
Fast Parallel Cosine K-Nearest Neighbor Graph
Construction

David C. Anastasiu
San José State University

San José, CA
david.anastasiu@sjsu.edu

George Karypis
University of Minnesota, Twin Cities

Minneapolis, MN
karypis@cs.umn.edu

ABSTRACT
The k-nearest neighbor graph is an important structure in many data
mining methods for clustering, advertising, recommender systems,
and outlier detection. Constructing the graph requires computing up
to n2 similarities for a set of n objects. This high complexity has led
researchers to seek approximate methods, which find many but not
all of the nearest neighbors for each object in the set. In contrast, we
leverage shared memory parallelism and recent advances in com-
puting similarity joins to solve the problem exactly, via a filtering
based approach. Our method considers all pairs of potential neigh-
bors but quickly filters pairs that could not be a part of the k-nearest
neighbor graph, based on similarity upper bound estimates. The fil-
tering is data dependent and not easily predicted, which poses load
balance challenges in a parallel setting. We evaluated our solution
on several real-world datasets and found that, using 16 threads, our
method achieves up to 12.9x speedup over our exact baseline and is
sometimes faster even than approximate methods. Moreover, an ap-
proximate version of our method is up to 21.7x more efficient than
the best approximate state-of-the-art baseline at similar high recall.
Our method displays linear strong scaling characteristics and filter-
ing incurs less than 1% load imbalance.

Keywords
knn, nearest neighbors, similarity search, similarity join, similarity
graph, cosine similarity

1. INTRODUCTION
Computing the nearest neighbor graph, or similarity graph, for a

set of objects is a common task in many data analysis fields, in-
cluding clustering [5, 10], online advertising [16], recommender
systems [7], data cleaning [3, 21], and query refinement [4, 19].
For example, effective clustering methods [22] have been devised
that work by partitioning the nearest neighbor graph of a set of
objects. In the recommender systems domain, item-based near-
est neighbor collaborative filtering algorithms derive recommenda-
tions (e.g., books or movies) from the k most similar items to each
of the user’s preferred items [13]. Moreover, state-of-the-art online
advertising [16] and recommender systems [6,17] methods rely on
an initially computed nearest neighbor graph to guide the discovery
of the latent factor models used for recommendation.

Often, real-world objects are depicted as vectors in a high-
dimensional feature space, each dimension quantifying a relevant
object feature. Similarity between objects is then computed as a
function of their vector feature values. In this work, we focus on
objects represented as sparse non-negative vectors and compute the
proximity between two objects as the cosine similarity of their vec-
tor representations. Sparse non-negative vectors have been success-
fully used for decades in many mining tasks. As a few examples,

they are the standard way to encode document collections in prepa-
ration for search [15] or text mining [12], user ratings or purchase
history in recommender systems [13], and are often used to depict
the structure of chemical compounds [20].

Given a set of n objects D = {d1, d2, . . . , dn}, the k-nearest
neighbor graph (k-NNG) G = (V,E) is a directed graph which
consists of a vertex set V , corresponding to the objects in D, and
an edge for each pair (vi, vj) when the similarity value sim(di, dj)
between the ith and jth objects is among the k highest values in
the set {sim(di, dl) | l 6= i}. A naïve approach to construct the
nearest neighbor graph executes O(n2) object comparisons. De-
spite many existing works on the subject, efficient nearest neighbor
graph construction algorithms addressing high dimensional sparse
data are still being actively researched. In a recent work [1], we in-
troduced L2Knng, a serial method that efficiently constructs the ex-
act k-NNG by ignoring unimportant object pair comparisons. For
each object in D, L2Knng considers all other objects as potential
neighbors. However, most objects that are not one of the k nearest
neighbors are pruned (removed from consideration) without fully
computing their similarity. For a given query object, a candidate
object can be pruned if an upper bound of its similarity with the
query is smaller than the minimum similarity value among any of
the current k closest query neighbors.

Although the filtering process in L2Knng works even when start-
ing with empty neighborhoods for each object, it is more effective
given higher minimum neighborhood similarities. L2Knng thus first
identifies, for each object, k similar objects that may not be its near-
est neighbors. We proposed L2Knng-a1 for this task, a fast approx-
imate graph construction method that we showed achieves high
recall in less time than other state-of-the-art methods.

In this work, we investigate cosine similarity k-NNG construc-
tion in the shared memory parallel setting. The filtering performed
during the construction is data dependent and not easily predicted,
which poses load balance challenges in this context. Furthermore,
marshaling neighborhood updates may cause contention in both
the initial approximate graph construction and the filtering phases
of L2Knng. We start our presentation by first describing serial al-
gorithm enhancements over the initial L2Knng method that lead
to 1.5x serial efficiency improvement. Then, we devise tiling and
neighborhood update strategies that avoid locking, provide overall
balanced loads for threads, and display very good strong scaling
characteristics. Finally, we present evaluation results on three real-
world datasets, over a large range of neighborhood sizes. Using 16
threads, our approximate method is 1.5x – 21.7x more efficient than
the best approximate state-of-the-art baseline, and our exact vari-
ant achieves 3.0x – 12.9x speedup over an efficient exact baseline,
while incurring less than 1% filtering imbalance.

1The method is called L2KnngApprox in [1].

2. DEFINITION & NOTATIONS
We adopt a similar notation as in [1]. Let di denote the ith of n

objects in D, di ∈ Rm denote the feature vector in m-dimensional
Euclidean space associated with the ith object, and di,j the value
(or weight) of the jth feature of object di. We measure vector sim-
ilarity via the cosine function,

cos(di,dj) =

∑m
j=1 di,j × dj,j
||di||2 × ||dj ||2

.

