Parallel Multilevel Graph Partitioning *

George Karypis and Vipin Kumar
University of Minnesota, Department of Computer Science, Minneapolis, MN 55455

Abstract

In this paper we present a parallel formulation of a graph par-
titioning and sparse matrix ordering algorithm that is based on
a multilevel algorithm we developed recently. Our parallel algo-
rithm achieves a speedup of up to 56 on a 128-processor Cray T3D
Jor moderate size problems, further reducing its already moderate
serial run time. Graphs with over 200,000 vertices can be parti-
tioned in 128 parts, on a 128-processor Cray T3D in less than 3
seconds. This is at least an order of magnitude better than any
previously reported run times on 128-processors for obtaining an
128-partition. This also makes it possible to use our parallel graph
partitioning algorithm to partition meshes dynamically in adaptive
computations. Furthermore, the quality of the produced partitions
and orderings are comparable to those produced by the serial mul-
tilevel algorithm that has been shown to substantially outperform
both spectral partitioning and multiple minimum degree.

1 Introduction

Graph partitioning is an important problem that has extensive
applications in many areas, including scientific computing,
VLSI design, task scheduling, geographical information sys-
tems, and operations research. The problem is to partition
the vertices of a graph in p roughly equal parts, such that
the number of edges connecting vertices in different parts is
minimized. The efficient implementation of many parallel
algorithms usually requires the solution to a graph partition-
ing problem, where vertices represent computational tasks,
and edges represent data exchanges. A p-way partition of
the computation graph can be used to assign tasks to p
processors. Because the partition assigns equal number of
computational tasks to each processor the work is balanced
among p processors, and because it minimizes the edge-
cut, the communication overhead is also minimized. For
example, the solution of a sparse system of linear equations
Ax = b via iterative methods on a parallel computer gives
rise to a graph partitioning problem. A key step in each itera-
tion of these methods is the multiplication of a sparse matrix
and a (dense) vector. Partitioning the graph that corresponds
to matrix A, is used to significantly reduce the amount of
communication [18]. If parallel direct methods are used to
solve a sparse system of equations, then a graph partitioning

*This work was supported by NSF: CCR-9423082 and by the Army
Research Office contract DA/DAAH04-95-1-0538, and by Army High
Performance Computing Research Center under the auspices of the De-
partment of the Army, Army Research Laboratory cooperative agree-
ment number DAAHQ4-95-2-0003/contract number DAAH04-95-C-0008,
the content of which does not necessarily reflect the position or the

olicy of the government, and no official endorsement should be in-
erred. Access to computing facilities was provided by Minnesota Su-
percomputer Institute, Cray Research Inc, and by the Pittsburgh Super-
computing Center. Related papers are available via WWW at L:
http://fwww.cs.umn.edu/users/kumar/papers.htmi

1063-7133/96 $5.00 © 1996 IEEE
Proceedings of IPPS °96

314

algorithm can be used to compute a fill reducing ordering
that lead to high degree of concurrency in the factorization
phase [18, 6].

The graph partitioning problem is NP-complete. How-
ever, many algorithms have been developed that find a
reasonably good partition. Spectral partitioning methods
[21, 11] provide good quality graph partitions, but have very
high computational complexity. Geometric partition meth-
ods [9, 20] are quite fast but they often provide worse parti-
tions than those of more expensive methods such as spectral.
Furthermore, geometric methods are applicable only if co-
ordinate information for the graph is available. Recently,
a number of researches have investigated a class of algo-
rithms that are based on multilevel graph partitioning that
have moderate computational complexity [4, 11, 14, 15, 13].
Some of these multilevel schemes [4, 11, 14, 15, 13] provide
excellent (even better than spectral) graph partitions. Even
though these multilevel algorithms are quite fast compared
with spectral methods, performing a multilevel partitioning
in parallel is desirable for many reasons including adaptive
grid computations, computing fill reducing orderings for par-
allel direct factorizations, and taking advantage the agregate
amount of memory available on parallel computers.

Significant amount of work has been done in develop-
ing parallel algorithms for partitioning unstructured graphs
and for producing fill reducing orderings for sparse matri-
ces [2, 5, 8, 7, 12]. Only moderately good speedups have
been obtained for parallel formulation of graph partitioning
algorithms that use geometric methods [9, 5] despite the fact
that geometric partitioning algorithms are inherently easier
to parallelize. All parallel formulations presented so far
for spectral partitioning have reported fairly small speedups
[2, 1, 12] unless the graph has been distributed to the pro-
cessors so that certain degree of data locality is achieved
(11

