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Abstract

Recently, sequential multi-constraint graph partitioning algorithms have been developed to

address the load balancing requirements of emerging multi-phase and multi-physics scienti�c

simulation problems. E�ective execution of such simulations on high performance parallel com-

puters requires that the multi-constraint partitionings are computed in parallel. This paper

presents a parallel formulation of a recently developed multi-constraint graph partitioning algo-

rithm. We describe this algorithm and give experimental results conducted on a 128-processor

Cray T3E. We show that our parallel algorithm is able to e�ciently compute partitionings of

similar quality to serial multi-constraint algorithms, and can scale to very large graphs. Our

parallel multi-constraint graph partitioner is able to compute a three-constraint 128-way parti-

tioning of a 7.5 million node graph in about 7 seconds on 128 processors of a Cray T3E.

1 Introduction

Algorithms that �nd good partitionings of highly unstructured and irregular graphs are critical

for e�cient execution of scienti�c simulations on high performance parallel computers. In these

simulations, computation is performed iteratively on each element of a physical (2D or 3D) mesh,

and then some information is exchanged between adjacent mesh elements. E�cient execution of

these simulations requires a mapping of the computational mesh to the processors such that each

processor gets a roughly equal number of elements and the amount of inter-processor communication
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Figure 1: An example of a computation with non-uniform memory requirements. Each vertex in the graph is split

into two colors. The size of the yellow portion represents the amount of computation associated with the vertex,

while the size of the blue portion represents the amount of memory requirement work associated with the vertex. The

partitioning in (b) balances the computation. The partitioning in (c) balances the memory, but only the partitioning

in (d) balances both of these.

required to exchange the information between connected mesh elements is minimized. This mapping

is commonly found using the traditional graph partitioning problem that computes a partitioning

of the graph such that each subdomain has an equal number of vertices and the number of edges cut

by the partitioning is minimized. Even though the problem of graph partitioning is NP-complete,

multilevel schemes [3, 7] are known to quickly �nd excellent partitionings of graphs that correspond

to the 2D or 3D irregular meshes used for scienti�c simulations.

In recent years, however, the complexity and �delity of the models used in scienti�c simulations

have substantially increased to the point that the traditional graph partitioning formulation has

become inadequate. For example, in multi-physics computations, a variety of materials and/or

processes are simulated together. The result is a class of problems in which the computation as

well as the memory requirements are not uniform across the mesh. Existing partitioning schemes

can be used to divide the mesh among the processors such that either the amount of computation or

the amount of memory required is balanced across the processors. However, they do not allow us to

compute a partitioning that simultaneously balances both of these quantities. Our inability to do so

can either lead to signi�cant computational imbalances, limiting the overall e�ciency, or signi�cant

memory imbalances, limiting the size of the problems that can be solved using parallel computers.

Figure 1 illustrates this problem. It shows a graph in which the amount of computation and memory

associated with a vertex can be di�erent throughout the graph, and gives three possible partitionings

of it. The partitioning in Figure 1(b) balances the computation among the subdomains, but creates

a serious imbalance for memory requirements. The partitioning in Figure 1(c) balances the memory

requirement, while leaving the computation imbalanced. The partitioning in Figure 1(d), that

balances both of these, is the desirable solution. In general, multi-physics simulations require the

partitioning to satisfy not just one, but a multiple number of balance constraints. (In this case

the partitioning must balance two constraints, computation and memory). This requirement is

also present in multi-phase computations in which di�erent (possibly overlapping) subsets of nodes
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participate in di�erent phases of the computation [2].

The common characteristic of these problems is that they all require the computation of parti-

tionings that satisfy more than one balance constraint. Traditional graph partitioning techniques

have been designed to balance only a single constraint (i.e., the vertex weight). An extension of

the graph partitioning problem that allows us to balance multiple constraints is to assign a weight

vector of size m to each vertex. The problem then becomes that of �nding a partitioning with

a minimal edge-cut, subject to the constraints that each of the m weights is balanced across the

subdomains. Such a multi-constraint graph partitioning formulation as well as a serial algorithm

for computing multi-constraint partitionings is presented in [6].

It is desirable to compute multi-constraint partitionings in parallel for a number of reasons. Com-

putational meshes in parallel scienti�c simulations are often too large to �t in the memory of one

processor. Furthermore, in adaptive computations, the mesh needs to be partitioned frequently as

the simulation progresses. In such computations, downloading the mesh to a single processor for

repartitioning can become a major bottleneck. Thus, an e�ective parallel multi-constraint graph

partitioner is key to the e�cient execution of large multi-phase and multi-physics problems.

The multi-constraint partitioning algorithm in [6] can be parallelized using the techniques presented

in the parallel formulation of the single constraint partitioning algorithm [8] as both are based on

the multilevel paradigm. This paradigm consists of three phases: coarsening, initial partitioning,

and multilevel re�nement. (See Figure 2.) In the coarsening phase, the original graph is successively

coarsened down until it has only a small number of vertices. In the initial partitioning phase, a

partitioning of the coarsest graph is computed. In the multilevel re�nement phase, the initial

partitioning is successively re�ned using a Kernighan-Lin (KL) type heuristic [10] as it is being

projected back to the original graph. Of these phases, it is straightforward to extend the parallel

formulations of coarsening and initial partitioning to the context of multi-constraint partitioning.

The key challenge is the parallel formulation of the re�nement phase. The re�nement phase in single

constraint partitioning algorithms is parallelized by relaxing the KL heuristic to the extent that

the re�nement can be performed in parallel while remaining e�ective. This relaxation can cause

the partition to become unbalanced during the re�nement process, but the imbalances are quickly

corrected in succeeding iterations. Eventually, a balanced partitioning is obtained at the �nest level

graph. Similar relaxation does not work for multi-constraint partitioning because it is non-trivial

to correct load imbalances when more than one constraint is involved. In fact, the challenge of

balancing multi-constraint partitionings is so di�cult that a better solution is to avoid situations

in which the partitioning becomes imbalanced. This can be accomplished by either serializing the

re�nement algorithm, or else by restricting the amount of re�nement that a processor is able to

perform. The �rst will reduce the scalability of the algorithm and the second will result in low

quality partitionings. Neither of these is desirable. Hence, the challenge in developing a parallel

multi-constraint graph partitioner lies in developing a relaxation of the re�nement algorithm that

is concurrent, e�ective, and maintains load balance for each constraint.

