due to very
high similarity of the molecules that leads to a large num-
ber of overlapping features in all conformers. It was re-
ported that the identification of exclusively 5-point CPs9

took about 160 s for the PHASE and 12 s for the RDP pro-
grams on a Linux workstation with a 3.4 GHz Intel Xeon
processor.

Since the authors9 have limited the types of pharma-
cophore sites to only hydrogen bond acceptors (A) and
aromatic rings (R), we have also modified our program
to use only those two types. In addition, we also used a
distance of 2 Å as the minimum distance between phar-
macophore points to be considered in the same pharma-
cophore to avoid having two pharmacophore sites pro-
duced by the same atom or atoms of the same group.

The results for 5-point pharmacophores (i.e., cliques of
size five) obtained using σ set to 100% for δ set to 0.0,
0.1, 0.25, and 0.5 are presented in Table 1. In each run
(except for a single-bin distance assignment), the algo-
rithms identified four sets of pharmacophores consisting
of the following sets of pharmacophore points (vertex la-
bels): AAAAR, AAARR, AARRR, and ARRRR. A phar-
macophore set AARRR, for example, means that it con-
sists of two hydrogen bond acceptors and three aromatic
rings. The difference between the members of each set
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Figure 4: The five molecules used for pharmacophore identification study (obtained from9).

has to do with the distances between the pharmacophore
points (edge labels). One can see that the total number of
pharmacophores identified grows quickly as δ increases
because more intersite distances are assigned more than
one label. For example, the dual distance label assignment
(δ = 0.5) with a single spacial arrangement of 5 pharma-
cophore points (with 10 inter-point distances) generates up
to 210 = 1024 potential distinct pharmacophores. There-
fore, even in the case when some conformers share the ex-
act same configuration of the pharmacophore points, the
dual labeling will still produce up to 1024 5-point phar-
macophores.

A large number of reported pharmacophores requires
some pharmacophore scoring in order to separate high-
quality pharmacophores with a large number points from
very loose pharmacophores with only few pharmacophore
points. Such scoring can be obtained by computing the
RMSD of aligned pharmacophore points in conformers as
well as other values such as molecular (and/or conformer)
support, rarity of the pharmacophore point types, size of
the pharmacophore, etc. In this paper we chose to concen-
trate on the algorithms and not to implement any pharma-
cophore scoring.

The program finished the pharmacophore identification
and enumeration with minimal multiple-bin assignment
into neighboring bins (δ = 0.1) in less than 2 seconds.
The same process took 61 and 16 seconds using MCM
and UCM, respectively, when always-two-bin assignment
was used (δ = 0.5). These runtimes cannot be directly
compared to those reported in9 due to a different proces-
sor speed and the fact that even though one may select
to output only pharmacophores of a particular size n, still

all of the frequent pharmacophores with sizes 2 to n − 1
need to be discovered before proceeding to size n. Thus,
the runtime may be longer for our program when run with
parameters similar to those in.9 On the other hand, we
feel that it is advantageous to report all pharmacophores
starting with a particular size instead of only of a particu-
lar size because in most cases the user will not know the
size of the pharmacophore being identified in advance and
instead would like to identify the largest one(s) available.

3.2 Comparison with Experimental Results

To evaluate the ability of the proposed frequent clique
mining algorithms to identify correct common pharma-
cophores, we performed the common pharmacophore
identification for the dopamine D2 and D4 receptor an-
tagonists for which experimental binding affinity data was
used in a 3D QSAR pharmacophore modeling.18

The structures of the studied molecules have been ar-
ranged into three sets each having a different pharma-
cophore. Each of the three pharmacophores consists of
two aromatic rings, ammonium nitrogen and a site-point
in the N—H direction in different geometrical configura-
tion. Since our program does not have a definition for a
site-point in the N—H direction, we have concentrated on
identifying the other three features in the conformers.

The structures of all conformers were generated using
OpenEye’s Omega19 software for conformer generation
with an upper threshold of 20 kcal/mol and maximum of
1000 conformations. A range of 20 kcal/mol is probably
the minimum needed to cover most of the conformational
space of the molecule because the actual binding confor-
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mation may lie within 5–40 kcal/mol20,21 from the lowest-
energy (least strained) conformation when computed in
vacuum without a solvation correction. In order to se-
lect the most diverse conformations, Omega uses a min-
imum RMSD value between two conformers (default is
0.8 Å) below which the conformers are considered dupli-
cates. Some of the pharmacophore elucidation programs
limit the number of generated conformers, which in turn
can significantly limit the searched conformational space
resulting in a set of conformers none of which are close
to the binding conformations. For example, HipHop is
limited to 255 conformations, while DISCO is limited to
about 80 conformations per molecule. Our program, on
the other hand, can consider an arbitrary number of con-
formations.

