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Abstract

Factorization algorithms based on threshold incomplete LU factorization have been found to be quite effective in

preconditioning iterative system solvers. However, their parallel formulations have not been well understood and they

have been considered to be unsuitable for distributed memory parallel computers. In this paper we present a highly

parallel formulation of such factorization algorithms. Our algorithm utilizes parallel multilevelk-way partitioning

and independent set computation algorithms to effectively parallelize both the factorization as well as the solution of

the resulting triangular systems, used in the application of the preconditioner. Our experiments on Cray T3D show

that significant speedup can be achieved in both operations; thus, allowing threshold incomplete factorizations to be

successfully used as preconditioners in parallel iterative solvers for sparse linear systems.

1 Introduction

The sparse linear systems arising in finite element applications are commonly solved using iterative methods. In

particular, as the size of these problems increases, the increased computational and memory requirements of these

problems render in-core direct solution methods unusable, leaving iterative methods as the only viable alternative for

solving these problems in core.

The major computational kernels of an iterative method are (i) computation of preconditioner, (ii) multiplication of

a sparse matrix with a vector, and (iii) application of the preconditioner. Threshold-based incomplete LU factorization
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have been found to be quite effective in preconditioning iterative system solvers [12]. However, because these factor-

izations allow the fill elements to be created dynamically, their parallel formulations had not been well understood,

and they have been considered to be unsuitable for distributed-memory parallel computers [11]. Furthermore, solution

of the resulting sparse triangular system (which is required for the application of the preconditioner) is generally more

difficult to parallelize than the multiplication of a sparse matrix with a vector. We present a highly parallel formula-

tion of the ILUT factorization algorithm for distributed memory parallel computers. This algorithm uses our parallel

multilevelk-way graph partitioning algorithm in conjunction with a parallel maximal independent subset algorithm to

parallelize both the factorization as well as the solution of the resulting triangular factors.

Parallel formulations of the threshold-based incomplete factorization has limited scalability and higher memory

requirements than the sequential algorithm, because it needs to form the reduce matrix for the interface nodes. Note

that the amount of fill in the resulting sparse triangular system is the same.

We also develop a modified ILUT factorization algorithm (ILUT*) that requires less time and is more scalable than

ILUT. Our experiments on Cray T3D show that our parallel ILUT* algorithm achieve a high degree of concurrency,

and when used as a preconditioner, it is comparable in quality to the unmodified ILUT algorithm. Furthermore, our

experiments using the GMRES iterative solver show that the amount of time spent in computing the factorization using

the ILUT* algorithm is usually much less than the amount of time required to solve the systems.

We show that highly parallel graph partitioning algorithms in conjunction with parallel algorithms for computing

maximal independent sets can be used to develop scalable parallel formulations of incomplete factorizations. A good

domain decomposition of the underlying finite element mesh allows the problem to be effectively mapped onto the

processors of the parallel computer so that the amount of communication required by each of the above computational

kernels is significantly decreased.

2 Preconditioners Based on Incomplete LU Factorizations

It is well known that the rate of convergence of iterative methods depends on the spectral properties of the coefficient

matrix [1, 14]. This convergence rate can be greatly improved by transforming the original systemAx = b to an

equivalent one (i.e., one that has the same solution), that has more favorable spectral properties. Apreconditioneris

a matrixM, that attempts to perform such a transformation. The systemM−1 Ax = M−1b has the same solution as

the original system, but the spectral properties of its coefficient matrixM−1 A may be more favorable. For efficient

implementation, the matrixM must be such that it is relatively inexpensive to solve linear systems of the formMy = c.

A broad class of widely used preconditioners is based on incomplete factorizations of the coefficient matrix (ILU)

[10, 15, 16, 3, 2, 12]. A factorization is calledincompleteif during the factorization process certainfill elements are

ignored. Such preconditioners are given in the formM = LU whereL andU are the lower- and upper-triangular

matrices of the incomplete factorization. Incomplete factorizations are usually computed by taking a setS of matrix

elements, and keeping all positions outside this set equal to zero during the factorization process. The setS can be

determined statically prior to the actual incomplete factorization (e.g., using a subset of the non-zero entries of the

original matrix) as instatic-sparsity-patternbased incomplete factorization. Alternatively, the setS can be determined

dynamically as the factorization progresses as inthreshold-basedincomplete factorizations.

Static-sparsity-pattern incomplete LU factorizations based onlevels of fill [10, 15] are used extensively. In these

schemes, the setS is constructed by allowing fill entries to propagate up tok levels, for some constantk. These

factorizations are referred to as ILU(k). Out of the class of ILU(k) factorizations, the zero-fill incomplete factorization

(ILU(0)) is used most frequently due to its simplicity and low computational requirements. In essence, ILU(0) restricts
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the set of non-zero elementsS to be that of the coefficient matrix, so no fill elements are created in theL andU factors

of the matrix.

ILU(k) factorizations for smallk (i.e., k in the range of 0 to 2) can be constructed and applied relatively inexpen-

sively. However, for certain ill-conditioned systems, ILU(k) factorizations with large fill levels (i.e., k in the range of 5

to 20) may be required to significantly accelerate the convergence of iterative methods. Unfortunately, for moderately

large values ofk, the application of the ILU(k) preconditioner becomes expensive, as theL andU factors become

quite dense. Furthermore, ILU(k) factorizations are insensitive to the magnitude of the elements, since fill elements

are dropped only based upon the structure of the original matrix. This can cause preconditioners to be ineffective for

matrices arising in many realistic applications [14].