This paper presents a parallel multi-constraint graph partitioning algorithm based on the serial

scheme presented in [6]. We describe this algorithm and give experimental results conducted on

a 128-processor Cray T3E. We show that our parallel algorithm is able to compute balanced par-

titionings that are of similar quality to those produced by the serial multi-constraint algorithm,

while also being scalable to very large graphs.

The remainder of this paper is organized as follows. Section 2 gives background, including de-
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Figure 2: The three phases of multilevel k-way graph partitioning. During the coarsening phase, the size of the

graph is successively decreased. During the initial partitioning phase, a k-way partitioning is computed, During the

multilevel re�nement phase, the partitioning is successively re�ned as it is projected to the larger graphs. G0 is the

input graph, which is the �nest graph. Gi+1 is the next level coarser graph of Gi. G4 is the coarsest graph.

scriptions of previous work in single and multi-constraint graph partitioning. Section 3 describes

our parallel multi-constraint graph partitioning algorithm. Section 4 presents experimental results

performed on 128 processors of a Cray T3E. Section 5 gives conclusions.

2 Background

Here we provide on overview of serial multi-constraint graph partitioning schemes and parallel

single constraint graph partitioning schemes.

2.1 Multi-constraint Graph Partitioning

The multi-constraint graph partitioning problem can be formulated as follows. Consider a graph

G = (V;E), such that each vertex v 2 V has a weight vector wv of size m associated with it, and

each edge e 2 E has a scalar weight attached to it. There are no restrictions on the weights of the

edges, but we will assume, without loss of generality, that the weight vectors of the vertices satisfy

the property that
P

8v2V w
v

i
= 1:0 for i = 1; 2; : : : ;m. If the vertex weights do not satisfy the

above property, we can divide each w
v

i
by
P

8v2V w
v

i
to ensure that the property is satis�ed. Note

that this normalization does not in any way limit our modeling ability. Let P be the partitioning

vector of size jV j, such that for each vertex v, P [v] stores the partition number to which v belongs.

For any such k-way partitioning vector, the load imbalance li with respect to the ith weight of the

k-way partitioning is de�ned as follows:

li = kmax
j

0
@ X
8v:P [v]=j

w
v

i

1
A (1)
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If the ith weight is perfectly balanced in the k-way partitioning, then
P

8v:P [v]=j
w
v

i
for all j is 1=k,

and li = 1. A load imbalance of li = x indicates that a computation of size W performed on k

processors during the ith phase takes xW=k time instead of W=p time needed in the case of perfect

load balance, under the assumption of zero communication overhead. A load imbalance of 1 + �

indicates that the partitioning is load imbalanced by �%. The goal is to �nd a k-way partitioning

P of G such that the sum of the weights of the edges that are cut by the partitioning is minimized

subject to the constraint 8i; li � ci. Where c is a vector of size m such that 8i; ci � 1:0. The

vector c is speci�ed by the user and reects the amount of load imbalance the user is willing to

accept for each of the constraints.

A serial multi-constraint graph partitioning algorithm is presented in [6]. The coarsening phase of

the algorithm is similar to the one used for the single constraint algorithm in [7]. After a su�ciently

coarse graph is constructed, initial partitioning is performed on this graph by recursive bisection.

The problem of computing a balanced multi-constraint bisection has been studied in [6]. The

authors present a lemma that proves that a set of two-weight objects can be partitioned into two

disjoint subsets such that the di�erence between either of the weights of the two sets is bounded by

twice the maximum weight of any object. They further show that this bound can be generalized

to m weights. However, in this case maintaining the weight bound depends on the presence of

su�ciently many objects with certain weight characteristics. The lemma leads to an algorithm for

computing such a bisection. This algorithm is the basis for the initial partitioning phase. In the

multilevel re�nement phase, a greedy k-way re�nement algorithm operates as follows. The vertices

along the boundary of the partitioning are visited in a random order. They are examined and

moved to one of their adjacent subdomains if this move:

(a) improves the quality of the partitioning without violating the speci�ed balance requirements

for each constraint.

(b) improves the balance of the multiple constraints without worsening the partition quality.

A small number of such passes through the vertices is performed at each successively �ner graph.

2.2 Parallel Single Constraint Graph Partitioning

Parallelizing a multilevel graph partitioner requires parallel algorithms for each of the three phases

of the multilevel paradigm (i.e., graph coarsening, initial partitioning, and multilevel re�nement).

In this section, we briey describe the key features of each of these algorithms.

Parallel Graph Coarsening. In the coarsening phase, all the processors collaborate to compute

a matching of the vertices in parallel. In these schemes, each processor computes a matching for

the vertices that it owns1. The challenge in performing this e�ciently is resolving contentions for

vertices that belong to di�erent processors. For example, a vertex on one processor may want to

match with a vertex that is owned by a di�erent processor. However, the processor that owns

the second vertex may want to match it with a di�erent vertex. In the general case, resolving

1Parallel partitioners assume that a graph is originally distributed across the processors such that each processor

has a roughly equal number of local vertices together with their associated adjacency information.
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these conicts requires an all-to-all communication between the processors. Existing schemes ei-

ther subdivide the computation in such a way that conicts do not occur [8] or else use e�cient

communication protocols to reduce the overhead [4, 11].

Parallel Initial Partitioning. In the initial partitioning phase, a partitioning of the coarsest

graph is quickly computed. This can be performed by a task decomposition scheme [8]. Here, the

coarsest graph is assembled on a single processor and then broadcast to all of the processors. Each

processor then computes the same bisection of this graph concurrently. If k equals two, the initial

partitioning is complete. Otherwise, the bisection is used to construct two subgraphs, where each

subgraph contains the vertices from only one subdomain of the bisection. In this way, the coarsest

graph is split evenly in two. Next, half of the processors compute a bisection of the �rst subgraph

and the other half compute a bisection of the second subgraph. If k is greater than four, these

bisections are used to split the two subgraphs in half and again half of the processors in each group

compute a bisection of each of the newly constructed subgraphs. This recursive splitting continues

until a k-way partitioning is computed.

