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SUMMARY

Sequential multi-constraint graph partitioners have been developed to address the static load balancing
requirements of multi-phase simulations. These work well when (i) the graph that models the computation
fits into the memory of a single processor, and (ii) the simulation does not require dynamic load
balancing. The efficient execution of very large or dynamically adapting multi-phase simulations on high-
performance parallel computers requires that the multi-constraint partitionings are computed in parallel.
This paper presents a parallel formulation of a multi-constraint graph-partitioning algorithm, as well
as a new partitioning algorithm for dynamic multi-phase simulations. We describe these algorithms and
give experimental results conducted on a 128-processor Cray T3E. These results show that our parallel
algorithms are able to efficiently compute partitionings of similar edge-cuts as serial multi-constraint
algorithms, and can scale to very large graphs. Our dynamic multi-constraint algorithm is also able to
minimize the data redistribution required to balance the load better than a naive scratch-remap approach.
We have shown that both of our parallel multi-constraint graph partitioners are as scalable as the widely-
used parallel graph partitioner implemented in PARMETIS. Both of our parallel multi-constraint graph
partitioners are very fast, as they are able to compute three-constraint 128-way partitionings of a 7.5 million
vertex graph in under 7 s on 128 processors of a Cray T3E. Copyright  2002 John Wiley & Sons, Ltd.
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(a) (b)

Figure 1. A computational mesh for a particle-in-cells simulation (a) and a computational mesh for a contact–
impact simulation (b). The particle-in-cells mesh is partitioned so that both the number of mesh elements and
the number of particles are balanced across the subdomains. Two partitionings are shown for the contact–impact
mesh. The dashed partitioning balances only the number of mesh elements. The solid partitioning balances both

the number of mesh elements and the number of surface (lightly shaded) elements across the subdomains.

1. INTRODUCTION

Algorithms that find good partitionings of irregular graphs are commonly used to map computational
meshes onto the processors of high-performance parallel computers such that each processor gets
a roughly equal number of mesh elements (to ensure load balance) and such that the amount of
inter-processor communication required to exchange information between adjacent mesh elements is
minimized. However, the traditional graph-partitioning-problem formulation is limited in the types
of applications that it can effectively model because it specifies that only a single quantity be load
balanced. Many important types of multi-phase simulations require that multiple quantities be load-
balanced simultaneously. This is because synchronization steps exist between the different phases of
the computations, and so each phase must be individually load balanced. That is, it is not sufficient
to simply sum up the relative times required for each phase and to compute a partitioning based
on this sum. Doing so may lead to some processors having too much work during one phase of the
computation (and so these may still be working after other processors are idle), and not enough work
during another. Instead, it is critical that every processor have an equal amount of work from each
phase of the computation.

Two examples are particle-in-cells [1] and contact–impact simulations [2]. Figure 1 illustrates the
type of partitionings that are needed for these simulations. Figure 1(a) shows a partitioning of the
particle-in-cells mesh that balances both the number of mesh elements and the number of particles
across the subdomains. Figure 1(b) shows a mesh for a contact–impact simulation. During the contact-
detection phase, computation is performed only on the surface (i.e. lightly shaded) elements, while
during the impact phase, computation is performed on all of the elements. Therefore, in order to ensure
that both phases are load balanced, a partitioning must balance both the total number of mesh elements
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and the number of surface elements across the subdomains. The solid partitioning in Figure 1(b) does
this. The dashed partitioning is similar to that which a traditional graph partitioner might compute. This
partitioning balances only the total number of mesh elements. The surface elements are imbalanced by
over 50%.

A new formulation of the graph-partitioning problem is presented in [3] that is able to model the
problem of balancing multiple computational phases simultaneously, while also minimizing the inter-
processor communications. In this formulation, a weight vector of size m is assigned to each vertex of
the graph. The static multi-constraint graph-partitioning problem formulation then is to partition the
vertices into k disjoint subdomains such that the total weight of the edges that are cut by the partitioning
(i.e. the edge-cut) is minimized, and such that each of the m vertex weights are balanced across the
subdomains. A serial static multi-constraint graph-partitioning algorithm is also presented in [3] that
is shown to compute high quality partitionings. However, a parallel formulation of this algorithm is
desirable. This is because the computational meshes that are used in parallel multi-phase simulations
are often too large to fit in the memory of a single processor. A parallel partitioner can take advantage of
the increased memory capacity of parallel machines. Thus, a parallel multi-constraint graph partitioner
is key to the efficient execution of very large multi-phase simulations.

A static partitioning computed a priori is sufficient for many types of multi-phase simulations.
However, simulations whose computational structure evolves dynamically (e.g. due to adaptive mesh
methods or the movement of particles between subdomains) require that dynamic repartitionings be
periodically computed to maintain the load balance. These repartitionings should be computed to
load balance each phase, to minimize the inter-processor communication, and also to minimize the
difference between it and the previous partitioning (i.e. minimize the amount of data redistribution that
is required to balance the loads). The dynamic multi-constraint graph-partitioning problem formulation
then is similar to the static problem, but has an additional objective, that is to minimize the amount of
data redistribution required to realize the new partitioning. Furthermore, dynamic repartitionings need
to be computed in parallel, as it is not scalable to download the mesh onto a single processor each time
that load balancing is required.

This paper describes new parallel static and dynamic multi-constraint graph-partitioning algorithms.
We present a scalability analysis of the algorithms as well as experimental results conducted on a
128-processor Cray T3E. Our results show that our parallel algorithms are able to compute balanced
partitionings that have similar edge-cuts as those produced by a serial multi-constraint algorithm, while
also being fast and scalable to very large graphs. Experimental results also show that our dynamic
multi-constraint algorithm requires significantly less data redistribution than a naive scratch-remap
(SR) repartitioning approach.