To strike a balance between reduced computation requirements and increased effectiveness, threshold-based incom-

plete LU factorizations have been developed [16, 3, 2, 12]. In these factorization schemes, a fill element is dropped

during the Gaussian elimination processes based only on the magnitude of the element rather than its location. These

schemes usually lead to preconditioners that have moderate computational requirements and are generally more robust

than static sparsity pattern incomplete factorizations.

2.1 ILUT Factorization Algorithm

One example of threshold based factorizations is the ILUT(m, t) incomplete factorization algorithm [12]. ILUT

employs a dual dropping strategy that is able to control the computational requirements during the factorization as

well as during the application of the preconditioner. In general, the ILUT(m,t) algorithm drops any elements whose

magnitude is smaller than a thresholdt, and out of the remaining non-zero elements in any given row, it keeps the

largestm elements inL and the largestm elements inU .

ILUT(m, t) algorithm

1. for i = 1, . . . , n
2. w = ai,∗
3. for k = 1, . . . , i − 1
4. if wk 6= 0
5. wk = wk/ak,k

6. Apply 1st dropping rule towk
7. if wk 6= 0
8. w = w − wk ∗ uk,∗
9. endif
10. endif
11. endfor
12. Apply 2nd dropping rule to roww
13. li, j = w j for j = 1, . . . , i − 1
14. ui, j = w j for j = i, . . . , n
15. w = 0
16. endfor

Algorithm 2.1: The ILUT(m,t ) factorization algorithm.

Algorithm 2.1 shows the algorithm for performing the ILUT factorization. In this algorithm,w is a full-length

working row which is used to accumulate linear combinations of sparse rows in the elimination andwk is thekth entry
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of this row. Thei th row of the matrix is denoted byai,∗ and the triangular factors are stored inl andu.

As we can see in lines 6 and 12 of Algorithm 2.1, the ILUT factorization algorithm applies two different dropping

rules during the factorization. These dropping rules are used to replace non-zero elements with zero elements if

they satisfy certain conditions. In the application of the first dropping rule in line 6, an elementwk is dropped if its

magnitude is less than the relative toleranceti obtained by multiplyingt by the original 2-norm of thei th row. In

the application of the second dropping rule in line 12, first we drop all elements in the row with a magnitude that is

below the relative toleranceti , and then we keep only the largestm elements in theL part of the row and them largest

elements in theU part of the row in addition to the diagonal element which is always kept.

The ILUT algorithm can be implemented quite efficiently by using appropriate data structures [12, 14]. A common

implementation is to use a full vector forw and a companion pointer which points to the positions of its non-zero

elements. As a result, lines 13 and 14 are sparse copy operations, and settingw = 0 at the end of the Gaussian

elimination (line 15) is done using a sparse operation.

3 Parallel Sparse Factorization Algorithms

Sparse factorization algorithms (both complete and incomplete) can be performed on parallel computers as follows.

First, a high-quality graph partitioning algorithm is used to distribute the matrixA among the processors. The nodes

(rows) assigned to each processor are classified as interior (rows) or interface nodes (rows), depending on whether or

not a node is connected to only local nodes. The partitioning algorithm minimizes the number of interface nodes by

reducing the edge-cut. Then, each processor independently factors its set of interior nodes. This is a completely local

operation and requires no communication. Next, the unknowns corresponding to all the factored interior nodes are

eliminated from the interface rows, forming a reduced matrixAI , corresponding only to the interface nodes. Finally,

all the processors cooperate to factorAI .

Performing the factorization ofAI in parallel is where the complexity of parallel sparse factorization algorithms

resides. Any efficient parallel factorization algorithm has to utilize a highly parallel algorithm for factoringAI .

Parallel factorization ofAI is often done in phases as follows. During each phasel (l = 0,1, . . .), the processors

cooperate on factoring a setSl of rows of AI
l (AI = AI

0), eliminating the corresponding unknowns from the remaining

rows of AI
l , and forming the next level reduced matrixAI

l+1. Matrix AI
l+1 corresponds to the as yet unfactored nodes

of AI . This process continues until all the nodes ofAI have been factored.

A key differentiating feature between various sparse factorization algorithms is how the sets of verticesSl are

computed and whether or not all these sets can be computed prior to performing the actual numerical factorization.

The ability to compute the setsSl prior to factorization is useful for two reasons. First, this information can be used to

map the computation onto the processors so that load balance is maintained and communication overhead is minimized

during parallel factorization. Second, the sequence of reduced matricesAI
l does not need to be formed explicitly, which

reduces the amount of data movement as well as the memory involved in the factorization; hence, improving the overall

performance and scalability of the algorithm. In complete factorization algorithms, the setsSl are constructed using

graph partitioning (i.e., separators in nested dissection orderings) prior to the numerical factorization and a careful

mapping ofAI on to processors leads to a highly scalable factorization algorithm [4].