After generating conformations for each molecule in
the dopamine D2 and D4 receptor antagonists, the first set
(compounds 1–11) contained only 63 conformations, sec-
ond set (compounds 12–22) contained 657 conformations,
and the third set (compounds 23–32) contained 779 con-
formations. One can see that since the first set contains
much fewer conformers per molecule, it contains the least
flexible structures. This fact can be easily observed from
the chemical structures of the compounds (see18). The
most flexible molecule in set 1 (compound 8) contained
only 17 conformations. In contrast, sets 2 and 3 contained
much more flexible molecules with up to 258 (compound
24) conformers per molecule.

For all three sets we ran our programs with a support
fraction σ of 100% to find pharmacophores supported by
all conformations. In each of the three cases we were able
to find different variations of the same pharmacophore
(differing only due to the assignment to different distance
bins) as described in.18 The total number of 3-point phar-
macophores for each of the three sets was 12, 18, and 38
respectively. The alignments of all molecules in each set
and the corresponding pharmacophores are shown in Figs.
5–7. The alignments were performed using the discovered
pharmacophore points with PyMOL.22

3.3 Identification of Different Binding
Modes

Sometimes one needs to identify pharmacophores that are
not supported by all molecules in the dataset. For exam-
ple, different molecules can have different binding modes
or the target may have more than one binding site with
different ligands binding to different binding sites. To il-
lustrate how our proposed method can be used in such sce-

Figure 5: The pharmacophore model for the compounds in
set 1 (red regions indicate aromatic ring sites R and blue
ones indicate the ammonium nitrogen that can be P or D).

Figure 6: The pharmacophore model for the compounds in
set 2 (red regions indicate aromatic ring sites R and blue
ones indicate the ammonium nitrogen that can be P or D).

Figure 7: The pharmacophore model for the compounds in
set 3 (red regions indicate aromatic ring sites R and blue
ones indicate the ammonium nitrogen that can be P or D).
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narios, we have selected the same set of 12 molecules used
in,10 which is composed of 6 molecules that are more se-
lective towards D2 receptors (compound IDs 2, 3, 8, 9,
and 10), and 6 molecules that are more selective towards
D4 receptors (compounds 12, 13, 15, 18, 19, and 21), all
taken from the same study18 described in the previous sec-
tion.

The resulting set of 12 molecules had a total of 417 con-
formers. The program was run with a minimum support
of 50%, which allows it to find pharmacophores that are
present in at least 50% of the molecules. The two differ-
ent pharmacophores (albeit with different combinations of
distance labels due to multiple-bin assignment) identified
by the program and each supported by a different half of
molecules are identical to the ones depicted in Figs. 5 and
6. One can see that the frequent clique-discovery approach
can be used for such difficult cases as multiple binding
modes/sites. In contrast, some of the programs, particu-
larly HipHop, are known to fail in such situations.10

3.4 Scalability and Parameter Sensitivity
Study

To assess the scalability of our methods for finding com-
mon pharmacophores in a large number of structurally
diverse molecules as well as sensitivity to several vari-
able parameters (minimum support σ, multiple-bin label-
ing parameter δ, maximum number of hydrophobic groups
in a pharmacophore), we selected three concentration-
response bioassays from PubChem23 that contained over
200 confirmed active compounds. Conformers for each
these compounds were generated using the Omega pro-
gram with upper strain energy limit of 20 kcal/mol and a
maximum number of conformers per molecule of 5000.
The limit on the number of hydrophobic groups in the
pharmacophore to zero or one to avoid pharmacophores
consisting mostly of hydrophobic sites.

The results of the pharmacophore identification runs are
presented in Tables 2–4. The following parameters have
been used for our algorithms: distance bin size = 1 Å,
minimum inter-point distance = 2 Å, maximum inter-point
distance = 13 Å, maximum pharmacophore size = unlim-
ited. The resulting number of conformers for randomly
selected subsets of molecules of different size is given in
parentheses in the first column in Tables 2–4.

The results suggest that the runtime of both the MCM
and the UCM algorithms scales almost linearly with the
input size in terms of the number of molecules and/or
conformers. Since the molecules in the PubChem AID

Table 2: Runtimes (in sec) for compounds from PubChem
AID 1030 assay with various support values, multiple-bin
labeling parameter and number of molecules/conformers.