The remainder of the paper is organized as follows. Section 2 describes related work in the
area, including serial and parallel multilevel partitioning algorithms and serial multi-constraint graph
partitioners. Section 3 presents our new parallel static and dynamic multi-constraint graph-partitioning
algorithms and gives a scalability analysis of these. Section 4 gives experimental results for our
schemes. Section 5 gives conclusions.

2. BACKGROUND

In this section, we describe related work in parallel multi-constraint partitioning. Then we describe the
multilevel graph-partitioning paradigm and its extension to the context of multiple balance constraints.
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2.1. Previous work

A lot of work has been done developing parallel static and dynamic single-constraint partitioning
algorithms. (See [4] for a survey of these.) However, these problems have received less attention for
the more difficult cases of multiple balance constraints [1,5].

Walshaw, Cross, and McManus [5] present a multi-phase partitioner that utilizes a slight
modification of a traditional graph partitioner as a black box to compute static partitionings for an
important class of multi-phase computations. This method splits the vertices into m disjoint subsets
depending on the first phase of the m-phase computation in which they are active. Then, the sub-graph
that consists of only those vertices that are in the first subset along with the edges that connect them is
partitioned normally. The subdomains that are computed for these vertices are locked and cannot later
be changed. Next, the vertices that are in the second subset are added to the sub-graph (as well as the
edges that connect any of the vertices that are now in the sub-graph), and the sub-graph is partitioned.
Note that here, only the vertices from the second subset are free to change subdomains. The result is that
these free vertices are likely to be assigned to the same subdomains as their locked neighbors. After the
second round of partitioning is completed, the subdomains that were computed for the second subset
of vertices are locked, the vertices (and edges) from the third subset are added to the sub-graph, and
the sub-graph is again partitioned. This process continues for m iterations, at which time a multi-phase
partitioning results.

This algorithm is relatively simple to implement and appears to be equally applicable for dynamic
as well as static partitioning. However, the method is not as general as the multi-constraint graph-
partitioning formulation as it is not effective for certain classes of multi-phase computation (e.g. those
in which all of the mesh elements take part in every computation phase).

Watts, Rieffel, and Taylor [1] present a dynamic multi-phase partitioner that is task-based
(as opposed to graph-based). This scheme does not take the interdependencies among the tasks
into account when satisfying the balance constraints, and so does not minimize the inter-processor
communications.

2.2. Multilevel graph partitioning: a review

The graph-partitioning problem is NP-complete. Therefore, heuristic algorithms are used to compute
partitionings on graphs of interesting size. In particular, multilevel schemes [6–10] have been
developed that are able to quickly compute excellent partitionings for graphs that correspond to the
2D or 3D irregular meshes used for scientific simulations.

Multilevel graph-partitioning algorithms consists of three phases: graph coarsening, initial
partitioning, and uncoarsening/refinement. In the graph-coarsening phase, a series of graphs is
constructed by collapsing together selected vertices of the input graph in order to form a related coarser
graph. This newly-constructed graph then acts as the input graph for another round of graph coarsening,
and so on, until a sufficiently small graph is obtained. A common method for graph coarsening is
collapsing together the pairs of vertices that form a matching. A matching of the graph is a set of
edges, no two of which are incident on the same vertex. Such matchings can be computed by a
number of methods. Possible schemes include random matching, heavy-edge matching [11], maximum
weighted matching [12], and approximated maximum weighted matching [9]. Computation of the
initial partitioning is performed on the coarsest (and hence smallest) of these graphs, and so is very
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Figure 2. The three phases of multilevel k-way graph partitioning. During the coarsening phase, the size of the
graph is successively decreased. During the initial partitioning phase, a k-way partitioning is computed, During the
uncoarsening/refinement phase, the partitioning is successively refined as it is projected to the larger graphs. G0 is

the input graph, which is the finest graph. Gi+1 is the next level coarser graph of Gi . G4 is the coarsest graph.

fast. After the initial partitioning is computed, it is projected back up to the finest (i.e. original) graph.
On each subsequent finer graph, iterative refinement is performed using a KL/FM-type algorithm
[13,14]. Such algorithms repeatedly run through the vertices that lie on the subdomain boundaries,
swapping the subdomains of those that will lead to an improvement in the quality of the partitioning.
Figure 2 illustrates the multilevel paradigm.

2.2.1. Parallel formulations of single-constraint multilevel graph-partitioning algorithms

Parallelizing a multilevel graph partitioner requires parallel formulations for the three phases of the
multilevel paradigm. We briefly describe parallelization techniques that have been developed for each
of these.

The key component of the parallel formulation of the graph-coarsening phase is a distributed
matching scheme. Since the input graph is distributed across the processors, a naive scheme can
require high degrees of fine-grain inter-processor communication. Distributed matching is also subject
to contentions among matched vertices that reside on different processors. To address these issues,
fast and scalable distributed matching schemes have been developed that either subdivide the matching
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computation into independent phases so that conflicts are avoided [10,15] or else implement distributed
contention-resolution protocols [16].

The parallel formulation of the initial partitioning phase is more straightforward. Since initial
partitioning is performed only one time on an arbitrarily small graph, it can be done serially. A recursive
task-decomposition approach can also be employed to reduce the run time of this phase.

KL/FM-type refinement that is used during the uncoarsening phase is serial in nature, as it selects
vertices for movement from a priority queue that is updated after every move. A simplified (and
generalized) version of this algorithm, presented in [15], does not use a priority queue, but selects
vertices for movement in a random order. This step is easier to parallelize because it allows processors
to simultaneously move their local vertices. However, it still requires some method to ensure that
concurrent moves of adjacent vertices do not interfere with one another, resulting in worse edge-
cuts than expected. Therefore, parallel refinement algorithms typically subdivide refinement into
independent phases (similarly to distributed matching schemes).

2.3. Partitioning for multiple balance constraints

Just as a parallel multilevel algorithm requires parallel formulations for each of the three phases of
the multilevel paradigm, so too does a multi-constraint graph-partitioning algorithm require that each
phase be extended to support multiple balance constraints. In the remainder of this section, we describe
such extensions.