Parallel Multilevel Re�nement. Multilevel re�nement can be performed in parallel by having

each processor apply a local re�nement algorithm on each level graph, starting at the coarsest

graph and continuing through all of the �ner graphs up to and including the input graph. The

local re�nement algorithm consists of a number of re�nement iterations. Each iteration consists of

a single pass through the vertices followed by an update and synchronization step. During a pass,

all of the processors simultaneously visit their local vertices and determine if moving a vertex to an

adjacent subdomain will increase the partition quality while maintaining the balance constraint or

improve the balance while maintaining the quality. During the update step, the relevant processors

are informed of vertex moves, and a global reduction operation is performed in order to compute

(and broadcast) the new weights of the subdomains.

One of the challenges in performing re�nement in this way is in ensuring that concurrent vertex

moves do actually lead to an improvement in the partition quality. Figure 4 illustrates a case

where this is not true. In the �gure on the left, the movement of vertex q from subdomain A to

subdomain B will result in a decrease in the edge-cut by three. Likewise, the movement of vertex

r from subdomain B to subdomain A will result in a decrease in the edge-cut by two. However,

if both moves are performed concurrently, the result is an increase in the edge-cut by �ve. The

parallel re�nement algorithms described in [4, 8, 11] address this problem by breaking up each

re�nement pass through the vertices into sub-phases. During each sub-phase, only certain subsets

of vertices are allowed to move. These subsets are selected in such a way as to either eliminate

[8, 11] or substantially limit [4] this phenomenon.

One possible method to implement parallel partition re�nement is to require that each processor

own all of the vertices from only a single subdomain [11]. Here, each processor represents a distinct

subdomain. However, this approach is not e�cient, as it makes it necessary to transfer all of

the data associated with a vertex between processors when a vertex switches subdomains. In the

multilevel context, this includes not only the data associated with the current graph, but also

the data associated with all of the �ner graphs up to the original graph. This data migration

is not necessary when processors can own vertices from arbitrary subdomains. Instead, when a

vertex swaps subdomains, an array entry can simply be updated. Since this fast update technique

can translate into a signi�cant performance gain [11], in this paper we focus on schemes do allow
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Figure 3: This �gure shows the state of a partitioning prior to parallel re�nement (a) and after a single re�nement

iteration (b). The circled vertices in (b) have changed subdomains.
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Figure 4: This �gure shows that the concurrent movement of vertices q and r will result in an increase in the

edge-cut by �ve, even though both would have decreased the edge-cut if moved alone.

processors to own vertices from arbitrary subdomains.

Figure 3 illustrates a single pass of the re�nement algorithm. Figure 3(a) shows the state of a

four-way partitioning of a graph immediately before parallel re�nement. Here, the color of a vertex

(red, yellow, green, or blue) indicates the processor to which it is local, while the curves surrounding

the vertices indicate the subdomain to which it belongs (A, B, C, or D). There are 40 vertices in

the graph. Each has a weight of one. Therefore, in order to perfectly balance the partitioning,

each subdomain should be of weight 10. (Note, the weight of a subdomain is equal to the sum

of the weights of its vertices.) In this example, let us assume that the user has speci�ed 20%

as acceptable imbalance. Therefore, subdomains of weight 12 are allowed. In Figure 3(a), the

partitioning is perfectly balanced and 20 edges are cut by the partitioning. Figure 3(b) shows

the state of the partitioning after each processor simultaneously performs one pass of re�nement

through its local vertices. Here, the circled vertices indicate those that were migrated. The edge-cut

has been reduced to 14, and the maximum subdomain weight is now 12.

3 Parallel Multi-constraint Graph Partitioning

In this section, we present a parallel formulation of the multilevel algorithm for multi-constraint

graph partitioning described in [6].

The parallel formulation of the graph coarsening phase computes a matching of the vertices in par-

allel utilizing the same heuristics as the serial multi-constraint algorithm (i.e., heavy-edge matching

with a balance-edge tie-breaking scheme), and is implemented in the same way as the coarse-grain

matching scheme described in [4]. The parallel formulation of the initial partitioning phase is a
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Figure 5: This �gure shows a single constraint partitioning (a). During parallel re�nement, the blue and yellow

processors each move two vertices (b). This results in an imbalance in the partitioning. If we simply disallow vertices

to move into the overweight domain, balance can be obtained easily (c).

modi�cation of the task decomposition scheme described in [8] with each processor calling the

multi-constraint bisection algorithm [6] implemented in MeTiS. In order to improve the quality and

balance of the initial partitioning, we split the processors into four groups and have each group

compute a di�erent partitioning by the task decomposition method. We then select the best of

these four partitionings to broadcast to all of processors.

Parallel Multi-constraint Multilevel Re�nement

The main challenge in developing a parallel multi-constraint graph partitioner proved to be in

developing a parallel multilevel re�nement algorithm. This algorithm needs to meet the following

criteria.

1. It must maintain the balance of all constraints.

2. It must maximize the possibility of re�nement moves.

3. It must be scalable.

We briey explain why developing an algorithm to meet all three of these criteria is challenging in

the context of multiple constraints, and then describe our parallel multilevel re�nement algorithm.

In order to guarantee that partition balance is maintained during parallel re�nement, it is necessary

to update global subdomain weights after every vertex migration. Such a scheme is much too

serial in nature to be performed e�ciently in parallel. For this reason, parallel single constraint

partitioning algorithms allow a number of vertex moves to occur concurrently before an update

step is performed. One of the implications of concurrent re�nement moves is that the balance

constraint can be violated during re�nement iterations. This is because if a subdomain can hold
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Figure 6: This �gure shows a two-constraint partitioning (a). During parallel re�nement, the blue and yellow

processors each move two vertices (b). This results in an imbalance that is not easily corrected. Moving the same

two vertices from Figure 5(c) will result in the second constraint becoming even more imbalanced.

a certain amount of additional vertex weight without violating the balance constraint, then all of

the processors assume that they can use all of this extra space for performing re�nement moves.