MCM UCM
Min. Support σ (%)

# mol (conf) 90 70 50 90 70 50
δ = 0.5, no hydrophobic groups

50 (5,789) 0.2 1.2 11.9 0.1 0.2 1.2
100 (14,340) 0.4 2.6 16.7 0.1 0.3 1.3
200 (27,711) 2.3 10.2 57.4 0.7 1.7 5.8

δ = 0.5, up to 1 hydrophobic group
50 (5,789) 0.8 5.8 51.1 0.2 0.7 6.3
100 (14,340) 1.9 12.1 72.9 0.6 1.5 6.9
200 (27,711) 5.8 32.7 218.4 1.8 4.7 21.6

δ = 0.25, up to 1 hydrophobic group
50 (5,789) 0.6 2.6 13.1 0.2 0.4 1.4
100 (14,340) 1.4 4.8 26.5 0.4 0.8 2.5
200 (27,711) 4.2 12.2 66.7 1.3 2.6 7.4

1030 assay are slightly more rigid (fewer conformers per
molecule), the runtimes for that dataset are smaller. On
the other hand, the longer runtimes for the PubChem AID
652 assay could have been merely caused by a less favor-
able order of the molecules in the dataset. As expected,
the decrease of the minimum support value significantly
increases the runtime as much more pharmacophores can
be identified that are supported by a smaller number of
molecules. The inclusion of the hydrophobic pharma-
cophore points also significantly increases the runtime as
hydrophobic groups represent the majority of the points in
the molecules. However, the results of our experiments in-
dicate that the runtime stops increasing after allowing just
two or three hydrophobic groups (depending on the σ) for
all datasets in this section. Moreover, when the restric-
tion on the number of hydrophobic groups in the pharma-
cophore was removed, the runtimes remained the same for
σ = 90%, and increased only by a factor of 1.5 and 3.0 for
σ = 70% and σ = 50%, respectively when compared to
the runtimes with a maximum of one hydrophobic group.

When comparing the performance of MCM and UCM,
it can be seen that the latter outperforms the former by up
to 14 times and on average runs about 10 times faster. The
results in Tables 2–4 indicate that UCM performs signif-
icantly better than MCM especially with lower minimum
support values, which is important for situations where a
lot of noise is present in the input data. This indicates that
significant computational benefits can be obtained by ex-
ploiting the shared information among the conformational
graphs of each molecule.
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Table 3: Runtimes (in sec) for compounds from PubChem
AID 468 assay with various support values, multiple-bin
labeling parameter and number of molecules/conformers.

MCM UCM
Min. Support σ (%)

# mol (conf) 90 70 50 90 70 50
δ = 0.5, no hydrophobic groups

50 (11,906) 0.5 9.2 169 0.1 0.8 12.8
100 (23,011) 1.1 19.1 294 0.2 1.4 20.7
200 (39,857) 2.6 41.5 566 0.5 3.2 39.6

δ = 0.5, up to 1 hydrophobic group
50 (11,906) 4.4 43.7 602 0.7 4.2 62.1
100 (23,011) 7.1 93.8 1056 1.1 7.7 99.2
200 (39,857) 13.8 201.0 2021 1.9 17.6 183.4

δ = 0.25, up to 1 hydrophobic group
50 (11,906) 1.8 18.8 131 0.4 1.7 13.2
100 (23,011) 3.2 33.9 233 0.7 2.8 21.1
200 (39,857) 5.6 65.5 456 0.9 5.1 40.3

Table 4: Runtimes (in sec) for compounds from PubChem
AID 652 assay with various support values, multiple-bin
labeling parameter and number of molecules/conformers.

MCM UCM
Min. Support σ (%)

# mol (conf) 90 70 50 90 70 50
δ = 0.5, no hydrophobic groups

50 (8,369) 3.8 95.7 631 0.3 8.3 63.5
100 (17,465) 7.1 142.1 729 0.6 12.1 66.8
200 (40,169) 9.3 149.0 1137 1.0 13.6 96.0

δ = 0.5, up to 1 hydrophobic group
50 (8,369) 12.6 310.9 1712 1.0 27.6 186.8
100 (17,465) 19.5 456.2 2133 1.8 40.8 213.0
200 (40,169) 22.9 558.7 3387 2.6 51.9 334.9

δ = 0.25, up to 1 hydrophobic group
50 (8,369) 4.4 53.6 324 0.4 4.6 30.1
100 (17,465) 7.8 80.7 466 0.8 7.0 43.7
200 (40,169) 12.5 111.3 768 1.6 10.4 72.2

4 Conclusions

This paper presents two algorithms based on frequent
clique discovery that are designed to identify the common
pharmacophore from a set of experimentally determined
active molecules. We show that both algorithms are ef-
ficient and guarantee to find all common cliques where
the variation of the distance between any pair of identical
points in the pharmacophore in different molecules does
not exceed the size of the distance bin. Current approach
can be applied to situations with arbitrarily large number
of conformers per molecule and was shown to work for
situations with multiple binding sites or binding modes.
We also show that the exploitation of the structural sim-
ilarities among the conformers of the same molecule by
the UCM algorithm improves the performance by up to
14 times.
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