The specific matching scheme used during graph coarsening can have a significant impact on the
quality of the final partitioning. Single-constraint partitioners typically use variations of the heavy-edge
matching heuristic, as this heuristic effectively reduces exposed edge weight in the coarsest graph, and
so, makes initial partitioning easier [4] compared to other schemes. A new balanced-edge heuristic
is presented in [3] for multi-constraint partitioning. This heuristic tends to reduce the heterogeneity
of vertex weights on the coarsest graph, and so, makes the problem of finding a balanced initial
partitioning easier compared to other schemes. A combination of these two heuristics (i.e. heavy-edge
matching using the balanced-edge heuristic as a tie breaker) is shown to result in high-quality, balanced
partitionings for a number of diverse problems [3].

The initial partitioning must be computed such that multiple balance constraints are satisfied.
The authors of [3] present a lemma that proves that a set of two-weight objects can be partitioned into
two disjoint subsets such that the difference between either of the weights of the two sets is bounded
by twice the maximum weight of any object. They further show that this bound can be generalized to
m weights. However, in this case, maintaining the weight bound depends on the presence of sufficiently
many objects with certain weight characteristics (an assumption that usually holds for medium- to
large-size graphs). The lemma leads to an algorithm for computing such a bisection, which can be
applied recursively to compute a k-way partitioning.

The uncoarsening/refinement phase can be extended to the context of multiple balance constraints
straightforwardly. In particular, prior to each refinement move, the vertex weight vector must be
checked to ensure that moving the vertex does not upset any of the balance constraints. The result
is that as the number of constraints increase, it becomes increasingly difficult to find vertices that are
able to be moved to improve the edge-cut. Therefore, as the number of constraints increases, the quality
of the partitioning tends to decrease.
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3. PARALLEL MULTI-CONSTRAINT GRAPH PARTITIONING

In this section, we describe our static and dynamic multi-constraint graph-partitioning algorithms and
give a scalability analysis of them.

3.1. A parallel static multi-constraint graph-partitioning algorithm

A parallel formulation of the multi-constraint partitioning algorithm presented in [3] can use a number
of the techniques described in Section 2.2 for parallel single-constraint partitioning. In particular, it
is straightforward to extend the parallel formulations of the coarsening and initial partitioning phases
to the context of multi-constraint partitioning. The key challenge is the parallel formulation of the
refinement algorithm used during the uncoarsening phase. We briefly explain why parallel refinement
in the context of multiple balance constraints is challenging and then describe our parallel multilevel
refinement algorithm.

3.1.1. Issues

In order to guarantee that balance is maintained during parallel refinement, it is necessary to update
global subdomain weights after every vertex move. Such a scheme is much too serial in nature to
be performed efficiently in parallel. For this reason, parallel single-constraint partitioning algorithms
allow a number of vertex moves to occur concurrently before an update step is performed. One of the
implications of concurrent refinement moves is that a balanced partitioning may become imbalanced
during refinement. For example, if two processors each send enough vertex weight into a single
subdomain to fill its capacity, then the combined effect will cause the subdomain to become overweight.

Parallel single-constraint graph partitioners address this challenge by encouraging later refinement
iterations to restore the balance of the partitioning while improving its quality. For example, it is
often sufficient simply to disallow further vertex moves into overweight subdomains. In general, the
refinement process alone may not always be able to re-balance the partitioning while improving its
quality in this way (although experience has shown that this approach usually works quite well). In this
case, a few edge-cut-increasing moves can be made to move vertices out of overweight subdomains.

A similar strategy does not work for multi-constraint partitioning because correcting load imbalances
in the context of multiple constraints is a much more difficult problem than the single-constraint case.
This is because a two-way transfer of vertices between adjacent subdomains is typically required to
equalize their weights (instead of only a one-way transfer from the heavier to the lighter subdomain).
The problem becomes increasingly difficult as the number of constraints increases, as the different
weights are increasingly likely to interfere with each other during balancing. Given the difficulty
of balancing multiple vertex weights, a better approach is to avoid situations in which partitionings
become imbalanced in the first place. Thus, we would like to develop a multi-constraint refinement
algorithm that can help to ensure that balance is maintained during parallel refinement.

One scheme that ensures that balance is maintained during parallel refinement is to divide the amount
of extra vertex weight that a subdomain can hold without becoming imbalanced by the number of
processors. This then becomes the maximum vertex weight that any one processor is allowed to move
into a particular subdomain in a single pass through the vertices. Consider the example illustrated in
Figure 3. This shows the subdomain weights for a four-way, three-constraint partitioning. Lets assume
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Figure 3. This figure shows the subdomain weights for a four-way partitioning of a
three-constraint graph. The white bars represent the extra capacity in a subdomain for

each weight given a 5% user specified load-imbalance tolerance.

that the user specified tolerance is 5%. The shaded bars represent the subdomain weights for each
of the three constraints. The white bars represent the amount of weight that is required to bring the
total weight up to 5% above the average. In other words, the white bars show the amount of extra
capacity each subdomain has for a particular weight given a 5% load imbalance tolerance. Figure 3
shows how the extra capacity that is associated with each vertex weight can be split up for the four
processors in subdomain A. If each processor is limited to moving the indicated amounts of weight
into subdomain A, then it is guaranteed that the 5% imbalance tolerance will not be exceeded.

While this method is guaranteed to maintain multiple balance constraints, it becomes increasingly
restrictive in terms of allowing vertex moves as the number of processors increases. This is because
whenever a processor does not use up all of its allocated capacity in a subdomain, the remainder of the
capacity is not usable by any other processor. Hence, some of the capacity is wasted. As the number
of processors increases, processors are allocated thinner slices of each subdomain’s capacity, and so
the potential for wasted capacity increases. Furthermore, as the number of constraints increases, this
problem also becomes worse, as each constraint imposes its own restriction. Since the serial algorithm
is able to use up all of the capacity in every subdomain effectively, it allows more edge-cut-reducing
refinement moves to be made in general than this scheme, and so, results in higher-quality partitionings.