Of course, if just two processors move the amount of additional vertices that a subdomain can

hold into it, then the subdomain will become overweight. This is illustrated by the example in

Figure 5. Figure 5(a) shows a single constraint two-way partitioning of a graph performed on two

processors. Each of the vertices has a single weight associated with it that is shown in the �gure.

The subdomain weights are 25 and 25. Therefore, the partitioning is perfectly balanced. Let the

imbalance tolerance be 20%. Hence, subdomains can be of weight 30 or less. Figure 5(b) shows the

state of the partitioning after parallel re�nement is performed. Here, the yellow processor moved

one vertex (circled) of weight one from the left to the right subdomain and one vertex (circled) of

weight six from the right to the left subdomain. The yellow processor assumes that these moves will

result in subdomain weights of 30 (left) and 20 (right), and so will maintain the balance constraint.

Simultaneously, the blue processor moves one vertex (circled) of weight one from the left to the

right subdomain and one vertex (circled) of weight six from the right to the left subdomain. The

blue processor also believes that the balance constraint will be maintained. Together, however,

these moves result in the left subdomain becoming overweight with a weight of 35 and the right

subdomain becoming underweight with a weight of 15.

Parallel single constraint graph partitioners address this challenge by encouraging subsequent re-

�nement to restore the balance of the partitioning while improving its quality. For example, it is

often su�cient to simply disallow further vertex moves into overweight subdomains and to perform

another iteration of re�nement. Doing so in this case results in the partitioning becoming balanced

again (as illustrated in Figure 5(c)). In general, the re�nement process may not always be able to

balance the partitioning while improving its quality in this way (although experience has shown

that this usually works quite well). In this case, a few edge-cut increasing moves can be made to

move vertices out of the overweight subdomains.
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The real challenge is when we consider this phenomenon in the context of multiple balance con-

straints. This is because once a subdomain become overweight for a given constraint, it can be very

di�cult to balance the partitioning again. Figure 6 illustrates this point. It shows the graph from

Figure 5, but now each vertex has two weights. In Figure 6(a), the subdomain weights are (25,

25) and (25, 25), and so the partitioning is perfectly balanced. Again, lets assume that the user

speci�ed imbalance tolerance is 20% for both constraints. Figure 6(b) shows the state of the parti-

tioning after the same re�nement moves are made as are made in Figure 5(b). This time we cannot

simply disallow the movement of vertices into the overweight subdomains and otherwise continue

re�nement as normal. This is because both subdomains are overweight here, the left subdomain

is overweight with respect to the �rst weight, and the right subdomain is overweight with respect

to the second weight. Here, for example, moving the two vertices that moved in Figure 5(c) will

not work. Even though this will decrease the imbalance with respect to the �rst constraint, it will

increase the imbalance with respect to the second constraint. In fact, what is required is a more

complex approach in which vertices that are higher in the �rst weight than the second are moved

from the left to the right subdomain, and vertices that are higher in the second weight than the

�rst are moved from the right to the left subdomain. While balancing a two-constraint partitioning

in this way is challenging, the problem of balancing a multi-constraint partitioning becomes even

more di�cult as the number of constraints increases, as the multiple constraints are increasingly

likely to interfere with each other. Given the di�culty of balancing multi-constraint partitionings, a

better solution is to avoid a situation in which the partitioning becomes imbalanced. Therefore, we

would like to develop a multi-constraint re�nement algorithm that can help to ensure that balance

is maintained during parallel re�nement.

One way to ensure that the balance is maintained during parallel re�nement is to divide the amount

of extra vertex weight that a subdomain can hold without becoming imbalanced by the number

of processors. This then becomes the maximum vertex weight that any one processor is allowed

to move into a particular subdomain in a single pass through the vertices. Consider the example

illustrated in Figure 7. This shows the subdomain weights for a 4-way, 3-constraint partitioning.

Lets assume that the user speci�ed tolerance is 5%. The shaded bars represent the subdomain

weights for each of the three constraints. The white bars represent the amount of weight that if

added to the subdomain, would bring the bring the total weight to 5% above the average. In other

words, the white bars show the amount of extra space each subdomain has for a particular weight

given a 5% load imbalance tolerance. Figure 7 shows how the extra space in subdomain A can be

split up for the four processors. If each processor is limited to moving the indicated amounts of

weight into subdomain A, it is not possible for the 5% imbalance tolerance to be exceeded.

While this method guarantees that no subdomain (that is not overweight to start with) will become

overweight beyond the imbalance tolerance, it is overly restrictive. This is because in general not

all processors will need to use up their allocated space, while others may want to move more vertex

weight into a subdomain than allowed by their slice. In the context of single level re�nement

schemes (i.e., those schemes in which re�nement is performed only on the input graph and not on

di�erent coarsened versions of the graph), this can be achieved by allowing an additional number

of passes through the vertices. In this case, a local minima of the edge-cut will eventually be

reached. However, in the context of multilevel re�nement, a number of re�nement moves on the

coarse graphs may never come about (and so a local minima may not be reached on these graphs).

This is because the granularity of the vertices here may prohibit a number of potential moves (if

the weights of vertices exceed the slices alloted to the processors). In this case, even additional

re�nement iterations will not allow these moves to be made. As the partitioning is projected to

10



Average
 5%
10%

Subdomain B Subdomain C Subdomain DSubdomain A

Extra
Space

Figure 7: This �gure shows the subdomain weights for a 4-way partitioning of a 3-constraint graph. The white bars

represent the extra space in a subdomain for each weight given a 5% user speci�ed load imbalance tolerance.

subsequent �ner graphs, the decreasing granularity of the vertices will allow greater freedom of

movement, and so this e�ect will be reduced. However, the result is that the number of edge-cut

reducing re�nement moves performed on the coarse graphs is reduced compared to serial multi-

constraint multilevel re�nement algorithms (which do not require a scheme that slices up the extra

space of a subdomain), and so, this parallel scheme results in lower quality partitionings than serial

schemes. Furthermore, as the numbers of either processors or constraints increases, this e�ect

increases. The reason is that as the number of processors increases, the slices allocated to each

processor get thinner. As the number of constraints increases, each additional constraint will also

be sliced. This means that every vertex proposed for a move will be required to �t the slices of all

of the constraints. For example, consider a three-constraint, ten-way partitioning computed on ten

processors. If subdomain A can hold 20 units of the �rst weight, 30 units of the second weight, and

10 units of the third weight, then every processor must ensure that the sum of the weight vectors

of all of the vertices that it moves into subdomain A is less than (2, 3, 1).