In incomplete factorization algorithms, the setsSl are often computed as independent set of nodes of the succes-

sively reduced matricesAI
l [5, 9, 14, 11]. Since nodes inSl are independent (i.e., there is no direct connection between

them), all of them can be factored concurrently. In parallel ILU(0) factorizations, the sparsity structure of each reduced

matrix AI
l is known priori since no fill is allowed during the factorization (i.e., obtained fromA by simply retaining
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the non-zero elements between nodes inAI
l ). Hence, these matrices do not have to be explicitly formed in order to

compute maximal independent sets. Instead, a coloring ofAI is computed, and each setSl corresponds to the set

of nodes ofAI with the same color. Thus, in ILU(0) (and in all fixed sparsity pattern incomplete factorization algo-

rithms) all setsSl can be computed prior to numerical factorization. Figure 1(a) illustrates this idea of coloring the

nodes corresponding toAI (i.e., interface nodes). In this example, the matrix corresponding toA is partitioned into

four domains, and each domain is assigned to one of four processors. Each processor factors the nodes internal to its

domains, and then the interface nodes are factored iteratively, by concurrently factoring the nodes of each color. How-

ever, during the ILUT factorization, the sparsity structure of the matrixAI changes dynamically. This is illustrated in

Figure 1(b). As the factorization of the internal nodes progresses, this creates some fill that adds new dependencies

among the interface nodes. As a result, interface nodes that have the same color are not any more independent. Thus,

the sets of nodes to be factored concurrently (i.e., the setsSl ) need to be computed dynamically as the factorization

progresses [11].

(b) Fill creates dependencies in ILUT(a) Coloring of nodes for ILU(0)

Figure 1: Differences between ILU(0) and ILUT factorization algorithms. Since during ILU(0), the sparsity structure of the matrix
does not change, a coloring (shown in (a)) of the interface vertices is sufficient to extract concurrency during their factorization.
However, ILUT factorization allows fill (shown in (b)) making impossible to use this coloring to determine independent set of nodes
and extract concurrency. The dependencies introduced by the added fill is shown using colored edges.

4 Parallel ILUT Factorization

Our parallel formulation of the ILUT algorithm for distributed-memory parallel computers is based on the general

framework described in Section 3. It successively computes independent sets of the reduced matrices to extract con-

currency during the parallel factorization of the interface nodes. Specifically, our algorithm consists of two phases.

In the first phase, each processor computes an ILUT factorization of the interior nodes associated with its domain.

During the second phase, a global reduced matrixAI is formed that corresponds to the interface nodes, andAI is

factored in an iterative fashion using independent setsIl to extract concurrency (i.e., Sl = Il ). The process of finding

an independent set and forming a reduced system continues until all the interface nodes have been factored. Figure 2

illustrates this process in the example graph (matrix) shown in Figure 1. In this example, a total of six independent

sets are computed in order to factor the interface nodes.
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Figure 2: The process of factoring the interface nodes by repeatedly factoring an MIS of nodes forming the reduced system (i.e.,
new dependency graph). The nodes in the MIS are colored and the new dependencies are shown with colored edges.

The number of reduced matrices required to perform the entire factorization depends on the initial sparsity structure

of the matrix, the maximum number of non-zeros allowed in each row, and the threshold of the incomplete factoriza-

tion. In general, the number of reduced matrices required by ILUT is greater than that required by ILU(0), and it

increases as the amount of fill allowed in the factorization increases.

The serial implementation of the algorithm to factor the interface nodes works as follows. AfterIl is found by using

an independent set algorithm, matrixAI
l is permuted so that the rows corresponding to nodes inIl are numbered first.

The algorithm proceeds to factor the nodes inIl , using the ILUT algorithm shown in Algorithm 2.1. Having done

that, then the next level reduced matrixAI
l+1 is formed using the algorithm shown in Algorithm 4.1. This algorithm

is derived from the ILUT algorithm and has similar structure. For each rowi in AI
l \Il , the algorithm performs linear

combinations (line 8) only with rows that belong inIl (as it can be seen by the range of values fork in line 3). After

all these combinations have been performed, the working vectorw is merged with thei th row of L (line 13). The

dropping rule applied on line 15, affects only the elements ofw whose indices are smaller thannl+1, that is, those

that correspond to nodes that already have been factored. For those elements, this rule removes any elements whose

magnitude is smaller than the thresholdt of the factorization, and of the remaining ones it keeps only them larger. This

dropping rule is similar to the 2nd rule used in the ILUT algorithm, but it only affects the columns ofL that correspond

to factored nodes. Note that this dropping rule correctly enforces the requirements of the ILUT algorithm of keeping

the largerm values in each row ofL that are above the threshold. On line 16, the elements ofw that correspond to the

i th row of theL factor are copied back, and the elements ofw that correspond to the unfactored portion of the matrix

are copied back to thei th row of AI
l . This row now becomes thei th row of the next level reduced matrixAI

l+1. Note
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Eliminating the firstnl+1 − nl + 1 unknowns ofAI
l to form the reducedAI

l+1 matrix
of size(n − nl+1 + 1)× (n − nl+1 + 1).
AI

l has already been permuted so that the rows inIl are numbered first.

1. for i = nl+1, . . . , n
2. w = ai,∗
3. for k = nl , . . . , nl+1 − 1
4. if wk 6= 0
5. wk = wk/ak,k

6. Apply 1st dropping rule towk
7. if wk 6= 0
8. w = w − wk ∗ uk,∗
9. endif
10. endif
11. endfor
13. w = w ∪ li,∗
14. li,∗ = ai,∗ = 0
15. Apply 3rd dropping rule to roww
16. li, j = w j for j = 1, . . . , nl+1 − 1
17. ai, j = w j for j = nl+1, . . . , n
18. w = 0
19. endfor

Algorithm 4.1: The algorithm that used to form successive reduced matrices.

that the dropping test in line 6 is similar to that used by the ILUT described in Section 2.1.