It is possible to allocate the extra capacity of the subdomains more intelligently than simply giving
each processor an equal share. We have investigated schemes that make the allocations based on a
number of factors, such as the potential edge-cut improvements of the border vertices from a specific
processor to a specific subdomain, the weights of these border vertices, and the total number of border
vertices on each processor. While these schemes allow a greater number of refinement moves to be
made than the naive scheme, they still restrict more edge-cut-reducing moves than the serial algorithm.
Our experiments have shown that these schemes produce partitionings that are up to 50% worse in
quality than the serial multi-constraint algorithm. (Note that these results are not presented in this
paper.)
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3.1.2. Our parallel multi-constraint refinement algorithm

The above discussion suggests that the key requirements of a parallel multi-constraint refinement
algorithm are (i) that it has a high degree of concurrency, (ii) that it helps to maintain multiple balance
constraints, and (iii) that it is highly effective. We have developed a parallel multi-constraint refinement
algorithm that meets all three of these requirements. We next describe the algorithm.

The algorithm (essentially a reservation scheme) performs two passes through the vertices during
every refinement iteration. In the first pass, refinement moves are made concurrently as normal,
however, only temporary data structures are updated. Next, a global reduction operation is performed to
determine whether or not the balance constraints will be violated if all of these moves commit. If none
of the balance constraints are violated, the moves are committed. Otherwise, each processor is required
to disallow a portion of its proposed vertex moves into those subdomains that would be overweight if
all of the moves are allowed to commit. This portion is equal to the total vertex weight that exceeded the
capacity in the subdomain divided by the total weight of all of the proposed moves into the subdomain.
The specific moves to be disallowed are selected randomly by each processor. While selecting moves
randomly can negatively impact the edge-cut, this is not a serious problem because the number of
disallowed moves is usually small and further refinement can easily correct the effects of any poor
selections that happen to be made here. Except for these modifications, our multi-constraint refinement
algorithm is similar to the coarse-grain refinement algorithm described in [16].

It is important to note that the above scheme still does not guarantee to maintain the balance
constraints. This is because whenever some number of vertex moves are disallowed; the weights of
the subdomains from which these vertices were to have moved are actually higher than the weights
that were computed by the global reduction operation. Some of these subdomains might then become
overweight if the remainder of the vertex moves are allowed to commit. It is possible to correct this
situation by performing a second global reduction operation followed by a second round in which
moves are disallowed. These corrections might then lead to other imbalances, whose corrections might
lead to others, and so on. This process can iterate until either it converges or until all of the proposed
moves have been disallowed.

Instead, we have chosen to ignore this problem. This is because the number of disallowed moves is a
very small fraction of the total number of vertex moves, and so any imbalance that is brought about by
these is quite modest. Our experimental results show that the amount of imbalance that is introduced
in this way is small enough that further refinement is usually able to correct it. In fact, as long as the
amount of imbalance introduced is correctable, such a scheme can potentially result in higher quality
partitionings compared to schemes that explore the feasible solution space only. (See the discussion in
Section 4.)

This parallel refinement algorithm, combined with the straightforward extensions to existing parallel
multilevel partitioning algorithms, constitute the components of our parallel static multi-constraint
graph-partitioning algorithm.

3.2. A dynamic multi-constraint graph partitioner for adaptive simulations

The dynamic graph-partitioning problem is similar to the static problem. However, there is an
additional objective here. That is, the amount of data redistribution that is required to realize the new
partitioning needs to be minimized. Two general approaches to computing dynamic repartitionings
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have been developed. The first is to compute a new partitioning from scratch and the second is to use
a diffusion-based method to perturb the original partitioning enough so as to balance it. Preliminary
results on diffusion-based repartitioning for multi-constraint problems indicate that this approach is
effective only for two or three constraints [17]. This is due to the difficulty of balancing multiple vertex
weights (as discussed in Section 3.1). Therefore, we focus this paper on the more general approach of
computing a multi-constraint repartitioning by partitioning the graph from scratch.

3.2.1. Multi-constraint SR

Using an existing static partitioner to compute dynamic repartitionings can be fairly effective, as
the inter-processor communications will be minimized and all of the balance constraints satisfied.
However, the data redistribution costs will not be minimized. A simple method, referred to as SR
repartitioning, can reduce data redistribution costs by intelligently remapping the subdomain labels
of the new partitionings to those of the original partitionings [18,19]. A fast and effective greedy
scheme for partition remapping is described in [18]. By applying this scheme, our parallel static multi-
constraint partitioner can effectively be used as a dynamic multi-constraint partitioning algorithm.
We refer to this algorithm as Mc-SR.

3.2.2. Multi-constraint LMSR

Experimental results presented in [20] show that data redistribution costs can be reduced compared
to a naive SR approach by (i) utilizing the information that is implicit in the original partitioning
during the computation of the new partitioning, and by (ii) modifying the refinement algorithm
to minimize data redistribution costs as a secondary objective. A scheme called, Locally-Matched
Scratch-Remap (LMSR), is presented in [20] that achieves both of these by modifying the graph-
partitioning algorithm as follows: (i) graph coarsening is purely local, that is, vertices may be coarsened
together only if they belong to the same subdomain on the original partitioning; (ii) partition remapping
is performed immediately after the computation of the initial partitioning and before refinement begins;
(iii) the refinement scheme is modified to minimize the total amount of data redistribution as a
secondary objective during the uncoarsening phase. These modifications can be made to our parallel
multi-constraint partitioner without difficulty. We refer to the algorithm that incorporates all three of
these as Mc-LMSR.