Since cosine similarity is invariant to changes in the length of vec-
tors, we assume that all vectors have been scaled to be of unit length
(||di|| = 1,∀di ∈ D). Given that, the cosine between two vec-
tors di and dj is simply their dot-product, which we denote by〈
di,dj

〉
. This not only simplifies the presentation of the algorithm

but also reduces the number of floating point operations needed to
solve the problem at hand.

The k nearest neighbors in D of an object di, denoted by Γdi , is
the set of objects inD\{di}whose similarity with di is the highest
among all objects inD\{di}. The k-NNG ofD is a directed graph
G = (V,E) where vertices correspond to the objects and an edge
(vi, vj) indicates that the jth object is among the k nearest neigh-
bors of the ith object. An approximate k-NNG is one in which the
k neighbors of each vertex do not necessarily correspond to the k
most similar objects.

We denote by the minimum (neighborhood) similarity σdi the
minimum similarity between object di and one of its current k
neighbors. We say that a neighborhood is improved when its min-
imum similarity σdi increases in value, and it is complete once all
true neighbors that belong to a neighborhood have been added to
it. Given sparse vectors, it is possible that an object dj may have
less than k possible neighbors, as we ignore all null similarities and
dj may have non-zero features in common with less than k other
objects in D. By convention, the σdj value of its neighborhood is
the minimum among all similarities in its neighborhood, and its
neighborhood is complete.

An inverted index representation of D is a set of m lists, I =
{I1, I2, . . . , Im}, one for each feature, containing pairs (di, di,j),
where di is an indexed object that has a non-zero value for feature j
and di,j is that value. The index may store additional information,
such as the position of the feature in the given document or other
statistics.

Table 1 provides a summary of notation used in this work.

Table 1: Notation used throughout the work
Description

D set of objects
k size of desired neighborhoods
di vector representing object di
di,j value for jth feature in di

d≤p
i ,d>p

i prefix and suffix of di at dimension p
Γdi neighborhood for object di
σdi smallest similarity value in Ndi
I inverted index
µ candidate list sizes
γ number of neighborhood enhancement updates
ε number of objects in an inverted index tile
ζ number of non-zeros in an inverted index tile
η number of objects in a query tile

3. METHODS
We will start our discussion with an analysis of L2Knng and

present some improvements to its serial execution, and then intro-
duce pL2Knng, our parallel method for cosine k-NNG construction.

3.1 Serial improvements in L2Knn
L2Knng execution consists of two phases. First, in the approxi-

mate graph construction phase, L2Knng finds an initial k neighbors
for each of the objects in D by calling L2Knng-a. The minimum
neighborhood similarities in each of the neighborhoods of the ap-
proximate graph are then used as pruning thresholds in the filtering
phase, which outputs the exact nearest neighbor graph. L2Knng-a
constructs the approximate graph in two steps. First, in the initial
graph construction (IC) step, neighbors that are more likely to be
in the exact k-NNG are chosen based on shared features with high
weight. Then, a number of graph enhancement (GE) steps are exe-
cuted which attempt to improve the quality of the neighborhoods by
finding closer neighbors among the neighbors of the current neigh-
bors. Algorithm 1 gives an overview of this process.

Algorithm 1 The L2Knng Algorithm
1: function L2KNNG(D, k, γ, µ)
2: N̂ ← IC(D, k, µ) . Begin L2Knng-a
3: for each i = 1, 2, . . . , γ do
4: N̂ ← GE(D, k, µ, N̂) . End L2Knng-a
5: N ← Filter(D, k, N̂)
6: returnN

Our serial improvements in L2Knng focused on the approximate
graph construction phase of the method. At a very high level, each
of the steps in the L2Knng-a execution is composed of the following
tasks, which are shown in Algorithms 2 and 3 and will be detailed
later in the discussion. Input data or the current neighborhoods are
sorted and indexed to facilitate the selection of neighbor candidates
(sort). Then, for each query object, a candidate list of potential
neighbors is selected (sel) that may improve the current neighbor-
hood. Data associated with the query object is optionally entered
into a data structure that can facilitate fast dot-product computa-
tions or pruning (ins). Then, dot-products are computed between
the query and each of the chosen candidates (sim), skipping some of
the candidates whose similarity has already been previously com-
puted. Finally, some of the neighborhoods are updated (upd) with
computed similarities that improve them.

Algorithm 2 Initial graph construction in L2Knng-a
1: function IC(D, k, µ)
2: Create inverted index of D . srt
3: Sort vectors in D and inverted index lists . srt
4: for each i = 1, 2, . . . , |D| do
5: Choose µ candidates for the ith object . sel
6: Hash the ith object . ins
7: Compute similarities of di with all µ candidates . sim
8: Update Γi and candidate neighborhoods . upd
9: N̂ =

⋃
Γi

10: return N̂

Algorithm 3 Graph enhancement in L2Knng-a
1: function GE(D, k, µ)
2: Create A, sparse matrix version of N̂ . srt
3: Create inverted index of A . srt
4: Sort vectors and inverted lists in A . srt
5: for each i = 1, 2, . . . , |D| do
6: Choose µ candidates for the ith object . sel
7: Hash the ith object . ins
8: Compute similarities of di with all µ candidates . sim
9: Update Γi and candidate neighborhoods . upd

10: N̂ =
⋃

Γi

11: return N̂

In an effort to gauge where the algorithm spends most of its time,
we instrumented the L2Knng-a code with timers for each of the

Table 2: Percent of the computation time for different sections
of the approximate graph construction

initial construction
dataset k sort sel ins sim upd perc
RCV1 10 3.17 5.57 0.16 88.04 3.07 78
RCV1 100 4.44 5.70 0.26 80.30 9.30 39
RCV1 500 1.11 5.27 0.06 83.48 10.07 57