Our parallel algorithm for computing the ILUT factorization of matrixAI corresponding to the interface nodes is

implemented as follows. During iterationl, an independent setIl of AI
l is computed in parallel using the algorithm

described in Section 4.1. Every processor performs the ILUT factorization of the locally stored nodes ofIl . Since

these nodes are independent, this factorization requires only creating the rows of the upper triangular matrixU for

each row. After that, each processor computes the rows of the next level reduced matrixAI
l+1 that correspond to the

locally stored nodes, using the algorithm shown in Algorithm 4.1. In particular, for each rowi , the processor needs

to perform linear combinations with all rowsuk such thatai,k 6= 0 andnl ≤ k < nl+1. Some of theseuk rows may

be stored on other processors; thus they need to be communicated. However, because the nodes inIl are independent,

the above linear combinations will not create any fill elements inai,k for nl ≤ k < nl+1; thus, the rows that are

required can be determined and communicated prior to performing any computation. After all the required rows ofU

are received, each processor essentially executes the algorithm shown in Algorithm 4.1 on the locally stored nodes,

updating the appropriate rows ofL and forming the next level reduced matrixAI
l+1. The algorithm terminates when

the rows in the reduced matrix are independent, in which case all of them can be eliminated in parallel.

This parallel ILUT algorithm uses our parallel multilevelk-way partitioning algorithm [6] to produce a very good

initial domain decomposition with a small number of interface nodes. Consequently, the distributed phase (i.e., second

phase) of the algorithm factors only a small number of nodes.
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4.1 Computing Maximal Independent Sets

The independent sets of the successively reduced matricesAI
l are computed using a parallel formulation of Luby’s [8]

algorithm. A maximal independent setI of a set of verticesS is computed via Luby’s algorithm in an incremental

fashion as follows. A random number is assigned to each vertex, and if a vertex has a random number that is smaller

than all of the random numbers of the adjacent vertices, it is then included inI . Now this process is repeated for

the vertices inS that are neither inI nor adjacent to vertices inI , and I is augmented similarly. This incremental

augmentation ofI ends when no more vertices can be inserted inI . It is shown in [8] that one iteration of Luby’s

algorithm requires a total ofO(log |S|) such augmentation steps to find a maximal independent set of aS. Since

the majority of the independent vertices are discovered during the first few iterations of this algorithm, our parallel

independent set algorithm performs only five such augmentation steps. This reduces the run time of the algorithm

without significantly reducing the size of the computed independent sets.

This algorithm is able to correctly find an independent set provided that the set of nodes inT forms an undirected

graph,i.e., the reduced matricesAI
l ’s are structurally symmetric. However, since the sparsity structure of each reduced

matrix AI
l depends on the magnitude of the nonzero entries, these matrices are not in general structurally symmetric.

For example consider a two node graphv, u, that are connected via the directed edge(u, v). If 2 is the random

number associated withv and 1 is the random number associated withu, then bothv andu will be inserted in the

independent set. Consequently, the computed set of nodes may not be independent. However, an independent set can

still be computed if Luby’s algorithm is modified as follows. Vertices are included inI by using the following two step

process which are separated by a barrier synchronization. In the first step, vertices that have a random number smaller

than their adjacent vertices are first inserted inI . During the second step, all the vertices inI that are adjacent to any

vertices also inI are removed fromI . Now, the vertices left inI are guaranteed to be independent. This modification

to Luby’s algorithm requires only an additional communication step involving a set of the interface nodes; thus, it does

not increase the asymptotic complexity of the parallel algorithm.

Luby’s algorithm can be implemented quite efficiently on a shared memory parallel computer, since for each vertex

v, a processor can easily determine if the random value assigned tov is the smaller among all the random values

assigned to the adjacent vertices. However, on a distributed memory parallel computer, for each vertex, random values

associated with adjacent vertices that are not stored on the same processor needs to be explicitly communicated. In

our implementation of Luby’s algorithm, prior to computing an independent set, we perform acommunication setup

phase, in which appropriate data structures are created to facilitate this exchange of random numbers. In particular,

we pre-determine which vertices are located on a processor boundary (i.e., a vertex connected with vertices residing

on different processors), and which are internal vertices (i.e., vertices that are connected only to vertices on the same

processors).

4.2 Modified ILUT Factorization (ILUT*)

Recall that during the second phase of our parallel formulation of the ILUT factorization algorithm, a sequence of

successively smaller reduced matrices is formed in order to compute independent sets. Even though theL andU

factors in ILUT(m, t) have only up tom non-zero elements per row, the number of non-zero entries in the reduced

matrices can be significantly larger than that, since the restriction regarding the maximum number of allowed non-

zeros is only enforced when a row is actually factored (3rd dropping rule in Algorithm 4.1. In particular, for small

tolerance valuest, the reduced matrices become quite dense. In many cases there are a few hundred non-zero elements

per row, even though we only keep somewhere in the range of 5 to 10 of them in theL andU factors.
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Even though forming these reduced matrices is critical to extract concurrency during the factorization of the inter-

face nodes (Section 3), they can significantly affect the performance of the parallel formulation of the ILUT algorithm

for the following two reasons. First, these quite dense reduced matrices need to be constructed in each successive step

of the algorithm, which significantly increases the memory requirements and the amount of time spent in essentially

copying data. Second, as these reduced matrices become denser, the size of the independent sets decrease significantly;

hence, the number of iterations required to factor the interface nodes increases accordingly, as well. This reduces the

amount of concurrency and increases the synchronization cost. Note that despite the above overheads, the number of

floating point operations performed by both the serial and the parallel algorithm are the same (assuming that the same

ordering was used).

We have implemented a modification on the original serial ILUT(m, t) algorithm to address this problem. Our

modified algorithm, ILUT* (m, t, k) is similar to ILUT, with the following difference. Instead of keeping in the reduced

matricesAI
l , all the non-zero entries whose magnitudes are greater thant, it keeps only thekm larger magnitude entries.