It is possible to allocate the extra space of the subdomains more intelligently than simply giving

each processor an equal share. We have investigated schemes that make the allocations based on a

number of factors, such as the potential edge-cut improvements of the border vertices from a speci�c

processor to a speci�c subdomain, the weights of these border vertices, and the total number of

border vertices on each processor. While these schemes allow a greater number of re�nement moves

on the coarse graphs than the straightforward scheme, they still restrict more moves than the serial

algorithm. Our experiments have shown that these schemes produce partitionings that are up

to 50% worse in quality than the serial multi-constraint algorithm. (Note, these results are not

presented in this paper.)

Our parallel multi-constraint re�nement algorithm. We have developed a parallel multi-

constraint re�nement algorithm that is no more restrictive than the serial algorithm with respect

to the number of re�nement moves that it allows on every level graph, while also helping to ensure

that none of the constraints become overly imbalanced. In the multilevel context, this algorithm is

just as e�ective in improving the quality of partitionings as the serial algorithm.

This algorithm (essentially a reservation scheme) performs an additional pass through the vertices

on every re�nement iteration. In the �rst pass, re�nement moves are made concurrently (as normal),

however, we update only temporary data structures. Next, we perform a global reduction operation
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(a) (b) (c)

Figure 8: This �gure gives an example of a our parallel re�nement algorithm for a three-way single constraint

partitioning. Here the imbalance tolerance is set to 10%. In �gure (a) the top and bottom subdomains are overweight.

In �gure (b) each processor concurrently proposes a number of re�nement moves. If all of these moves are committed,

the middle subdomain will become overweight. In �gure (c) 50% of the proposed moves on each processor are

disallowed. The result is that the partitioning is balanced to within the tolerance.

to determine whether or not the balance constraints will be violated if these moves commit. If

none of the balance constraints are violated, we commit these moves as normal. Otherwise, each

processor is required to disallow a portion of its proposed vertex moves into those subdomains that

would be overweight if all of the moves are allowed to commit. We determine how many moves

into potentially overweight subdomains should be disallowed as follows. The percentage of excess

vertex weight moved into these subdomains is computed, and every processor is required to disallow

this percentage of the weight of its proposed moves into the subdomain. The speci�c moves to be

disallowed are selected randomly by each processor. While selecting moves randomly can negatively

impact the edge-cut, this is not a problem because further re�nement can easily correct the e�ects

of any poor selections that happen to be made. Except for these modi�cations, our multi-constraint

re�nement algorithm is similar to the coarse-grain single constraint re�nement algorithm described

in [4].

Figure 8 illustrates this process in the context of a single constraint. This is an example of a

three-way partitioning on three processors. Each vertex has a (single) weight of one. There are

30 vertices in this graph, so each subdomain should ideally have a weight of ten. However, we set

a 10% imbalance tolerance, and so subdomains of weights of 11 are acceptable. Figure 8(a) gives

the partitioning prior to the start of our re�nement algorithm. Here, the subdomain weights are

(from top to bottom) 12, 6, and 12. Therefore, the top and bottom subdomains are overweight by

20%, while the middle subdomain is underweight. Figure 8(b) shows the partitioning after the �rst

pass of our re�nement algorithm. The circled vertices represent proposed moves into the middle

subdomain. If all of these moves are committed, the subdomain weights will be 8, 16, and 6. Since

this would imbalance the middle subdomain over the 10% tolerance, we must disallow a number

of these moves. Speci�cally, the middle subdomain is originally weighted at 6 and can hold up to

11 while still falling within the imbalance tolerance. Therefore, we can move �ve vertices into it.

However, there are ten proposed vertex moves into this subdomain. We divide these two numbers

and �nd that each processor must disallow half of its moves into the middle subdomain. So the blue

and yellow processors must each disallow two of their four proposed moves. The white processor

must disallow one of its two proposed moves. Figure 8(c) shows the partitioning after this has been

done. Now the moves of the circled vertices can be safely committed.
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Figure 9: This �gure shows the state of a partitioning prior to re�nement (a), the proposed state of the partitioning

after the �rst pass of our algorithm (b), the proposed state after moves are disallowed in order to maintain the balance

of the �rst constraint (c), and the proposed state after moves are disallowed in order to maintain the balance of the

third constraint (d).

This example demonstrates the parallel re�nement algorithm for a single constraint only. Additional

issues result in the context of multiple constraints. This is because (i) the vertices are not of

unit weight, and (ii) we must commit or disallow vertex moves based on multiple constraints. If

vertices are not of unit weight, we must not simply disallow a speci�c number of vertex moves, but

instead must disallow some number of moves such that the sum weight of these meets the required

percent (of the total weight of the proposed moves) speci�ed by the global reduction operation. We

address the second issue by taking care of each constraint in turn. Figure 9 illustrates this process.

Figure 9(a) is a blow up of the example in Figure 7. Figure 9(b) gives the state after the �rst pass

of our re�nement algorithm. The down-pointing arrows indicate the amount of vertex weight to

be moved out of the subdomain, while the checkered boxes indicate the amount of vertex weight

is to be moved into the subdomain. In this example we assume the user speci�ed the imbalance

tolerance to be 5%. If the proposed moves commit, subdomain B will be overweight with respect

to the third constraint and subdomain C will be overweight with respect to the �rst and second

constraints. Therefore, it is necessary it disallow some of these proposed moves. We start with the

�rst constraint. We must disallow a number of moves into subdomain C such that the total weight

of these moves brings the imbalance (of the �rst constraint) to down to 5%. In Figure 9(c), this has

been done. Here, subdomains B and D disallow a number of moves into subdomain C. Notice that

in correcting the imbalance of the �rst constraint, enough moves were disallowed from subdomain D

to subdomain C so that the second constraint was also corrected. This was inadvertent. However,

it is bene�cial in that we can now move on directly to the third constraint. (Note, that if the

excess imbalance of the second constraint had not been entirely eliminated, it would have been
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necessary to disallow the movement of more vertices into subdomain C.) In order to ensure the

balance of the third constraint, it is necessary to disallow the transfer of weight into subdomain B.