WW500 10 24.07 0.94 1.15 73.06 0.78 69
WW500 100 7.92 0.91 0.31 89.57 1.29 52
WW500 500 2.46 0.82 0.10 94.77 1.84 53

graph enhancement
dataset k sort sel ins sim upd perc
RCV1 10 1.74 20.59 3.05 69.54 5.08 22
RCV1 100 2.65 20.98 0.26 72.29 3.82 61
RCV1 500 3.03 26.84 0.06 66.64 3.42 43

WW500 10 0.27 3.97 5.01 89.52 1.24 31
WW500 100 0.37 2.38 0.33 96.25 0.67 48
WW500 500 0.59 2.44 0.11 96.03 0.84 47

The table shows, for the initial graph construction and neighborhood
enhancement phases of the L2Knng-a method, the percent of execution
time of different tasks within each phase discussed in Section 3.1. The perc
column shows the percent of the overall L2Knng-a execution taken up by
the current phase of the algorithm. For each experiment, tasks taking up a
significant portion of the execution time are highlighted in bold.

tasks. Table 2 shows the percent of the overall execution time in
each phase taken by each of the tasks in the initial construction and
graph enhancement phases, when searching for 10, 100, and 500
nearest neighbors in two datasets described in Section 4. In each of
the experiments, we only executed one round of neighborhood en-
hancements (γ = 1) and chose candidate list sizes (µ) that would
lead to average recall of at least 95%, i.e., L2Knng-a finds most of
the nearest neighbors for each object. The last column in the table
(perc) shows the percent of the overall L2Knng-a execution taken
up by the current phase (IC or GE) of the algorithm. The results
of this experiment show that L2Knng-a spends the majority of its
execution time selecting candidates and computing similarities be-
tween query and candidate objects. Indexing and sorting can also
account for a significant portion of the execution time when k is
small. While graph enhancement takes up less time for small val-
ues of k, it accounts for almost half of the overall execution for
larger k values.

Given these observations, we focused our efforts to improve
L2Knng-a on the similarity computation, sorting, and candidate se-
lection tasks. In the following sections we will detail each of the
L2Knng-a tasks and our proposed improvements.

3.1.1 Index and sort
L2Knng-a chooses candidates in the IC phase by matching ob-

jects with common high weight features. To facilitate this search, it
sorts the entries in each object vector and in each inverted index list
in decreasing weight order. Then, it selects candidates for a query
object by iterating through the inverted index lists associated with
its highest weight features.

Since only µ candidates are selected for each query object, it is
not necessary to fully sort all entries of the object vectors and in-
verted lists. With high probability, each inverted list will contain
more than two entries (one entry will be associated with the query
object). Thus, as an enhancement to L2Knng-a we propose sorting
only the top-µ values in each vector and inverted list. For each vec-
tor and inverted list with lengths greater than µ, we first apply a
select procedure [11], which partitions the list such that the leading

µ values are greater or equal to the remaining values, and then sort
only the leading µ values. This improvement reduces the complex-
ity of sorting a list from O(l log l), where l is the size of the list, to
O(l+µ logµ), and can be beneficial when µ is small or for datasets
with very long vectors or inverted lists.

In each GE phase, L2Knng-a chooses candidates by matching
neighbors and neighbors’ neighbors with high similarity values.
It first creates a sparse matrix version of the current approximate
neighborhood graph, A, such that the ith row of A corresponds
to the k-neighborhood of the ith object. It sorts the entries in each
row in non-increasing value order and selects candidates for a query
object by iterating through rows in A associated with those objects
that are the closest neighbors of the query, i.e., the column IDs of
the leading entries in the sorted version of the row in A associated
with the query. For those query objects with less than µ candidates
selected through this process, L2Knng-a further iterates through
neighborhoods of objects that have the query object as their neigh-
bor, in decreasing order of their similarity with the query. We call
this process reverse candidate selection. To facilitate this search,
L2Knng-a creates an inverted index for A and sorts the inverted
lists in the index in decreasing value order. In our experiments, we
have found reverse candidate selection rarely improves effective-
ness and can often degrade GE efficiency. Thus, in pL2Knng, we
do not create an inverted index for A and only sort its row entries.

3.1.2 Candidate selection
In the IC phase, L2Knng-a selects candidates by iterating through

two inverted lists at a time associated with the highest values in the
query vector. Algorithm 4 describes this procedure. The function
nextList provides the inverted list associated with the next smaller
value in q. The function nextCand provides the next candidate in
the chosen list, skipping the query object and any other objects that
have already been selected. L2Knng-a uses an accumulation data
structure to both track whether an object has already been selected
as a candidate and to compute its partial dot-product with the query,
denoted as

〈
q,a≤

〉
in Algorithm 4. Given two potential candidates

ca and cb L2Knng-a chooses ca only if its partial dot-product with
the query considering features already processed is greater than that
of cb.

Algorithm 4 Candidate selection in the IC phase of L2Knng-a
1: function SELECTCANDIDATESIC(D, q, µ)
2: A← nextList(q), B ← nextList(q), C = ∅
3: while |C| < µ and A 6= ∅ and B 6= ∅ do
4: if A = ∅ or B = ∅ then
5: Choose candidates only from the remaining list
6: a← nextCand(A), b← nextCand(B)

7: if
〈
q,a≤

〉
>
〈
q, b≤

〉
then

8: C ← C ∪ a
9: A← A \ a

10: A← nextList(q) if A = ∅
11: else
12: C ← C ∪ b
13: B ← B \ b
14: B ← nextList(q) if B = ∅
15: end while
16: return C

We have improved candidate selection in the IC phase of
L2Knng-a by simplifying the candidate choice condition (line 7 of
Algorithm 4) to dq,f(A)×da,f(A) < dq,f(B)×db,f(B), where f(A)
is the feature ID of list A. This simplification keeps the original in-
tent in the selection and has not shown decreased effectiveness in
experiments. Instead, the efficiency of this step is increased by re-
moving the need to compute partial dot-products. Furthermore, we
use a bitvector data structure to track candidates that have already

been selected, which uses less cache memory and may also help
increase performance.