Essentially, ILUT* modifies the third dropping rule of line 15 of the algorithm used to construct the reduce matrices

(Algorithm 4.1), by putting an upper bound on the maximum number of elements kept in each row of the reduced

matrices. Our experiments in Section 6 show that for small values ofk (i.e., 2 to 4), ILUT* produces factorizations

whose quality is comparable to that of ILUT, and it can be computed in parallel much faster than ILUT.

5 Parallel Forward and Backward Substitutions

For parallel preconditioning techniques that are based on incomplete LU factorizations, it is of utmost importance to

develop highly parallel formulations of the forward and backward substitutions. The reason is that these are required

in the application of the preconditioner in each iteration of the iterative solution method. In fact, preconditioning

techniques based on incomplete factorizations are not as widely used on parallel computers, mainly due to the lack of

highly parallel triangular solvers.

Our parallel formulation of the triangular solvers utilizes the structure imposed on the triangular systems by our

parallel ILUT factorization. Figure 3 illustrates the sparsity structure ofL andU after they are permuted according to

the order that the factorization was performed. This structure represents a domain decomposition into four domains

(i.e., four processors) and two independent set computations. The various parts of the triangular factors are color-

coded to indicate the processors on which they reside. Note that the shaded parts of the triangular factors correspond

to sparse sub-matrices.

Our parallel formulation of the forward and backward substitutions utilizes the same two phase approach used while

computing the ILUT factorization. Consider the forward substitutionLx = b. During the first phase, each processor

solves for the values of the vectorx associated with the nodes that are interior to its domain. The second phase consists

of q iterations whereq is the number of independent sets required to factor the interface nodes in the parallel ILUT

factorization. During iterationl, each processor solves for the locally stored nodes of the independent setIl , and sends

these values ofx to the processors that have non-zeros along thex column. The backward substitution is performed

in a similar fashion but in reverse order. First, the solution of the interface nodes is computed in an iterative fashion,

followed by the computation of the solution of the interior nodes.

The amount of communication performed during either forward or backward substitution, is proportional to the

number of interface nodes, which is similar to the communication requirements of a matrix-vector multiplication.

However, both forward and backward substitutions haveq implicit synchronization points that correspond to the

q independent sets used to factor the matrix. Thus, ifq is relatively small, the performance of the forward and
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Figure 3: An example of the structure of the lower and upper triangular matrices resulting from the parallel ILUT factorization for 4
processors. The factors are color-coded indicating the processors on which they reside.

backward substitution is similar to that of a matrix-vector multiplication. In particular, for the ILUT* factorization our

experiments show that the cost of performing a forward and a backward substitution is in general, only 30% higher

than that of performing the corresponding matrix-vector multiplication, if the matrices in the two cases have similar

number of non-zeros.

6 Experimental Results

We implemented our parallel ILUT factorization algorithm on a 128-processor Cray T3D. The T3D is a distributed

memory parallel computer, each processor is a 150Mhz Dec Alpha (EV4), and the processors are interconnected via a

three dimensional torus network that has a peak unidirectional bandwidth of 150Bytes per second, and a small latency.

We evaluated the performance of our parallel formulation of the ILUT(m, t), and ILUT* (m, t, k) algorithms, for

a wide range of values form andt. Specifically, we letm, the maximum number of non-zeros kept on each row of

L andU , take the values of 5, 10 and 20, and we let the thresholdt take the values of 10−2, 10−4, 10−6. In the case

of ILUT*, we usedk = 2, keeping only 2m non-zeros on each row of the reduced matrix, as this value provides a

reasonable balance between reducing the cost of forming the reduce matrices, and retaining enough non-zero elements

to effectively emulate the true ILUT factorization. Because of the large number of choices of parametersm, t, and

k, we limit our experiments to two representative matricesG40 andTORSO. G40 corresponds to a PDE discretized

with centered differences on a 40× 40× 40 grid, leading to a system with 54,872 equations and 164616 non-zeros,

whereasTORSO is a finite element matrix with 201,142 equations and 1479989 non-zeros arising in computing the

ECG fields of the human thorax using Laplace’s equation [7].

Performance of the Factorization Table 1 shows the run time of our parallel ILUT and ILUT* algorithms. For

each one of the ILUT and ILUT* algorithms, nine different factorizations are shown that correspond to the different
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G40 TORSO
Factorization p = 16 p = 32 p = 64 p = 128 p = 16 p = 32 p = 64 p = 128
ILUT(5,10−2) 0.476 0.319 0.202 0.133 2.643 1.509 0.926 0.534
ILUT(10,10−2) 0.536 0.337 0.215 0.148 3.918 2.285 1.275 0.705
ILUT(20,10−2) 0.538 0.337 0.221 0.145 4.539 2.643 1.405 0.793
ILUT(5,10−4) 1.806 1.250 0.821 0.539 7.880 4.806 3.072 1.826
ILUT(10,10−4) 3.509 2.404 1.700 1.197 17.661 10.628 6.955 4.039
ILUT(20,10−4) 6.298 4.371 3.040 2.125 34.349 19.719 12.275 7.317
ILUT(5,10−6) 6.452 4.416 3.051 1.945 18.143 11.604 7.193 4.643
ILUT(10,10−6) 19.336 14.541 10.149 6.316 58.300 38.439 26.042 17.202
ILUT(20,10−6) 45.188 34.295 23.788 15.141 140.330 94.417 64.864 43.073