3.3. Scalability analysis

The scalability analysis of a parallel multilevel single-constraint graph partitioner is presented in [15].
This analysis assumes that (i) each vertex in the graph has a small bounded degree, (ii) this property
is also satisfied by the successive coarser graphs, and (iii) the number of vertices in successive coarser
graphs decreases by a factor of 1 + ε, where 0 < ε ≤ 1. (Note that these assumptions typically hold
true for graphs that correspond to well-shaped finite-element meshes.) Under these assumptions, the
parallel run time of the single-constraint algorithm is

Tpar = O

(
n

p

)
+ O(p log n) (1)
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and the isoefficiency function is O(p2 log p), where n is the number of vertices and p is the number
of processors. The parallel run time of our static and dynamic multi-constraint graph partitioners
are similar (given the above assumptions). However, during both graph coarsening and refinement,
all m vertex weights must be considered. Therefore, the parallel run times of the multi-constraint
algorithms are m times longer, or

Tpar = O

(
nm

p

)
+ O(pm log n) (2)

Since the sequential complexity of the serial multi-constraint algorithm is O(nm), the isoefficiency
functions of the multi-constraint static and dynamic partitioners are also O(p2 log p).

4. EXPERIMENTAL RESULTS

In this section, we present experimental results of our parallel multi-constraint graph-partitioning
algorithms on up to 128 processors of a Cray T3E. We constructed two sets of test problems, each
set consisting of two-, three-, four-, and five-constraint problems, in order to evaluate the effectiveness
of our parallel partitioning algorithms in computing high-quality, balanced partitionings quickly. Both
sets of problems were generated synthetically from the four graphs described in Table I.

The purpose of the first set of problems was to test our multi-constraint partitioners on some
relatively hard problems. For each graph in Table I, a 16-way partitioning of the graph was first
computed by the ParMETIS PartKway routine in PARMETIS [21] using unit vertex weights. Then,
every vertex belonging to a given subdomain was assigned the same weight vector. The weight vectors
for the subdomains were generated randomly, such that each vector contains m (for m = 2, 3, 4, 5)
random numbers ranging from 0 to 19. Note that if we do not compute a 16-way partitioning, but
instead simply assign randomly generated weights to each of the vertices, then the problem reduces to
that of a single-constraint partitioning problem. The reason is that due to the random distribution of
vertex weights, if we select any l vertices, the sum of their weight vectors will be around (lr, lr, . . . , lr)
where r is the expected average value of the random distribution. So the weight-vector sums of any
two sets of l vertices will tend to be similar regardless of the number of constraints. Thus, all we need
to do to balance m constraints is to ensure that the subdomains contain a roughly equal number of
vertices. This is the formulation for the single-constraint partitioning problem. Requiring that all of the
vertices within a subdomain have the same weight vector avoids this effect. It also models a class of
multi-phase applications. In these, different regions of the mesh are active during different phases of
the computation. However, those mesh elements that are active in the same phase typically form groups
of contiguous regions, and are not distributed randomly throughout the mesh. In this first test set, each
of the 16 subdomains represents such a contiguous region of mesh elements.

The purpose of the second set of problems was to test the performance of the multi-constraint
partitioners for multi-phase computations in which different (and possibly overlapping) subsets
of elements participate in different phases. Test problems with two, three, four, and five weights
were constructed for each of the four graphs. These represent two-, three-, four-, and five-phase
computations. In the case of five phases, the portions of the graph that are active (i.e. performing
computations) are 100, 75, 50, 50, and 25% of the subdomains. In the four-phase case, these are 100,
75, 50, and 50%. In the three- and two-phase cases, they are 100, 75, and 50%, and 100 and 75%,
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Table I. Characteristics of the various
graphs used in the experiments.

Graph No. of verts No. of edges

mrng1 257 000 1 010 096
mrng2 1 017 253 4 031 428
mrng3 4 039 160 16 033 696
mrng4 7 533 224 29 982 560

respectively. The portions of the graph that are active was determined as follows. First, a 32-way
partitioning of the graph was computed and then a subset of these subdomains was randomly selected
according to the overall active percentage. For instance, to determine the portion of the graph that
is active during the second phase, we randomly selected 24 out of these 32 subdomains (i.e. 75%).
The weight vectors associated with each vertex depends on the phases in which it is active. For instance,
in the case of the five-phase computation, if a vertex is active only during the first, second, and fifth
phase, its weight vector will be (1, 1, 0, 0, 1). In generating these test problems, we also assigned
weight to the edges to better reflect the overall communication volume of the underlying multi-phase
computation. In particular, the weight of an edge (v, u) was set to the number of phases that both
vertices v and u are active. This is an accurate model of the overall information exchange between
vertices because a vertex exchanges data with its neighbor only if both are active in a given phase.

4.1. Comparison of the serial and parallel static multi-constraint algorithms

Figures 4, 5, and 6 compare the edge-cuts of the partitionings produced by our parallel static multi-
constraint graph-partitioning algorithm with those produced by the serial multi-constraint algorithm
implemented in the METIS software library [22], and give the maximum load imbalance of the
partitionings produced by our algorithm for 32, 64, and 128 processors of a Cray T3E. Each figure
shows four sets of results, one for each of the four graphs described in Table I. Each set is composed of
two-, three-, four-, and five-constraint Type 1 and 2 problems. These are labeled ‘m cons t’ where
m indicates the number of constraints and t indicates the type of problem. So the results labeled
‘2 cons 1’ indicates the edge-cut and balance results for a two-constraint Type 1 problem. The edge-cut
results shown are those obtained by our parallel algorithm normalized by those obtained by the serial
algorithm. Therefore, a bar below the 1.0 index line indicates that our parallel algorithm produced
partitionings with better edge-cuts than the serial algorithm. The balance results indicate the maximum
imbalance of all of the constraints. (Here, imbalance is defined as the maximum subdomain weight
divided by the average subdomain weight for a given constraint.) These results are not normalized.
Note that we set an imbalance tolerance of 5% for all of the constraints. The results shown in Figures 4,
5, and 6 give the arithmetic means of three runs by our algorithm utilizing different random seeds each
time. We give the average of three runs to verify the robustness of the parallel algorithm. Note that in
every case the results of each individual run are within a few per cent of the averaged results shown.
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Edge-cut Balance Edge-cut Normalized by Metis

Figure 4. This figure shows the edge-cut and balance results from the parallel multi-constraint
algorithm on 32 processors. The edge-cut results are normalized by the results obtained from

the serial multi-constraint algorithm implemented in METIS.