In this paper we present a parallel formulation of a graph
partitioning and sparse matrix ordering algorithm that is
based on a multilevel algorithm we developed recently [14].
A key feature of our parallel formulation (that distinguishes
it from other proposed parallel formulations of multilevel
algorithms [2, 1, 22]) is that it partitions the vertices of
the graph into ,/p parts while distributing the overall ad-
jacency matrix of the graph among all p processors. As
shown in [16], this mapping is usually much better than one-
dimensional distribution, when no partitioning information
about the graph is known. Our parallel algorithm achieves
a speedup of up to 56 on 128 processors for moderate size
problems, further reducing the already moderate serial run
time of multilevel schemes. Furthermore, the quality of the
produced partitions and orderings are comparable to those

produced by the serial multilevel algorithm that has been
shown to outperform both spectral partitioning and multiple
minimum degree [14]. The parallel formulation in this paper
is described in the context of the serial multilevel graph par-
titioning algorithm presented in [14]. However, nearly all of
the discussion in this paper is applicable to other multilevel
graph partitioning algorithms [4, 11, 15].

2 Multilevel Graph Partitioning

The p-way graph partitioning problem is defined as follows:
Given a graph G = (V, E) with |V| = n, partition V into
p subsets, Vi, Vo, ..., V, such that V;NV; =@ fori # j,
|Vil =n/p,and | J; V; = V, and the number of edges of E
whose incident vertices belong to different subsets is mini-
mized. A p-way partition of V is commonly represented by
a partition vector P of length n, such that for every vertex
v € V, P[v] is an integer between 1 and p, indicating the
partition at which vertex v belongs. Given a partition P, the
number of edges whose incident vertices belong to different
subsets is called the edge-cut of the partition.

The p-way partition problem is most frequently solved by
recursive bisection. That is, we first obtain a 2-way partition
of V, and then we further subdivide each part using 2-way
partitions. After log p phases, graph G is partitioned into p
parts. Thus, the problem of performing a p-way partition is
reduced to that of performing a sequence of 2-way partitions
or bisections. Even though this scheme does not necessarily
lead to optimal partition [15], it is used extensively due to
its simplicity [6].

The basic idea behind the multilevel graph bisection al-
gorithm is very simple. The graph G is first coarsened down
to a few hundred vertices, a bisection of this much smaller
graph is computed, and then this partition is projected back
towards the original graph (finer graph), by periodically re-
fining the partition. Since the finer graph has more degrees
of freedom, such refinements usually decrease the edge-cut.
This process, is graphically illustrated in Figure 1. The
reader should refer to {14] for further details.

3 Parallel Multilevel Graph Partitioning Algo-
rithm

There are two types of parallelism that can be exploited in the
p-way graph partitioning algorithm based on the multilevel
bisection algorithms. The first type of parallelism is due
to the recursive nature of the algorithm. Initially a single
processor finds a bisection of the original graph. Then, two
processors find bisections of the two subgraphs just created
and so on. However, this scheme by itself can use only up
to log p processors, and reduces the overall run time of the
algorithm only by a factor of O(logp). We will refer to
this type of parallelism as the parallelism associated with
the recursive step.

The second type of parallelism that can be exploited is
during the bisection step. In this case, instead of performing
the bisection of the graph on a single processor, we perform
it in parallel. We will refer to this type of parallelism as
the parallelism associated with the bisection step. By paral-
lelizing the divide step, the speedup obtained by the parallel

Multilevel Graph Bisection

v

Go ‘

4

~__ /)
refined partition

Coarsening Phase

315

<V,
=
<

ey

Initial Portitioning Phase

projected partition f j

S~

Figure 1: The various phases of the multilevel graph bisection. During the
coarsening phase, the size of the graph is successively decreased, during
the initial partitioning phase, a bisection of the smaller graph is computed;
and during the uncoarsening phase, the bisection is successively refined
as it is projected to the larger graphs. During the uncoarsening phase the
light lines indicate projected partitions, and dark lines indicate partitions
that were produced after refinement.

graph partitioning algorithm is not bounded by O(log p),
and can be significantly higher than that.

The parallel graph partitioning algorithm we describe in
this section exploits both of these types of parallelism. Ini-
tially all the processors cooperate to bisect the original graph
G, into Gg and Gy. Then, half of the processors bisect Gy,
while the other half of the processors bisect G1. This step
creates four subgraphs Goo, Go1, G1o, and Gy;. Then each
quarter of the processors bisect one of these subgraphs and
so on. After log p steps, the graph G has been partitioned
into p parts.

In the next three sections we describe how we have paral-
lelized the three phases of the multilevel bisection algorithm.

3.1 Coarsening Phase

During the coarsening phase, a sequence of coarser graphs
is constructed. A coarser graph Gi1 = (Vig1, Eppr) is
constructed from the finer graph G; = (V;, E;) by finding a
maximal matching M; and contracting the vertices and edges
of G, to form G 1. This is the most time consuming phase of
the three phases; hence, it needs be parallelized effectively.
Furthermore, the amount of communication required during
the contraction of G; to form Gy, depends on how the
matching is computed.