ILUT* (5,10−2,2) 0.442 0.292 0.180 0.112 2.646 1.524 0.927 0.538
ILUT* (10,10−2,2) 0.495 0.304 0.190 0.126 3.873 2.256 1.251 0.698
ILUT* (20,10−2,2) 0.497 0.301 0.191 0.123 4.497 2.592 1.376 0.770
ILUT* (5,10−4,2) 1.471 0.917 0.537 0.321 6.845 3.875 2.275 1.284
ILUT* (10,10−4,2) 2.962 1.893 1.189 0.711 15.758 8.901 5.284 2.844
ILUT* (20,10−4,2) 5.404 3.503 2.216 1.381 32.208 17.938 10.712 6.035
ILUT* (5,10−6,2) 3.488 1.848 0.917 0.473 13.141 6.996 3.725 1.975
ILUT* (10,10−6,2) 8.831 4.681 2.345 1.197 39.296 20.794 10.779 5.336
ILUT* (20,10−6,2) 22.152 12.007 6.720 3.857 100.016 55.822 28.926 15.585

Table 1: The performance of the parallel factorization algorithms. For each matrix, the run time (in seconds) is shown for 16, 32,
64, and 128 processors.

choices form andt.

From this table we see that as eitherm increases and/ort decreases, the amount of time required to perform the

factorization increases. In some cases, this increase in run-time is small while in some other cases it is quite dra-

matic. For example on 16 processors, the ILUT(20,10−6) factorization requires almost 100 times more time than the

ILUT(5,10−2) factorization. Since asm andt increase, more computation is performed by the incomplete factoriza-

tion, the increases in the run-time are natural. Also, if the incomplete factorizations lead to better preconditioners

with increasing value ofm and decreasing value oft, then the higher factorization time can be easily offset by a much

faster solution time (Table 3). Comparing the time required by the corresponding ILUT and ILUT* factorizations, we

see that in general ILUT requires more time. Furthermore, the factor by which ILUT* outperforms ILUT increases

as the number of processors increase. For example, forTORSO, the ILUT(20,10−6) is only 1.4 times slower than

ILUT* (20,10−6,2) on 16 processors but it is 2.7 times slower on 128 processors. This is because on 128 processors,

the interface nodes correspond to a large fraction of the matrix than they do on 16 processors; thus, ILUT* is able to

accelerate a larger portion of the overall computation required for factorization.

To study the scalability of our parallel ILUT and ILUT* factorization algorithms, we plotted the speedup relative to

16 processors achieved by our algorithms on 32, 64, and 128 processors. Figures 4 and 5 shows these relative speedup

curves for all nine different factorizations ofG40 andTORSO, respectively. A number of insightful conclusions can

be drawn from these figures. Note first that the overall speedup achieved onTORSO are better than those achieved

onG40. Since,TORSO is a much larger problem, the parallel overhead is a smaller portion of the total computation,

thus, leading to higher efficiency and better speedup.

Comparing ILUT* with ILUT, we see that the speedups achieved by ILUT* are either comparable or better than

those achieved by ILUT. In particular, whent = 10−2 (first three plots on each figure), the speedups are almost

identical. However, fort = 10−4 and particularly fort = 10−6, ILUT* performs significantly better than ILUT. This

is because, as the threshold parameter of the factorization decreases, the number of fill elements in the reduced matrices

whose magnitude is greater than the threshold increases significantly. In the case of ILUT, all these elements are kept
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while in the case of ILUT*, onlykm elements are kept in each row. Because the reduced matrices have more non-

zeros, the parallel ILUT algorithm has to spent considerably more time in factoring these matrices. Furthermore, since

the reduced matrices are denser, the number of independent sets that are required to factor them also increases, further

adding to the computational requirements. For example, forTORSO on 128 processors, the number of independent

sets required for ILUT(20,10−4) and ILUT(20,10−6) are 131 and 439, respectively. On the other hand, the number of

respective independent sets required by ILUT* (20,10−4,2) and ILUT* (20,10−6,2) are only 105 and 184. Not only

they are fewer, but also increase at a much lower rate.

The net effect of these denser reduced matrices is that the time required to factor a row corresponding to an interface

node is higher than the time required to factor a row corresponding to an interior node. As the number of processors

increases, the number of interior nodes decreases while the number of interface nodes increases, causing the factoriza-

tion to spent a larger portion factoring ‘expensive’ rows, which limits the achievable speedup. The ILUT* algorithm

though, does not exhibit this problem as long asm is relatively small. However, asm increases, the density of the

reduced matrices also increases (each row has up tokm elements), leading to similar but less dramatic problems. This

can be seen in Figure 5 fort = 10−6 (last three plots), in which form = 5 andm = 10, the relative speedups are

almost linear, but form = 20, the speedup is somewhat lower.

Performance of the Forward and Backward Substitution Table 2 shows the amount of time required to

solve the triangular systems produced by the nine different factorizations ofTORSO using ILUT and ILUT*. The last

row of this table also shows the amount of time required to multiplyTORSO by a vector. Note that our matrix-vector

multiplication algorithm achieves almost linear speedup indicating that the communication overhead (caused by nodes

on the partition boundary) is very small. This demonstrates that our parallel multilevelk-way partitioning algorithm

[6] produces high quality partitions in a real application.