Figures 4, 5, and 6 show that our parallel static multi-constraint graph-partitioning algorithm is able
to compute partitionings with similar or better edge-cuts compared to the serial multi-constraint graph
partitioner, while ensuring that multiple constraints are balanced.

Notice that the parallel algorithm is sometimes able to produce partitionings with slightly better
edge-cuts than the serial algorithm. There are two reasons for this. First, the parallel formulation of
the matching scheme used (heavy-edge matching using the balanced-edge heuristic as a tie-breaker
[3]) is not as effective in finding a maximal matching as the serial formulation. (This is due to the
protocol that is used to arbitrate between conflicting matching requests made by different processors
[16].) Therefore, a smaller number of vertices match together with the parallel algorithm than with
the serial algorithm. The result is that a graph coarsened by the parallel algorithm tends to be larger
than one coarsened by serial algorithm. Naturally, this means that the parallel algorithm takes more
coarsening levels to obtain a sufficiently small graph. While this slows down the coarsening phase of
the parallel algorithm, it also tends to result in coarsest-level graphs that have less exposed edge weight
(i.e. the total weight of the edges on the graph) than those computed by the serial algorithm. This
characteristic improves the effectiveness of the initial partitioning algorithm, and so, results in higher-
quality partitionings. As mentioned above, the disadvantage of slow coarsening is that the additional
coarsening and refinement levels take time, and so, the execution time of the algorithm is increased
(and the parallel efficiency is decreased). Note that this phenomenon of slow coarsening affecting the
partition quality was also observed in the context of hypergraphs in [23].
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Figure 5. This figure shows the edge-cut and balance results from the parallel multi-constraint
algorithm on 64 processors. The edge-cut results are normalized by the results obtained from

the serial multi-constraint algorithm implemented in METIS.

The second reason that the parallel algorithm is often able to compute higher-quality partitionings
than the serial algorithm is because it is more free than the serial algorithm to explore the infeasible
solution space in order to improve the quality of the partitioning. In the serial algorithm, once the
partitioning becomes balanced it will never again explore the infeasible solution space. Since the
parallel refinement algorithm does not guarantee to maintain partition balance, the parallel graph
partitioner may do so. This usually happens on the coarse graphs. Here, the granularity of the
vertices makes it more likely that the parallel multi-constraint refinement algorithm will result in
slightly imbalanced partitionings. Essentially, the parallel multi-constraint refinement algorithm is too
aggressive in reducing the edge-cut here, and so makes too many refinement moves. This is a poor
strategy if the partitioning becomes so imbalanced that subsequent refinement is not able to restore
the balance. However, since our parallel refinement algorithm helps to ensure that the amount of
imbalance introduced is small, subsequent refinement is able to restore the partition balance while
further improving its edge-cut.

4.2. Comparison of the dynamic multi-constraint algorithms

We present experimental results for the Mc-SR and Mc-LMSR algorithms on 128 processors of a
Cray T3E. We evaluated our Mc-LMSR algorithm on a series of problems that use the same test
sets that were constructed to evaluate our static multi-constraint algorithm. For each test problem,
we first computed a p-way, single-constraint partitioning with the ParMETIS PartKway routine in
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Figure 6. This figure shows the edge-cut and balance results from the parallel multi-constraint
algorithm on 128 processors. The edge-cut results are normalized by the results obtained from

the serial multi-constraint algorithm implemented in METIS.

PARMETIS, where p is equal to the number of processors. The computation of this partitioning was
based only on the first vertex weight. Next, we redistributed the graph across the processors with respect
to this partitioning. The result is a multi-constraint repartitioning problem in which one of the balance
constraints is satisfied, and m − 1 of them are imbalanced. These are particularly difficult problems as
some of the imbalance levels for the ignored vertex weights are over 1000%.

Figure 7 compares the edge-cuts, the total amounts of data redistribution required, and the partition
balance results obtained from the Mc-SR algorithm with those obtained from the Mc-LMSR algorithm.
The edge-cut and data-redistribution bars indicate results obtained by the Mc-LMSR algorithm
normalized by those obtained by the Mc-SR algorithm. Therefore, a bar below the 1.0 index line
indicates that the Mc-LMSR algorithm produced better results than the Mc-SR algorithm. The balance
bars indicate the maximum imbalance of all of the constraints obtained by the Mc-LMSR algorithm.
These results are not normalized. Finally, the results shown are the arithmetic means of three runs by
our algorithms utilizing different random seeds.

Figure 7 shows that the Mc-LMSR algorithm is able to compute balanced partitionings of similar
quality to the Mc-SR scheme, while obtaining data redistribution results that are 50 to 70% of those
obtained by the Mc-SR scheme. The edge-cut results of the Mc-LMSR scheme are generally a few
per cent higher than the edge-cut results of the Mc-SR algorithm. This is consistent with the (single-
constraint) SR and LMSR results reported in [20]. These results show that the Mc-LMSR algorithm
is able to compute high-quality repartitionings that minimize the data redistribution costs better than a
naive scratch-remap algorithm.
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Figure 7. The edge-cut, data redistribution, and balance results for the Mc-SR and Mc-LMSR
algorithms on a 128-processor Cray T3E. The edge-cut and data redistribution results obtained

from Mc-LMSR are normalized by those obtained by Mc-SR.