The GE phase selects candidates by iterating through neighbors’
neighborhoods, selecting the neighbor a with the next smaller sim-
ilarity value in the query’s neighborhood. The neighbors of a are
then visited in decreasing similarity value order. While iterating
through these neighbors, candidates are only accepted if their sim-
ilarity value is greater than the similarity between a and the query.
We have not made changes to the selection process in this phase of
L2Knng-a.

3.1.3 Query insertion and similarity computation
Since L2Knng-a computes the similarity of a query vector with

many (namely, µ) different candidate vectors, it creates a dense ver-
sion of the query vector, inserting its values into an array of sizem.
Each dot-product can then be computed as a sparse-dense vector
dot-product, by iterating through the non-zero values of the candi-
date vector and looking up values of the query vector in the array.
Given a vector q representing the dense version of dq , the dot-
product

〈
q, c
〉

can be computed as,
for each j = 1, . . .m s.t. dc,j > 0 do

s← s+ dc,j × qj

As computing dot-products takes up the most time in the
L2Knng-a execution, we tried several other strategies for execut-
ing this operation, including (1) packing the larger of the two sparse
vectors into the space of the smaller vector, trying to take advantage
of vectorization capabilities of modern hardware. (2) computing
sparse-sparse vector dot-products, and (3) the query vector mask-
hashing technique described in [2]. In our experiments, none of the
new dot-product computation strategies lead to improved perfor-
mance under a wide range of execution parameters.

3.2 pL2Knn
Along the enhancements presented in Section 3.1, pL2Knng uses

the same filtering strategy as L2Knng. Namely, for each query
object, L2Knng indexes some of its prefix values, ensuring that
the query object can be found in subsequent searches by objects
that belong in the query neighborhood or whose neighborhood the
query can enhance. Using the index, L2Knng selects a list of can-
didates for the query, which are a superset of its neighbors, a pro-
cess we call candidate generation (CG). Part of the query similar-
ity value with each candidate is computed during the CG stage, and
upper-bound estimates on the similarity are used to prune some of
the candidates. Finally, L2Knng completes the similarity computa-
tion in the candidate verification (CV) stage, performing additional
pruning based on several upper-bound similarity estimates, and up-
dates the query and candidate neighborhoods if the result can en-
hance them. For full details on the filtering process, see [1].

In our parallel method, pL2Knng, threads concurrently process
different query objects. We devised a lock-less thread cooperation
and neighborhood update strategy that allows threads to dynami-
cally share available work and leads to good load balance in gen-
eral. In the remainder of this section, we will describe these strate-
gies, which are incorporated both in the initial approximate graph
construction and the filtering stages in pL2Knng.

3.2.1 Block processing
In order to enable cooperative processing of different query ob-

jects in its filtering phase, pL2Knng indexes objects prior to filter-
ing. Threads can then all read the sections of the index they need
to find candidates for their respective query objects. Since many
different sections of the index may be accessed concurrently, it is
beneficial for the index to fit in the cache memory available on the

system. The index size is highly data dependent, and each object
indexes a different number of values that depends on the magni-
tude of those values and the current minimum similarity in the ob-
ject’s neighborhood. A poor quality (low recall) initial approximate
graph, for example, will lead to more values that need to be indexed
in each object to ensure a correct result. As such, pL2Knng chooses
the number of objects to index at a time dynamically, indexing a
maximum of ε objects (which we call the query set) and ζ non-
zeros at a time, where ε and ζ are input parameters for our method.

After indexing a block of objects, pL2Knng splits the set of query
objects into blocks of size η, which is an input parameter. Threads
are then dynamically assigned a small number of queries at a time
from the set, which they process sequentially. Our method keeps
track of the k-nearest neighbors of an object by using a heap data
structure. Note that, after finding neighbors for a given query ob-
ject, a thread can safely update the query heap. However, it can-
not also update the neighborhood of a candidate without locking,
as another thread may be trying to concurrently update the same
neighborhood. As such, pL2Knng keeps a candidate list in memory
for each of the objects in the query set, deferring candidate neigh-
borhood updates until all query set objects have been processed.
The parameter η should thus be chosen to ensure η × ε values can
be stored in memory, as each candidate list has a maximum size
of ε. Moreover, moderately small η values can ensure the candi-
date lists are cache-resident, leading to improved performance. The
same query set cache-tiling strategy is also used in the IC and GE
phases of our method. However, each candidate list size is µ there,
so the memory necessary to store candidates is η ×max(µ, ε).

3.2.2 Neighborhood updates
As mentioned in the previous section, each thread can update the

query neighborhood as soon as it has found a candidate object that
can improve it. We have found it beneficial, however, to update the
query neighborhood after finalizing similarity computations for all
candidates. Given a set of candidates C with |C| > k, we first
select [11] the top-k values in the list, filtering out those less than
σq , the current minimum similarity in the query neighborhood, and
then sequentially insert them in the query heap.

Figure 1: Segmentation of candidate neighborhood updates.

Our strategy for updating candidate neighborhoods is slightly
different. Each thread is assigned a sequential block of n/nt candi-
date objects whose neighborhoods they are responsible to update,
where nt is the number of threads. When a candidate list is con-
structed, candidates are added in the order they are found in the
during the candidate selection process, which results in a semi-
random ordering. After updating the query neighborhood, before
moving on to the next query, the thread re-arranges the similarities
in the candidate list to ensure efficient candidate list updates. Each
value is checked against the minimum similarity σc of the candi-
date neighborhood, and discarded if it cannot improve that neigh-
borhood. The thread then partitions the remaining values into nt
sections s.t. the ith section contains similarities for objects in the
ith candidate block, and records the starting and ending offset of
each segment in the candidate list. Figure 1 shows this strategy for
threads t1–t4, given objects d1–d5. This partitioning enables fast

candidate neighborhood updates at the end of each query block, as
each thread only needs to traverse a subset of each candidate list to
perform its required updates.