In Figure 9(d), this has been done. The movement of vertices from subdomains C and D are

disallowed. In this case, disallowing the movement of vertices from subdomain D to subdomain B

results in subdomain D being overweight by a modest amount with respect to the third constraint.

Now that we have taken care of all of the constraints, the remaining moves are able to committed.

It is important to note that the above scheme still does not guarantee that the balance constraints

will be maintained. This is because when we disallow a number of vertex moves, the weights of the

subdomains from which these vertices were to have moved become higher than the weights that

had been computed with the global reduction operation. It is therefore possible for some of these

subdomains to become overweight. To correct this situation, a second global reduction operation

can be performed followed by another round in which a number of the (remaining) proposed vertex

moves are disallowed. These corrections might then lead to other imbalances, which require this

process to iterate until it converges (or until all of the proposed moves have been disallowed). We

have chosen in our implementation to simply ignores this problem. This is because the number of

disallowed moves is a very small fraction of the total number of vertex moves, and so any imbalance

that is brought about by them is quite modest. Our experimental results show that the amount of

imbalance introduced in this way is small enough that further re�nement is able to correct it. In

fact, as long as the amount of imbalance introduced is correctable, such a scheme can potentially

result in higher quality partitionings compared to schemes that explore the feasible solution space

only, as discussed in Section 4.

Scalability Analysis. The scalability analysis of a parallel multilevel single constraint graph

partitioner is presented in [8]. This analysis assumes that (i) each vertex in the graph has a small

bounded degree, (ii) this property is also satis�ed by the successive coarser graphs, and (iii) the

number of nodes in successive coarser graphs decreases by a factor of 1+ �, where 0 < � � 1. (Note,

these assumptions hold true for all graphs that correspond to well-shaped �nite element meshes.)

Under these assumptions, the parallel run time of the single constraint algorithm is

Tpar = O

�
n

p

�
+O(p logn) (2)

and the isoe�ciency function is O(p2 log p). The parallel run time of our multi-constraint graph

partitioner is similar (given the two assumptions). However, during both graph coarsening and

multilevel re�nement, all m weights must be considered. Therefore, the parallel run time of the

multi-constraint algorithm is m times longer, or

Tpar = O

�
nm

p

�
+O(pm log n): (3)

Since the sequential complexity of the serial multi-constraint algorithm is O(nm), the isoe�ciency

function of the multi-constraint partitioner is also O(p2 log p).

4 Experimental Results

In this section, we present experimental results of our parallel multi-constraint k-way graph par-

titioning algorithm on 32, 64, and 128 processors of a Cray T3E. We constructed two sets of test
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problems to evaluate the e�ectiveness of our parallel partitioning algorithm in computing high-

quality, balanced partitionings quickly. Both sets of problems were generated synthetically from

the four graphs described in Table 1.

The purpose of the �rst set of problems is to test the ability of the multi-constraint partitioner

to compute a balanced k-way partitioning for some relatively hard problems. From each of the

four input graphs we generated graphs with two, three, four, and �ve weights, respectively. For

each graph, the weights of the vertices were generated as follows. First, we computed a 16-way

partitioning of the graph and then we assigned the same weight vector to all of the vertices in each

one of these 16 subdomains. The weight vector for each subdomain was generated randomly, such

that each vector contains m (for m = 2; 3; 4; 5) random numbers ranging from 0 to 19. Note that if

we do not compute a 16-way partitioning, but instead simply assign randomly generated weights to

each of the vertices, then the problem reduces to that of a single constraint partitioning problem.

The reason is that due to the random distribution of vertex weights, if we select any l vertices, the

sum of their weight vectors will be around (lr, lr, : : :, lr) where r is the expected average value of the

random distribution. So the weight vector sums of any two sets of l vertices will tend to be similar

regardless of the number of constraints. Thus, all we need to do to balance m constraints is to

ensure that the subdomains contain a roughly equal number of vertices. This is the formulation for

the single constraint partitioning problem. Requiring that all of the vertices within a subdomain

have the same weight vector avoids this e�ect. It also better models many applications. For

example, in multi-physics problems, di�erent regions of the mesh can represent di�erent materials.

This can bring about di�erent computation and memory requirements as discussed in Section 1.

However, mesh elements that represent the same material typically form contiguous regions and

are not distributed randomly throughout the mesh. Therefore, each of the 16 subdomains in the

�rst problem set models a contiguous region of similar mesh elements.

The purpose of the second set of problems is to test the performance of the multi-constraint parti-

tioner in the context of multi-phase computations in which di�erent (possibly overlapping) subsets

of nodes participate in di�erent phases. For each of the four graphs, we again generated graphs

with two, three, four, and �ve weights corresponding to a two-, three-, four-, and �ve-phase compu-

tation, respectively. In the case of the �ve-phase graph, the portion of the graph that is active (i.e.,

performing computations) is 100%, 75%, 50%, 50%, and 25% of the subdomains. In the four-phase

case, this is 100%, 75%, 50%, and 50%. In the three- and two-phase cases, it is 100%, 75%, and

50% and 100% and 75%, respectively. The portions of the graph that are active was determined as

follows. First, we computed a 32-way partitioning of the graph and then we randomly selected a

subset of these subdomains according to the overall active percentage. For instance, to determine

the portion of the graph that is active during the second phase, we randomly selected 24 out of

these 32 subdomains (i.e., 75%). The weight vectors associated with each vertex depends on the

phases in which it is active. For instance, in the case of the �ve-phase computation, if a vertex

is active only during the �rst, second, and �fth phase, its weight vector will be (1, 1, 0, 0, 1). In

generating these test problems we also assigned weight to the edges to better reect the overall

communication volume of the underlying multi-phase computation. In particular, the weight of an

edge (v; u) was set to the number of phases that both vertices v and u are active at the same time.