TORSO
Factorization p = 16 p = 32 p = 64 p = 128
ILUT(5,10−2) 0.061 0.033 0.018 0.010
ILUT(10,10−2) 0.097 0.049 0.028 0.014
ILUT(20,10−2) 0.125 0.066 0.036 0.019
ILUT(5,10−4) 0.065 0.035 0.021 0.012
ILUT(10,10−4) 0.105 0.059 0.035 0.021
ILUT(20,10−4) 0.183 0.102 0.061 0.038
ILUT(5,10−6) 0.067 0.038 0.023 0.015
ILUT(10,10−6) 0.112 0.066 0.043 0.031
ILUT(20,10−6) 0.199 0.119 0.079 0.058

ILUT* (5,10−2,2) 0.065 0.035 0.017 0.009
ILUT* (10,10−2,2) 0.096 0.051 0.027 0.014
ILUT* (20,10−2,2) 0.128 0.066 0.035 0.019
ILUT* (5,10−4,2) 0.068 0.034 0.019 0.011
ILUT* (10,10−4,2) 0.103 0.057 0.033 0.019
ILUT* (20,10−4,2) 0.181 0.100 0.059 0.035
ILUT* (5,10−6,2) 0.069 0.035 0.020 0.012
ILUT* (10,10−6,2) 0.105 0.059 0.035 0.021
ILUT* (20,10−6,2) 0.190 0.106 0.066 0.041
Matrix-Vector 0.064 0.032 0.016 0.009

Table 2: The performance of the parallel forward and backward substitutions algorithms. The run time (in seconds) is shown for
16, 32, 64, and 128 processors, for the forward and backward substitutions for each one of the nine factorizations of ILUT and
ILUT*. The last row also shows the amount of time required by the parallel matrix-vector multiplication algorithm.
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Figure 4: The speedup achieved in computing the ILUT and ILUT* factorizations for G40. The speedup relative to the 16-processor
run-time is shown for nine different factorizations for each one of the two algorithms.
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Figure 5: The speedup achieved in computing the ILUT and ILUT* factorizations for TORSO. The speedup relative to the 16-
processor run-time is shown for nine different factorizations for each one of the two algorithms.
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Figure 6: The speedup achieved in performing the forward and backward substitutions for TORSO. The speedup relative to the
16-processor run-time is shown for the nine different substitutions, each corresponding to a different ILUT and ILUT* factorizations.

From Table 2 we see that the amount of time required to solve the triangular systems increases asm increases since

the triangular factors contain more elements. Also note that for fixedm, the time required also increases with decreas-

ing t. This is because, whent is large, each row of the triangular factors usually has much fewer thanm elements.

Comparing the triangular factors produced by ILUT and ILUT* we see that solving the triangular systems produced

by the ILUT* factorization usually takes less time, and the difference widens as the number of processors increases.

Note that both factorizations produce triangular factors that have roughly the same number of non-zero elements, but

ILUT* requires fewer independent sets and hence smaller amount of communication and other overheads..

To study the scalability of our parallel formulation of the forward and backward substitutions we plotted the speedup

relative to 16 processors achieved on 32, 64, and 128 processors. Figure 6 shows these relative speedup curves for

TORSO. From this figure we see that asm increases and/ort decreases, the speedup that is achieved by our parallel

formulation decreases. This is because during the factorization, the number of independent sets required to factor

the interface nodes increases; thus, increasing the number of implicit synchronization points required in forward and

backward substitutions (as discussed in Section 5). Also, because the number of required independent sets are fewer

for ILUT*, the speedups achieved in solving the triangular factors produced by ILUT* are better than those achieved
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in solving those produced by ILUT.

To compare the performance of solving the triangular systems produced by ILUT and ILUT* to that achieved

by the matrix-vector multiplication algorithm, consider the ILUT(20,10−6) and ILUT* (20,10−6,2) factorizations.

Due to the small threshold value, the average number of non-zeros on each row of the triangular factors is 20. The

matrix-vector product achieves 6.17MFlops and 6.0MFlops per processor on 16 and 128 processors, respectively. The

corresponding per processor MFlop performance for the ILUT triangular solvers are 5.18 and 2.48, and for the ILUT*

are 5.42 and 3.51. That is, on 16 processors the performance achieved by the triangular solvers for ILUT and ILUT*

are 1.19 and 1.14 times slower than the matrix-vector product, and on 128 processors they are 2.42 and 1.71 times

slower, respectively. Thus, the ILUT* factorization leads to triangular systems whose solution performance compared

to the performance achieved by the matrix-vector multiplication, is only slightly lower on 16 processors, and decreases

moderately as the number of processors increases.

Comparing the speedup achieved by the parallel forward and backward substitutions to those produced by the

factorization algorithms (Figures 5 and 6) we see that in general the factorization algorithms achieve better speedup as

m increases and/ort decreases. This is because, as the amount of fill increases, the amount of computation required

by the factorization algorithms increases more than linearly. This can compensate for the overhead due to extra

independent set computations. In contrast, the amount of computation for the forward and backward substitution

increases only linearly. Nevertheless, our parallel algorithms for solving the triangular systems are still able to achieve

very good speedups.

Preconditioning Performance To compare the quality of the factorizations produced by the parallel ILUT and

ILUT* algorithms we used them as preconditioners in a GMRES iterative solver [13]. Table 3 shows the amount of

time and the total number of matrix-vector products required to solve our two test matrices on 128 processors. For

both matrices, we construct the right hand sides to be of the formb = Ae, wheree is a vector of all ones, and the initial

solution consisting of all zeros. The iterations were stopped as soon as the residual norm was reduced by a factor of

10−8.