4. EXPERIMENTAL METHODOLOGY
In this section, we describe the datasets, baseline algorithms, and

performance measures used in our experiments.

4.1 Datasets

Table 3: Dataset Statistics
dataset n m nnz mrl mcl
RCV1 804,414 45,669 62M 76.5 1347.3

WW200 1,017,531 663,419 437M 429.9 659.4
WW500 243,223 660,600 202M 830.3 305.7

For each dataset, n is the number of vectors (rows), m is the number of
features (columns), nnz is the number of non-zero values, and mrl and
mcl are the mean row and column lengths (number of non-zeros).

We use three text-based datasets to evaluate each method.
They represent some real-world and benchmark text corpora often
used in text-categorization research. Their characteristics, includ-
ing number of rows (n), columns (m), and non-zeros (nnz), and
mean row/column length (mrl/mcl), are detailed in Table 3. Stan-
dard pre-processing, including tokenization, lemmatization, and tf-
idf weighting, were used to encode text documents as vectors. We
present additional details below.

• RCV1 is a standard benchmark corpus containing over 800,000
newswire stories provided by Reuters, Ltd. for research pur-
poses, made available by Lewis et al. [14].
• WW500 contains documents with at least 500 distinct features,

extracted from the October 2014 article dump of the English
Wikipedia2 (Wiki dump).
• WW200 contains documents from the Wiki dump with at least

200 distinct features.

4.2 Baseline approaches
We compare our methods against the following baselines.

• pKIdxJoin is a straight-forward baseline similar to IDX in [18].
The method uses similar cache-tiling as pL2Knng, but does not
use any pruning when computing similarities. For each block of
queries, pKIdxJoin sequentially retrieves a block of objects to
search against and indexes all their values. Threads then share the
index to compute similarities, via accumulation, of each assigned
object in a query tile against all indexed objects, retaining the
top-k matches for each object.
• GF is an approximate k-NNG construction method proposed by

Park et al. [18]. We have created a shared memory parallel ver-
sion of GF, which we call pGF, using the same thread cooper-
ation strategy as in pL2Knng-a. Threads first work together to
index enough high-weight features for each object to ensure µ
candidate neighbors have at least one feature in common with
each input object. Then, they dynamically split the work of com-
puting similarities of each object in an inverted list against all
other objects in the list. Each thread updates the neighborhood
of an assigned query object as soon as it has finished computing
the similarity with a candidate object. Threads synchronize at the
end of each inverted index list, reading computed similarities by
all threads in order to update neighborhoods for blocks of objects
assigned to each thread.

2http://download.wikimedia.org

• NN-Descent is a shared memory parallel approximate k-NNG
construction method designed by Dong et al. [9] to work with
generic similarity measures which has been shown effective for
both sparse and dense input.

Locality sensitive hashing (LSH) has been a popular method for
top-k search, but we have found that it does not in general perform
well in the k-NNG construction setting when one requires high av-
erage recall. Both GF and NN-Descent have been shown to outper-
form LSH in this setting, for k typically≥ 10. Moreover, pL2Knng
significantly outperforms GF and NN-Descent in both serial and
parallel execution environments. As a result, we have chosen not to
compare against LSH in this work.

4.3 Performance measures
When comparing approximate k-NNG construction methods, we

use average recall to measure the accuracy of the returned result.
We obtain the true k-NNG via a brute-force search, then compute
the average recall as,

R =
1

|D|
∑
di∈D

true neighbors in Ndi

|Ndi |
.

An important characteristic in our experiments is CPU runtime,
which is measured in seconds. I/O time needed to load the dataset
into memory or write output to the file system should be the same
for all methods and is ignored. Between a method A and a baseline
method B, we report speedup as the ratio of B’s execution time
and that of A’s. Additionally, we report strong scaling for parallel
methods, in which multi-threaded execution times are compared
with the 1-threaded execution of the same method.

As a way to compare the amount of time threads spend waiting
for other threads to finish execution, we measure load imbalance,
as suggested by DeRose et al. [8] as,

% imbalance =
tmax − tmean

tmax
× p

p− 1
,

where p is the number of processing elements (threads) and tmax

and tmean are the maximum and mean thread times in the parallel
block, respectively.

4.4 Execution environment
Our method and all baselines are implemented in C and compiled

using gcc 5.1.0 with the -O3 optimization setting enabled. We used
the OpenMP framework for implementing shared-memory parallel
methods. Each method was executed on its own node in a cluster of
HP Linux servers. Each server is a dual-socket machine, equipped
with 64 Gb RAM and two eight-core 2.6 GHz Intel Xeon E5-2670
(Sandy Bridge) processors with 20 Mb Cache.

We executed each method for

k ∈ {10, 25, 50, 75, 100, 200, 300, 400, 500}

and tuned parameters for each method to achieve balanced high
recall and efficient execution. For all L2Knng based methods, we
set the parameter δ = 0.0001. For all experiments, we set the
pL2Knng parameter ε = 100K. We used the latest version of
the NN-Descent3 library available at the time of our experiments
(v.1.4), and set ρ = 1, and indexing K = µ (the candidate list size
µ ≥ k). For all stochastic methods, we executed a minimum of 3
tries for each set of parameter values and we report averages of all
tries.