This is an accurate model of the overall information exchange between vertices since during each

phase, vertices access each other's data only if both are active.
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Graph Num of Verts Num of Edges

mrng1 257,000 1,010,096

mrng2 1,017,253 4,031,428

mrng3 4,039,160 16,033,696

mrng4 7,533,224 29,982,560

Table 1: Characteristics of the various graphs used in the experiments.
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Figure 10: This �gure shows the edge-cut and balance results from the parallel multi-constraint algorithm on

32 processors. The edge-cut results are normalized by the results obtained from the serial multi-constraint graph

partitioning algorithm implemented in MeTiS.

Comparison of Serial and Parallel Multi-Constraint Algorithms. Figures 10, 11, and 12

compare the quality of the partitionings produced by our parallel multi-constraint graph parti-

tioning algorithm with the quality of those produced by the serial multi-constraint algorithm [6],

and give the maximum load imbalance of the partitionings produced by our algorithm. Each �gure

shows four sets of results, one for each of the four graphs described in Table 1. Each set is composed

of two-, three-, four-, and �ve-constraint Type 1 and 2 problems. These are labeled \m cons t"

where m indicates the number of constraints and t indicates the type of problem (i.e., Type 1 or

2). So the results labeled \2 cons 1" indicates the edge-cut and balance results for a two-constraint

Type 1 problem. The edge-cut results shown are those obtained by our parallel algorithm normal-

ized by those obtained by the serial algorithm. Therefore, a bar below the 1.0 index line indicates

that our parallel algorithm produced higher-quality partitionings that the serial algorithm. The

balance results indicate the maximum imbalance of all of the constraints. These results are not

normalized. (Note that we set an imbalance tolerance of 5% for all of the constraints.) Finally,

the results given in Figures 10, 11, and 12 are the average of three runs by our algorithm utilizing

di�erent random seeds each time. We give the average results of three runs in order to demonstrate

the robustness of our parallel algorithm.

Figures 10, 11, and 12 show that our parallel multi-constraint graph partitioning algorithm is able to

compute partitionings of similar or better quality than the serial multi-constraint graph partitioner,
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Figure 11: This �gure shows the edge-cut and balance results from the parallel multi-constraint algorithm on

64 processors. The edge-cut results are normalized by the results obtained from the serial multi-constraint graph

partitioning algorithm implemented in MeTiS.

while ensuring that multiple constraints are balanced.

Notice that the parallel algorithm is sometimes able to produce higher-quality partitionings than

the serial algorithm. There are two reasons for this. First, our parallel matching scheme is not

as e�ective in �nding a maximal matching as the serial algorithm. Therefore, a smaller number

of vertices match together with the parallel algorithm than with the serial algorithm. The result

is that the newly computed coarsened graph tends to be larger for the parallel algorithm than for

the serial algorithm. This causes the parallel algorithm to take more coarsening levels to obtain

a su�ciently small graph. The result is that the matching algorithm usually has one or more

additional coarsening levels in which to remove the exposed edge weight (i.e., the total weight of

the edges on the graph). By the time our parallel algorithm computes the coarsest graph, it can

have less exposed edge weight than the coarsest graphs computed by the serial algorithm. This

allows the initial partitioning algorithm to compute higher-quality partitionings. During multilevel

re�nement, some of this advantage is maintained, and so, the �nal partitioning can be better than

those computed by the serial algorithm. The disadvantage of slow coarsening is that the additional

coarsening and re�nement levels take time, and so the execution time of the algorithm is increased.

This phenomenon of slow coarsening was also observed in the context of hypergraphs in [1].

The second reason is in the serial algorithm, once the partitioning becomes balanced it will never

explore the infeasible solution space in order to improve the partition quality. Since the parallel

re�nement algorithm does not guarantee to maintain partition balance, the parallel graph parti-

tioner may do so. This usually happens on the coarse graphs. Here, the granularity of the vertices

makes it more likely that the parallel multi-constraint re�nement algorithm will result in slightly

imbalanced partitionings. Essentially, the parallel multi-constraint re�nement algorithm it too ag-

gressive in reducing the edge-cut here, and so makes too many re�nement moves. This is a poor

strategy if the partitioning becomes so imbalanced that subsequent re�nement is not able to restore

the balance. However, since our parallel re�nement algorithm helps to ensure that the amount of

imbalance introduced is small, subsequent re�nement is able to restore the partition balance while

further improving its quality.
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Figure 12: This �gure shows the edge-cut and balance results from the parallel multi-constraint algorithm on

128 processors. The edge-cut results are normalized by the results obtained from the serial multi-constraint graph

partitioning algorithm implemented in the MeTiS library.

k serial time parallel time

2 7.3 6.4

4 7.5 4.4

8 8.0 2.5

16 8.3 1.7

Table 2: Serial and parallel run times of the multi-constraint graph partitioner for a three-constraint problem on

mrng1.

Run Time Results. Table 2 compares the run times of the parallel multi-constraint graph

partitioning algorithm with the serial multi-constraint algorithm implemented in the MeTiS library

[5] for mrng1. These results show only modest speedups for the parallel partitioner. The reason

is that the graph mrng1 is quite small, and so the communication and parallel overheads are

signi�cant. However, we use mrng1 because it is the only one of the test graphs that is small

enough to run serially on a single processor of the Cray T3E.

Table 3 gives selected run time results and e�ciencies of our parallel multi-constraint graph par-

titioning algorithm on up to 128 processors. Table 3 shows that our algorithm is very fast, as it

is able to compute a three-constraint 128-way partitioning of a 7.5 million node graph in about 7

seconds on 128-processors of a Cray T3E. It also shows that our parallel algorithm obtains similar

run times as you double (or quadruple) both the size of problem and the number of processors.