4.3. Experimental results from a dynamically evolving application domain

We tested the Mc-SR and Mc-LMSR algorithms on a problem set originating in a scientific simulation
of a diesel internal combustion engine. This is a two-phase computation. The first phase involves the
mesh-based computation of the combustion engine. The second phase involves the tracking of fuel
particles throughout the engine. At first, no fuel particles are present in the combustion chamber. As the
computation progresses, fuel particles are injected into the chamber at a single point and begin to spread
out. In order to balance both phases, it is necessary to ensure that each processor has the same number
of mesh elements and the same number of fuel particles. This cannot be done by a static partitioning
because the fuel particles are not present in the initial mesh and they move around between subdomains
during the course of the computation.

Table II gives the edge-cut, data redistribution, and balance results obtained from the Mc-SR and
Mc-LMSR algorithms, compared to those obtained by a static (and single-constraint) partitioning of
the mesh. These results are the average from four repartitionings of a 175-thousand element mesh.
The balance results have two numbers. The first is the load balance for the mesh-based computation.
The second is the load balance for the particle-tracking computation. Repartitioning was performed
every 150 time-steps of the simulation. Results are given for 8-, 16-, 32-, and 64-way partitionings.

The results in Table II show that the Mc-LMSR algorithm was able to compute high-quality
repartitionings that minimize the number of elements moved, while balancing both phases of the
computation. The Mc-SR algorithm was able to compute good quality, balanced repartitionings,
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Table II. Edge-cut, data redistribution, and balance results obtained from
Mc-SR, Mc-LMSR, and from the static (single-constraint) k-way partitioner
implemented in METIS for a sequence of problems derived from a particle-

in-cells simulation of the combustion chamber of a diesel engine.

Scheme Edge-cut Data redist. Load Balance

8 processors
Mc-SR 9412 23 171 1.01 1.05
Mc-LMSR 8188 897 1.01 1.05
Static 8028 0 1.02 3.47

16 processors
Mc-SR 17 398 60 364 1.01 1.06
Mc-LMSR 15 073 5772 1.01 1.07
Static 15 068 0 1.03 12.14

32 processors
Mc-SR 25 243 75 534 1.04 1.15
Mc-LMSR 22 635 3200 1.03 1.11
Static 22 825 0 1.03 9.29

64 processors
Mc-SR 33 665 91 364 1.23 1.49
Mc-LMSR 31 168 24 431 1.37 1.59
Static 31 127 0 1.03 33.45

but resulted in many more elements being moved (typically by an order of magnitude). The static
partitioning did not move any elements. However, it resulted in particle tracking computations that are
highly imbalanced. For example, the imbalance result of 33.45 for the particle-tracking component of
the 64-way partitioning means that the best possible speed-up that could be obtained for this phase of
the computation on 64 processors is 64/33.45 = 1.9.

Note that in these experiments, Mc-LMSR is able to compute partitionings with better edge-cuts
than Mc-SR. This is because so little data redistribution is required to balance the load for this
problem set (only 14% of the vertices are moved by Mc-LMSR for the 64-way repartitioning), that the
Mc-LMSR algorithm is able to compute partitionings that are very similar to the original partitioning.
The Mc-LMSR scheme has the advantage here because, by using purely local coarsening, it is able to
maintain much of the structure of the good original partitioning. The Mc-SR algorithm knows nothing
about the structure of the previous partitioning until the remapping phase, and so, it is required to
compute the repartitioning without the benefit of this information.

Also note that the balance results obtained by the Mc-SR and Mc-LMSR algorithms are not always
within 5% of the ideal. This is because it was not always possible to balance the particle-tracking
computation as the particles were initially injected into the mesh at a single point. Only as particles
spread out was a balanced partitioning for the second phase obtainable. This effect is quite significant
on the 64-processor results. Here, in fact, the Mc-SR and Mc-LMSR algorithms failed to balance
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Table III. Serial and parallel run times of static multi-constraint graph partitioners for a three-
constraint problem on mrng1. The entry in the column labeled k indicates the number of
subdomains that were computed by both the serial and the parallel algorithms, as well as the
number of processors that was used to compute each partitioning in the case of the parallel run
times. Note that a single processor was used to find the serial times regardless of the value of k.

k Serial time Parallel time

2 7.3 6.4
4 7.5 4.4
8 8.0 2.5

16 8.3 1.7

either phase of the computation. This is because these schemes try to minimize the average of the load
imbalances. In this case, they traded off good load balance in the first phase of the computation in order
to improve the load balance of the second phase.

4.4. Run time results

Table III compares the run times of the parallel static multi-constraint graph-partitioning algorithm
with the serial multi-constraint algorithm implemented in the METIS library [22] for mrng1. The entry
in the column labeled k indicates the number of subdomains that were computed by both the serial and
the parallel algorithms, as well as the number of processors that was used to compute each partitioning
in the case of the parallel run times. (Note that a single processor was used to find the serial times
regardless of the value of k.) These results show only modest speedups for the parallel partitioner.
The reason is that the graph mrng1 is quite small, and so, the communication and parallel overheads
are significant. However, we use mrng1 because it is the only one of the test graphs that is small enough
to run serially on a single processor of the Cray T3E.

Table IV gives selected run time results and efficiencies of our parallel static multi-constraint graph-
partitioning algorithm on up to 128 processors. Table IV shows that our algorithm is very fast, as it is
able to compute a three-constraint 128-way partitioning of a 7.5 million vertex graph in about 7 s on
128 processors of a Cray T3E. It also shows that our parallel algorithm requires similar run times as you
double (or quadruple) both the size of problem and the number of processors. For example, the time
required to partition mrng2 (with 1 million vertices) on eight processors is similar to that of partitioning
mrng3 (4 million vertices) on 32 processors and mrng4 (7.5 million vertices) on 64 processors.

Note that the run times for the Mc-LMSR algorithm are close to those required by the static
algorithm, and are usually a bit faster. Purely local coarsening speeds up the Mc-LMSR algorithm
compared to the static partitioner during the coarsening phase. However, partition remapping and
the additional complexity of the refinement algorithm may increase its run time slightly during the
uncoarsening phase. The big advantage of the dynamic partitioner is that the initial distribution of the
graph across the processors is extremely good, as this distribution was computed either by a static
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Table IV. Parallel run times and efficiencies of our static multi-constraint graph
partitioner on three-constraint type 1 problems.