3http://www.kgraph.org/releases/kgraph-1.4-x86_64.tar.gz

5. RESULTS & DISCUSSION
Our experiment results are organized along two directions. First,

we present results from evaluating the accuracy and efficiency of
our parallel approximate method, pL2Knng-a, in comparison to two
state-of-the-art approximate baselines. Second, we present results
from evaluating our exact method, pL2Knng. We measure serial ef-
ficiency improvements compared to the original L2Knng algorithm,
study our method’s sensitivity to parameter choices, compare the
efficiency and strong scaling characteristics of pL2Knng with par-
allel and approximate baselines, and study load imbalance in our
method.

5.1 Approximate method evaluation

5.1.1 Effectiveness comparison

0

100

200

300
RCV1,
k=50

pL2Knng-a0

- +

pL2Knng-a3

-
+

pGF

-

+

NN-Descent

-
+

0

100

200

300

400

500WW500,
k=50

-
+-

+-

+

-+

0

100

200

300

400

500

600

700

.4 .5 .6 .7 .8 .9 1

RCV1,
k=100

- +-
+

-

+

-
+

.4 .5 .6 .7 .8 .9 1

0

100

200

300

400

500WW500,
k=100

recall

ti
m

e
 (

s
)

-
+

-

+

-

+

-+

Figure 2: k-NNG construction effectiveness.

As a way to compare the effectiveness of the approximate meth-
ods, we executed each for µ ∈ {1k, . . . , 10k}, where µ is the
size of the candidate list each method considers. Figure 2 shows
the results for two datasets, RCV1 and WW500, and two k values,
k ∈ {50, 100}. The best results in each quadrant of the figure are
those in the lower right corner, representing high recall achieved
in a short amount of time. We compared pL2Knng-a under two
neighborhood update scenarios, γ ∈ {0, 3}, denoted by the sub-
script in the method name. Ignoring neighborhood enhancement in
pL2Knng-a (γ = 0) leads to moderate recall faster than any other
method. Executing even a few enhancement rounds (γ = 3) leads
to almost perfect recall in pL2Knng-a in less time than either pGF
or NN-Descent.

5.1.2 Efficiency comparison
In a different experiment, we compared minimum execution

times required for each method to achieve high recall (at least
95%), for k ranging from 10 to 500. We executed each method
under a wide range of parameters to find its best execution time
for each k value. Figure 3 shows the execution times (left) and
speedups over the best serial approximate method (right) for each
of the methods. Our method, pL2Knng-a, outperformed the best
baseline by 1.5x – 21.7x. NN-Descent performed well on the RCV1
dataset, but was not competitive for the Wikipedia based datasets,
likely due to high average number of non-zeros present in each vec-
tor in those datasets and the high number of similarity comparisons
the method performs. NN-Descent was unable to find a k-NNG
with high enough recall for k ∈ {10, 25} for the WW200 dataset,
probably due to its random choice of initial neighbors. Given its
heuristic choice for initial neighbors, pGF performed well for small
k values, but its execution time quickly increased with k due to the
iterative local joins that the method performs.

0

5000

10000

15000

20000

25000
WW200

0
500

1000
1500
2000
2500
3000
3500

ti
m

e
 (

s
)

WW500

10 25 50 75 100 200 300 400 500
k

0

500

1000

1500

2000

2500

3473
5894

8318
11145

RCV1

pGF

NN-Descent

pL2Knng-a

0
2
4
6
8

10
12 WW200

0
2
4
6
8

10
12

s
p

e
e
d

u
p

WW500

10 25 50 75 100 200 300 400 500
k

0

5

10

15 RCV1

pGF

NN-Descent

pL2Knng-a

Figure 3: Approximate k-NNG construction efficiency.

5.2 Exact method evaluation

5.2.1 Serial improvement comparison
In order to gauge the efficiency improvements to our method that

we described in Section 3.1, we compared the serial execution of
our updated L2Knng variants against the original ones described
in [1], for k ∈ {10, 25, 50, 75, 100}. We executed all methods with
γ = 1 and tuned µ to achieve 95% recall for all approximate meth-
ods. Table 4 shows the results of this experiment, as speedup of the
enhanced L2Knng variants. Improvements over 1.5x are presented
in bold. While our updates lead to modest improvements for ap-
proximate graph construction, they contribute to achieve 1.44x –
1.73x speedup in the case of the exact version of L2Knng.

Table 4: Efficiency improvement in L2Knng

dataset method k=10 25 50 75 100
WW200 L2Knng-a 1.10 1.26 1.18 1.21 1.15
WW200 L2Knng 1.63 1.68 1.71 1.70 1.70
WW500 L2Knng-a 1.31 1.27 1.35 1.26 1.31
WW500 L2Knng 1.49 1.60 1.62 1.73 1.69
RCV1 L2Knng-a 1.09 1.15 1.18 1.23 1.39
RCV1 L2Knng 1.46 1.50 1.49 1.54 1.44

5.2.2 Parameter sensitivity
Efficiency in the execution of our parallel method can be af-

fected by our two parameters, the block synchronous query set
size η and the inverted index block size ζ. To gauge the effects of
these parameters on our algorithm execution, we tested pL2Knng

on the RTP dataset in all combinations of k ∈ {10, 100, 500},
η ∈ {10K, 25K}, and ζ ∈ {0.5M, 1M, 5M, 10M}. For all ex-
periments, we chose γ = 1, and µ = 2k. We present the results
of this experiment in Table 5, as slowdown values compared to the
η = 25K, ζ = 1M execution for each k value. The variation in
performance shown in the cmp column for each k value is gener-
ally small, less than 1.5x slowdown in most cases, showing that our
method is not greatly affected by bad choices in these parameters.