For example, the time required to partition mrng2 (with 1 million vertices) on eight processors is

similar to that of partitioning mrng3 (4 million vertices) on 32 processors and mrng4 (7.5 million

vertices) on 64 processors.

Table 4 gives the run times of the k-way single constraint parallel graph partitioning algorithm

implemented in the ParMeTiS library [9] on the same graphs used for our experiments. Comparing
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Graph 8-processors 16-processors 32-processors 64-processors 128-processors

time e�ciency time e�ciency time e�ciency time e�ciency time e�ciency

mrng2 9.8 100% 5.3 92% 3.5 70% 2.5 49% 3.1 20%

mrng3 31.8 100% 16.9 94% 9.3 85% 5.7 70% 4.4 45%

mrng4 out of memory 30.7 100% 16.7 92% 9.2 83% 6.4 60%

Table 3: Parallel run times and e�ciencies of our multi-constraint graph partitioner on three-constraint type 1

problems.

Graph 8-processors 16-processors 32-processors 64-processors 128-processors

mrng2 5.4 3.1 2.1 1.5 1.7

mrng3 15.8 8.8 4.8 3.0 2.7

mrng4 38.6 16.2 8.8 5.0 3.6

Table 4: Parallel run times of the single constraint graph partitioner implemented in ParMeTiS.

Tables 3 and 4 shows that computing a three-constraint partitioning takes about twice as long as

computing a single constraint partitioning. For example, it takes 9.3 seconds to compute a three-

constraint partitioning and 4.8 seconds to compute a single constraint partitioning for mrng3 on 32

processors. Also, comparing the speedups indicates that the multi-constraint algorithm is slightly

more scalable than the single constraint algorithm. For example, the speedup from 16 to 128

processors for mrng3 is 3.84 for the multi-constraint algorithm and 3.26 for the single constraint

algorithm. The reason is that the multi-constraint algorithm is more computationally intensive

than the single constraint algorithm, as multiple (not single) weights must be computed regularly.

Parallel E�ciency. Table 3 gives selected parallel e�ciencies of our parallel multi-constraint

graph partitioning algorithm on up to 128 processors. The e�ciencies are computed with respect

to the smallest number of processors shown. Therefore, for mrng2 and mrng3, we set the e�ciency

of eight processors to 100%, while we set the e�ciency of 16 processors to 100% formrng4. The par-

allel multi-constraint graph partitioner obtained e�ciencies between 20% and 94%. The e�ciencies

were good (between 90% - 70%) when the graph was su�ciently large with respect to the number of

processors. However, these dropped o� for the smaller graphs on large number of processors. The

isoe�ciency of the parallel multi-constraint graph partitioner is O(p2 log p). Therefore, in order to

maintain a constant e�ciency when doubling the number of processors, we need to increase the size

of the data by a little more than four times. Since mrng3 is approximately four times as large as

mrng2 we can test the isoe�ciency function experimentally. The e�ciency of the multi-constraint

partitioner with 32 processors for mrng2 is 70%. Doubling the number of processors to 64 and

increasing the data size by four times (64-processors on mrng3) yields a similar e�ciency. This

is better than expected, as the isoe�ciency function predicts that we need in increase the size of

the data set by more than four times to obtain the same e�ciency. If we examine the results of 64

processors on mrng2 and 128 processors on mrng3 we see a slightly decreasing e�ciency of 49% to

45%. This is what we would expect based on the isoe�ciency function. If we examine the results

of 16 processors on mrng2 and 32 processors on mrng3 we see that the drop in e�ciency is larger
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(92% to 85%). So here we get a slightly worse e�ciency than expected. These experimental results

are quite consistent with the isoe�ciency function of the algorithm. The slight deviations can be

attributed to the fact that the number of re�nement iterations on each graph is upper bounded.

However, if a local minima is reached prior to this upper bound, then no further iterations will be

performed on this graph. Therefore, while the upper bound on the amount of work done by the

algorithm is the same for all of the experiments, the actual amount of work done can be slightly

di�erent depending on the re�nement process.

5 Conclusions

This paper has presented a parallel formulation of the multi-constraint graph partitioning algorithm

for partitioning 2D and 3D irregular and unstructured meshes used in scienti�c simulations. This

algorithm is essentially as scalable as the widely used parallel formulation of the single constraint

graph partitioning algorithm [8]. Experimental results conducted on a 128-processor Cray T3E

show that our parallel algorithm is able to compute balanced partitionings of similar quality to

the serial algorithm. We have shown that the run time of our algorithm is very fast. Our parallel

multi-constraint graph partitioner is able to compute a three-constraint 128-way partitioning of a

7.5 million node graph in about 7 seconds on 128 processors of a Cray T3E.

Although the experiments presented in this paper are all conducted on synthetic graphs, our parallel

multi-constraint partitioning algorithm has also been tested on real application graphs. Basermann

et al. [2] have used the parallel multi-constraint graph partitioner described in this paper for load

balancing multi-phase car crash simulations of an Audi and a BMW in frontal impacts with a wall.

These results are consistent with the run time, partition quality, and balance results presented in

Section 4.

While the experimental results presented in Section 4 (and [2]) are quite good, it is important to note

that the e�ectiveness of the algorithm depends on two things. First, it is critical that a relatively

balanced partitioning be computed during the initial partitioning phase. This is because if the

partitioning starts out imbalanced, there is no guarantee that it will ever become balanced during

the course of multilevel re�nement. Our experiments (not presented in this paper) have shown that

an initial partitioning that is more than 20% imbalanced for one or more constraints is unlikely

to be improved during multilevel re�nement. Second, as is the case for the serial multi-constraint

algorithm, the quality of the �nal partitioning is largely dependent on the availability of vertices

that can be swapped across subdomains in order to reduce the edge-cut, while maintaining all of the

balance constraints. Experimentation has shown that for a small number of constraints (i.e., two to

four) there is a good availability of such vertices, and so the quality of the computed partitionings

is good. However, as the number of constraints increases further, the number of vertices that can

be moved while still maintaining all of the balance constraints decreases. Therefore, the quality of

the produced partitionings decreases more signi�cantly.
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