From Table 3 we see that ILUT and ILUT* are quite comparable. In general, ILUT requires fewer iterations than

ILUT* for G40, while for TORSO the results are quite mixed. For example, for GMRES(20), form = 10 and

t = 10−4, ILUT requires 596 matrix-vector products while ILUT* requires only 486, but form = 5 andt = 10−4,

ILUT converges after 967 products, whereas it takes ILUT* 1276 matrix-vector products to converge. Comparing the

actual run-times, we see that fort = 10−6, the amount of time required by ILUT* is smaller than that required by

ILUT for all cases. This is despite the fact that forG40 ILUT* performs more iterations. In some cases, ILUT* is

over 50% faster than ILUT. This is because, the solution of the triangular system of the ILUT* factorization requires

less time than that of the ILUT, leading to an overall faster solution time.

The last row of Table 3 also shows the amount of time required by the diagonal preconditioner. In the case of

GMRES(20) neither system converged whereas for GMRES(50),G40 converged after 558 matrix-vector products,

andTORSO converged after 5,845. Comparing the run-times of the ILUT and ILUT* preconditioners to that of the

diagonal, we see that forG40, the ILUT preconditioners are 2 to 5 times faster, and forTORSO, they are 5 to 16

times faster. If the time required to perform the factorization is taken into account (Table 1), then forG40, ILUT*

(10,10−2,2) (requires a total of 1.059 seconds) is about 3.6 times faster, and forTORSO, ILUT* (20,10−4,2) (requires

a total of 15.297 seconds) is about 10 times faster compared to the diagonal preconditioner.
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G40 TORSO
GMRES(20) GMRES(50) GMRES(20) GMRES(50)

Preconditioner Time NMV Time NMV Time NMV Time NMV
ILUT(5,10−2) 1.335 194 0.997 95 23.937 938 23.672 676
ILUT(10,10−2) 1.314 176 0.796 77 18.957 629 16.218 403
ILUT(20,10−2) 1.073 149 0.810 77 11.574 339 11.273 248
ILUT(5,10−4) 1.547 175 1.143 92 27.427 967 27.333 700
ILUT(10,10−4) 1.151 93 0.808 49 22.542 596 15.935 333
ILUT(20,10−4) 1.032 54 0.780 36 15.118 289 9.432 148
ILUT(5,10−6) 1.862 159 1.374 91 33.727 1081 29.644 725
ILUT(10,10−6) 1.911 93 1.219 49 24.675 544 19.338 348
ILUT(20,10−6) 2.029 54 1.474 36 19.869 276 12.298 149

ILUT* (5,10−2,2) 1.316 202 0.942 93 24.511 985 24.903 713
ILUT* (10,10−2,2) 1.110 158 0.869 86 14.526 495 15.603 408
ILUT* (20,10−2,2) 1.044 156 0.884 86 16.112 473 10.881 246
ILUT* (5,10−4,2) 1.345 164 1.090 92 34.317 1276 26.255 716
ILUT* (10,10−4,2) 1.144 103 1.156 82 16.899 486 14.906 335
ILUT* (20,10−4,2) 0.992 60 0.778 40 14.979 300 9.262 153
ILUT* (5,10−6,2) 1.371 159 1.113 92 27.143 983 26.216 699
ILUT* (10,10−6,2) 1.231 99 0.945 61 16.876 472 15.394 337
ILUT* (20,10−6,2) 1.293 59 0.981 39 13.047 232 9.845 146
Diagonal 3.653 558 149.622 5845

Table 3: The performance of GMRES to solve G40 and TORSO on 128 processors, using parallel ILUT and ILUT* as precondi-
tioner. The column labeled ’Time’ is the run time (in seconds) of GMRES (does not include the amount of time required to compute
the incomplete factorizations). The column labeled ’NMV’ is the number of matrix-vector operations performed. The systems were
solved with a tolerance of 10−8.

7 Conclusions

Preconditioners for sparse iterative solvers derived from threshold-based ILU factorizations are widely used on serial

as well as vector-supercomputers, but were considered unsuited for execution on highly parallel distributed memory

architectures. Our work has shown that the computation of these factorizations as well as the solution of the resulting

triangular systems (which are required during the application of the preconditioner) can be performed effectively on

distributed memory parallel computers.

In particular, our experiments has shown that our modification to ILUT algorithm (ILUT*), achieves good speedup

with an increasing number of processors. the modifications ILUT* are critical for obtaining good performance on par-

allel computers with slower communication networks (such as workstation clusters), especially whenm (i.e., number

of non-zeros retained) increases andt (i.e., the threshold of the factorization) decreases. Under these conditions, the

reduced matrices produced by ILUT have many non-zeros per row, leading to a large number of independent sets that

have a small number of rows; thus, increasing the number of synchronization steps required to factor the interface

nodes.

The preconditioning quality of ILUT* (relative to ILUT) depends on the value ofk (that determines the number

of non-zeros to keep in each row of the reduced matrix). Ask increases, factorizations produced by ILUT* become

similar to those produced by ILUT. Our experiments has shown that for our test matrices,k = 2 lead to factoriza-

tions whose preconditioning ability are comparable to those of ILUT. A more comprehensive study is required to

characterize the convergence characteristics of ILUT* relative to ILUT for different values ofk.

As the desired ILUT and ILUT* factorizations become denser, an alternative parallel formulation can be developed

that utilizes graph partitioning to extract concurrency instead of independent sets of rows. Such a scheme will compute

a p-way partitioning of the graph corresponding to the interface rows (AI ). Then, the rows that are internal to each
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domain will be factored concurrently and the second level reduced matrix corresponding to the new interface nodes

can be formed. These reduced matrices can now be factored in a similar fashion.
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