5.2.3 Efficiency comparison
Figure 3 shows the efficiency comparison between pL2Knng and

our efficient exact baseline, pKIdxJoin. The left side of the fig-
ure shows execution times for the methods, while the right side
shows speedups of the methods over the best serial method at each

Table 5: Parameter sensitivity analysis in pL2Knng

k=10 k=100 k=500
η ζ cmp η ζ cmp η ζ cmp

10k 0.5M 0.98 10k 0.5M 0.99 10k 0.5M 1.15
10k 1M 1.03 10k 1M 1.02 10k 1M 1.18
10k 5M 1.60 10k 5M 1.43 10k 5M 1.42
10k 10M 1.80 10k 10M 1.54 10k 10M 1.49
25k 0.5M 0.95 25k 0.5M 0.98 25k 0.5M 1.14
25k 1M 1.00 25k 1M 1.00 25k 1M 1.00
25k 5M 1.57 25k 5M 1.41 25k 5M 1.41
25k 10M 1.77 25k 10M 1.51 25k 10M 1.49

k value. Our method significantly outperforms pKIdxJoin, espe-
cially for small k values. Table 6 shows the execution times for all
exact and approximate methods, where parameters for approximate
methods were tuned to achieve a minimum of 95% recall. Note that
exact methods have 100% recall. Our exact method, pL2Knng, is
more efficient than both approximate baselines for the Wikipedia
datasets, and only 2.2x slower for the highest k value in the RCV1
dataset. On the other hand, our approximate method, pL2Knng-a,
greatly outperforms both exact and approximate baselines.

0

5000

10000

15000 WW200

0

500

1000

1500

2000

ti
m

e
 (

s
)

WW500

10 25 50 75 100 200 300 400 500
k

0

500

1000

1500

2000
RCV1

pkIdxJoin pL2Knng

0

5

10

15 WW200

0

5

10

15

s
p

e
e
d

u
p

WW500

10 25 50 75 100 200 300 400 500
k

0

5

10

15
RCV1

pkIdxJoin pL2Knng

Figure 4: Exact k-NNG construction efficiency.

Table 6: k-NNG construction efficiency comparison
method k = 10 50 100 300 500

WW200
pKIdxJoin 14562.36 14614.19 14428.61 14632.32 15451.55
pL2Knng 1264.42 1999.10 2348.14 3120.61 3613.19
pGF 1291.51 2088.37 3043.09 10052.79 19528.90
NN-Descent N/A 23800.08 15711.01 12807.02 17054.50
pL2Knng-a 59.51 157.12 253.31 604.02 962.25

WW500
pKIdxJoin 1768.80 1669.78 1781.14 1793.87 1835.50
pL2Knng 199.34 318.33 387.88 528.91 604.73
pGF 217.58 337.73 470.03 1227.60 2538.85
NN-Descent 3727.96 1891.65 1645.84 1943.84 1934.60
pL2Knng-a 13.16 33.18 61.82 158.42 252.87

RCV1
pKIdxJoin 1766.15 1774.28 1768.21 1862.52 2078.30
pL2Knng 137.22 231.52 301.52 468.87 581.71
pGF 191.71 866.42 2211.11 5894.57 11145.61
NN-Descent 254.74 271.19 261.50 265.89 268.37
pL2Knng-a 25.59 29.20 46.63 121.54 183.62

5.2.4 Strong scaling

1

4

8

12

16 WW200

k=10

1

4

8

12

16

s
p

e
e
d

u
p

WW500

1 4 8 12 16
threads

1

4

8

12

16 RCV1

ideal

pkIdxJoin

pL2Knng

1

4

8

12

16 WW200

k=100

1

4

8

12

16

s
p

e
e
d

u
p

WW500

1 4 8 12 16
threads

1

4

8

12

16 RCV1

ideal

pkIdxJoin

pL2Knng

Figure 5: Strong scaling of exact k-NNG construction methods.

Figure 5 shows the strong scaling characteristics of the exact
methods we compared, for k ∈ {10, 100}. Our method scales
linearly up to 16 threads, outperforming pKIdxJoin in all experi-
ments. While pKIdxJoin also uses cache tiling, it shows decreased
performance for high numbers of threads. The individual thread
work unit in pKIdxJoin consists of finding the k-nearest neigh-
bors in an index block and merging that list of neighbors with best
already found k-nearest neighbors. The strategy of maintaining the
k-nearest neighbors in heap data structures, combined with the co-
operative neighborhood update strategy in pL2Knng, shows supe-
rior performance which is maintained even as the number of threads
in increased.

5.2.5 Load balance

Table 7: Load imbalance in pL2Knng
time (s) % imbalance

k IG GE CG CV IG GE CG CV
RCV1

10 33.11 1.01 99.91 32.98 1.83 1.33 0.19 0.78
100 35.98 20.51 217.67 66.11 11.28 2.23 0.07 0.34
500 175.35 84.85 359.22 98.96 12.47 5.42 0.16 0.52

WW200
10 74.60 6.02 1176.66 125.56 0.73 0.30 0.12 0.60
100 158.57 144.79 1955.26 165.52 4.15 0.30 0.11 1.59
500 667.56 536.71 2711.16 194.48 12.71 0.98 0.14 1.67

WW500
10 11.96 2.15 175.49 10.46 0.21 0.09 0.14 1.06
100 39.87 35.81 301.42 12.91 2.71 0.11 0.22 1.70
500 171.55 142.41 422.11 18.82 9.41 0.49 0.15 1.57

As an alternate way to characterize the parallel performance of
pL2Knng, we measured the load imbalance in the different sections
of our method: initial graph construction (IG), graph enhancement
(GE), candidate generation (CG), and candidate verification (CV).
Table 7 shows the time and percent of imbalance in our experi-
ments, for k ∈ {10, 100, 500}. Our method spends the majority of
its time in the filtering sections (CG and CV), which display very
good load balance in general, less than 1% on average. The approx-
imate construction of the graph shows slightly worse imbalance in
the IG stage, up to 12.71%, which accounts for 6 – 24 % of the
overall execution time.