8 processors 16 processors 32 processors 64 processors 128 processors

Efficiency Efficiency Efficiency Efficiency Efficiency
Graph Time (%) Time (%) Time (%) Time (%) Time (%)

mrng2 9.8 100 5.3 92 3.5 70 2.5 49 3.1 20
mrng3 31.8 100 16.9 94 9.3 85 5.7 70 4.4 45
mrng4 Out of mem. 30.7 100 16.7 92 9.2 83 6.4 60

Table V. Parallel run times of the single-constraint graph partitioner implemented in PARMETIS.

Graph 8 processors 16 processors 32 processors 64 processors 128 processors

mrng2 5.4 3.1 2.1 1.5 1.7
mrng3 15.8 8.8 4.8 3.0 2.7
mrng4 38.6 16.2 8.8 5.0 3.6

partitioner or else by a previous iteration of a dynamic repartitioner. This distribution increases the
locality of data accesses and minimizes the inter-processor communications.

Table V gives run time results for the parallel single-constraint graph-partitioning algorithm
implemented as ParMETIS PartKway in the PARMETIS library [21] on some of the same graphs used
for our experiments. Comparing Tables IV and V shows that computing a three-constraint partitioning
takes about twice as long as computing a single-constraint partitioning. For example, it takes 9.3 s to
compute a three-constraint partitioning and 4.8 s to compute a single-constraint partitioning for mrng3
on 32 processors. Also, comparing the speedups indicates that the multi-constraint algorithm is slightly
more scalable than the single-constraint algorithm. For example, the speedup from 16 to 128 processors
for mrng3 is 3.84 for the multi-constraint algorithm and 3.26 for the single-constraint algorithm. This
is because the multi-constraint algorithm is more computationally intensive than the single-constraint
algorithm, as multiple (not single) weights must be computed regularly.

4.5. Parallel efficiency

Table IV gives relative parallel efficiencies of our static multi-constraint graph-partitioning algorithm
on up to 128 processors. The efficiencies are computed with respect to the smallest number of
processors shown. Therefore, for mrng2 and mrng3, we set the efficiency of eight processors to
100%, while we set the efficiency of 16 processors to 100% for mrng4. Table IV shows that the
multi-constraint partitioner obtained efficiencies between 20% and 94%. The efficiencies were good
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(between 90–70%) when the graph was sufficiently large with respect to the number of processors.
However, these dropped off for the smaller graphs on large numbers of processors.

The isoefficiency function for our parallel multi-constraint graph partitioners is O(p2 log p).
Therefore, in order to maintain a constant efficiency when doubling the number of processors, the
size of the data should be increased by a little more than four times. Since mrng3 is approximately four
times as large as mrng2, it is possible to test the isoefficiency function experimentally. The efficiency
of the multi-constraint partitioner with 32 processors for mrng2 is 70%. Doubling the number of
processors to 64 and increasing the data size by four times (64-processors on mrng3) yields a similar
efficiency. This is better than expected, as the isoefficiency function predicts that we need to increase
the size of the data by more than four times here to maintain efficiency. If we examine the results
of 64 processors on mrng2 and 128 processors on mrng3, we see a slightly decreasing efficiency of
49–45%. This is what we would expect based on the isoefficiency function. If we examine the results
of 16 processors on mrng2 and 32 processors on mrng3 we see that the drop in efficiency is larger
(92–85%). So here we get a slightly worse efficiency than expected. These experimental results are
quite consistent with the isoefficiency function of the algorithm. The slight deviations can be attributed
to the fact that the number of refinement iterations on each graph is upper bounded. However, if a local
minimum is reached prior to this upper bound, then no further iterations will be performed on this
graph. Therefore, while the upper bound on the amount of work done by the algorithm is the same for
all of the experiments, the actual amount of work done can be different depending on the particulars of
the refinement process.

5. CONCLUSIONS

This paper has presented parallel static and dynamic multi-constraint graph-partitioning algorithms
for mapping multi-phase computations onto the processors of a high-performance parallel machine.
These algorithms are as scalable as the widely used parallel graph-partitioning algorithm implemented
in PARMETIS. Experimental results conducted on a 128-processor Cray T3E show that our parallel
algorithms are able to compute balanced partitionings with similar edge-cuts as the serial algorithm
very quickly. For example, our static multi-constraint graph partitioner is able to compute a three-
constraint 128-way partitioning of a 7.5 million vertex graph in about 7 s on 128 processors of a
Cray T3E.

Although most of the experiments presented in this paper are conducted on synthetic graphs, our
parallel multi-constraint partitioning algorithms have also been tested on real application graphs.
Basermann et al. [24] have used these for load balancing multi-phase car crash simulations of an
Audi and a BMW in frontal impacts with a wall. The reported results are consistent with the run time,
edge-cut, and balance results presented in this paper.

While the experimental results presented in Section 4 (and [24]) are quite good, it is important
to note that the effectiveness of our algorithms depends on two things. First, it is critical that a
relatively balanced partitioning be computed during the initial partitioning phase. This is because if
the partitioning starts out imbalanced, there is no guarantee that it will ever become balanced during
the uncoarsening phase. Our experiments (not presented in this paper) have shown that an initial
partitioning that is more than 20% imbalanced for one or more vertex weights is unlikely to be either
balanced or improved during refinement. Second, as is the case for the serial multi-constraint algorithm,
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the quality of the final partitioning is largely dependent on the availability of vertices that can be
swapped across subdomains in order to reduce the edge-cut, while maintaining the balance constraints.
Experimentation has shown that for a small number of constraints (i.e. two to four), there is a good
availability of such vertices, and so, the quality of the computed partitionings is good. However, as the
number of constraints increases further, the selection of vertices that can be moved while maintaining
all of the balance constraints drops off. Therefore, the quality of the produced partitionings can likewise
be poor.
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