6. CONCLUSIONS AND FUTURE WORK
In this work, we presented strategies to improve an earlier serial

method for cosine similarity k-NNG constriction, and an efficient
way to extract parallelism in this method, in the shared memory set-
ting. Our method combines cache-tiling with an efficient neighbor-
hood update strategy to solve the problem, using 16 threads, 1.5x –
21.7x faster than the best approximate and 3.0x – 12.9x faster than
the best exact state-of-the-art baselines. Close analysis of execu-
tion kernels in our method revealed two potential areas of further
improvement. The initial graph construction stage in our method is
highly data-dependent in the choice of similarity candidates, which
leads to worse load balance than other sections. Furthermore, the
majority of the execution time in our method is spent computing
sparse vector dot-products, and our method may benefit from alter-
nate data structures that may further speed up this important kernel.

Acknowledgment: The author would like to thank the Graduate School
at University of Minnesota for generously funding his research through the
Doctoral Dissertation Fellowship. This work was supported in part by NSF
(IIS-0905220, OCI-1048018, CNS-1162405, IIS-1247632, IIP-1414153,
IIS-1447788), Army Research Office (W911NF-14-1-0316), Intel Software
and Services Group, and the Digital Technology Center at the University
of Minnesota. Access to research and computing facilities was provided by
the Digital Technology Center (DTC) and the Minnesota Supercomputing
Institute (MSI). We thank the reviewers for their helpful comments.

7. REFERENCES
[1] David C. Anastasiu and George Karypis. L2knng: Fast exact

k-nearest neighbor graph construction with l2-norm pruning.
In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, CIKM ’15,
pages 791–800, New York, NY, USA, 2015. ACM.

[2] David C. Anastasiu and George Karypis. Pl2ap: Fast parallel
cosine similarity search. In Proceedings of the 5th Workshop
on Irregular Applications: Architectures and Algorithms,
IA3 ’15, pages 8:1–8:8, New York, NY, USA, 2015. ACM.

[3] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik.
Efficient exact set-similarity joins. In Proceedings of the
32nd international conference on Very large data bases,
VLDB ’06, pages 918–929. VLDB Endowment, 2006.

[4] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant.
Scaling up all pairs similarity search. In Proceedings of the
16th International Conference on World Wide Web, WWW
’07, pages 131–140, New York, NY, USA, 2007. ACM.

[5] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse,
and Geoffrey Zweig. Syntactic clustering of the web. In
Selected papers from the sixth international conference on
World Wide Web, pages 1157–1166, Essex, UK, 1997.
Elsevier Science Publishers Ltd.

[6] Evangelia Christakopoulou. Moving beyond linearity and
independence in top-n recommender systems. In
Proceedings of the 8th ACM Conference on Recommender
Systems, RecSys ’14, pages 409–412, New York, NY, USA,
2014. ACM.

[7] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and
Shyam Rajaram. Google news personalization: scalable
online collaborative filtering. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pages 271–280, New York, NY, USA, 2007. ACM.

[8] Luiz DeRose, Bill Homer, and Dean Johnson. Detecting
application load imbalance on high end massively parallel
systems. In Proceedings of the 13th International Euro-Par

Conference on Parallel Processing, Euro-Par’07, pages
150–159, Berlin, Heidelberg, 2007. Springer-Verlag.

[9] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest
neighbor graph construction for generic similarity measures.
In Proceedings of the 20th International Conference on
World Wide Web, WWW ’11, pages 577–586, New York,
NY, USA, 2011. ACM.

[10] Taher H. Haveliwala, Aristides Gionis, and Piotr Indyk.
Scalable techniques for clustering the web. In In Proc. of the
WebDB Workshop, pages 129–134, 2000.

[11] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM,
4(7):321–322, July 1961.

[12] Andreas Hotho, Andreas Nürnberger, and Gerhard Paaß. A
brief survey of text mining. LDV Forum - GLDV Journal for
Computational Linguistics and Language Technology, 2005.

[13] George Karypis. Evaluation of item-based top-n
recommendation algorithms. In Proceedings of the Tenth
International Conference on Information and Knowledge
Management, CIKM ’01, pages 247–254, New York, NY,
USA, 2001. ACM.

[14] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li.
Rcv1: A new benchmark collection for text categorization
research. J. Mach. Learn. Res., 5:361–397, December 2004.

[15] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[16] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.
Detectives: Detecting coalition hit inflation attacks in
advertising networks streams. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pages 241–250, New York, NY, USA, 2007. ACM.

[17] Xia Ning and George Karypis. Sparse linear methods with
side information for top-n recommendations. In Proceedings
of the Sixth ACM Conference on Recommender Systems,
RecSys ’12, pages 155–162, New York, NY, USA, 2012.
ACM.

[18] Youngki Park, Sungchan Park, Sang-goo Lee, and Woosung
Jung. Greedy filtering: A scalable algorithm for k-nearest
neighbor graph construction. In Database Systems for
Advanced Applications, volume 8421 of Lecture Notes in
Computer Science, pages 327–341. Springer-Verlag, 2014.

[19] Mehran Sahami and Timothy D. Heilman. A web-based
kernel function for measuring the similarity of short text
snippets. In Proceedings of the 15th International
Conference on World Wide Web, WWW ’06, pages 377–386,
New York, NY, USA, 2006. ACM.

[20] Peter Willett, John M Barnard, and Geoffrey M Downs.
Chemical similarity searching. Journal of chemical
information and computer sciences, 38(6):983–996, 1998.

[21] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu.
Efficient similarity joins for near duplicate detection. In
Proceedings of the 17th International Conference on World
Wide Web, WWW ’08, pages 131–140, New York, NY, USA,
2008. ACM.

[22] Ying Zhao and George Karypis. Empirical and theoretical
comparisons of selected criterion functions for document
clustering. Mach. Learn., 55(3):311–331, June 2004.