On a serial computer, computing a maximal matching
can be done very efficiently using randomized algorithms.
However, computing a maximal matching in parallel, and
particularly on a distributed memory parallel computer, is
hard. A direct parallelization of the serial randomized al-
gorithms or algorithms based on depth first graph traversals
require significant amount of communication. Communica-

8¢ Bujuesioooun

tion overhead can be reduced if the graph is initially parti-
tioned among processors in such a way so that the number
of edges going across processor boundaries are small. But
this requires solving the p-way graph partitioning problem,
that we are trying to solve in the first place.

Another way of computing a maximal matching is to di-
vide the n vertices among p processors and then compute
matchings between the vertices locally assigned within each
processor. The advantages of this approach is that no com-
munication is required to compute the matching, and since
each pair of vertices that gets matched belongs to the same
processor, no communication is required to move adjacency
lists between processors. However, this approach causes
problems because each processor has very few nodes to
match from. Also, even though there is no need to exchange
adjacency lists among processors, each processor needs to
know matching information about all the vertices that its
local vertices are connected to in order to properly form the
contracted graph. As a result significant amount of commu-
nication is required. In fact this computation is very similar
in nature to the multiplication of a randomly sparse matrix
(corresponding to the graph) with a vector (corresponding
to the matching vector).

In our parallel coarsening algorithm, we retain the advan-
tages of the previous scheme, but minimize its drawbacks
by computing the matchings between groups of n/,/p ver-
tices. This increases the size of the computed matchings,
and also, as discussed in [16], the communication overhead
for constructing the coarse graph is decreased. Specifically,
our parallel coarsening algorithm treats the p processors as
a two-dimensional array of ,/p x ,/p processors (assume
that p = 2%). The vertices of the graph Gy = (Vy, Ey) are
distributed among this processor grid using a cyclic map-
ping [18]. The vertices V; are partitioned into ,/p subsets,

Vé’, Voreves Oﬁ—l. Processor P; ; stores the edges of Eg

between the subsets of vertices V¢ and V{. Having dis-
tributed the data in this fashion, the algorithm then proceeds
to find amatching. This matching is computed by the proces-
sors along the diagonal of the processor-grid. In particular,
each processor P;; finds a heavy-edge matching M} using
the set of edges it stores locally. The union of these ,/p
matchings is taken as the overall matching M. Since the
vertices are split into /P parts, this scheme finds larger
matchings than the one that partitions vertices into p parts.

The coarsening algorithm continues until the number of
vertices between successive coarser graphs does not substan-
tially decrease. Assume that this happens after k coarsening
levels.” At this point, graph G, = (Vi, Ey) is folded into
the lower quadrant of the processor subgrid. The coarsening
algorithm then continues by creating coarser graphs. Since
the subgraph of the diagonal processors of this smaller pro-
cessor grid contains more vertices and edges, larger match-
ings can be found and thus the size of the graph is reduced
further. This process of coarsening followed by folding con-
tinues until the entire coarse graph has been folded down to
a single processor, at which point the sequential coarsening
algorithm is employed to coarsen the graph.

Since, between successive coarsening levels, the size of

316

the graph decreases, the coarsening scheme just described
utilizes more processors during the coarsening levels in
which the graphs are large and fewer processors for the
smaller graphs. As our analysis in [16] shows, decreasing
the size of the processor grid does not affect the overall per-
formance of the algorithm as long as the graph size shrinks
by a certain factor between successive graph foldings.

3.2 Initial Partitioning Phase

At the end of the coarsening phase, the coarsest graph resides
on a single processor. We use the Greedy Graph Growing
(GGGP) algorithm described [14] to partition the coarsest
graph. We perform a small number of GGGP runs starting
from different random vertices and the one with the smaller
edge-cut is selected as the partition. Instead of having a
single processor performing these different runs, the coarsest
graph can be replicated to all (or a subset of) processors,
and each of these processors can perform its own GGGP
partition. We did not implement it, since the run time of the
initial partition phase is only a very small fraction of the run
time of the overall algorithm.

3.3 Uncoarsening Phase

During the uncoarsening phase, the partition of the coarsest
graph G, is projected back to the original graph by going
through the intermediate graphs G,,—1, Gy—2, - - -, G1. Af-
ter each step of projection, the resulting partition is further
refined by using vertex swap heuristics (based on Kernighan-
Lin [17]) that decrease the edge-cut [14].

For refining the coarser graphs that reside on a single
processor, we use the boundary Kernighan-Lin refinement
algorithm (BKLR) described in [14]. However, the BKLR
algorithm is sequential in nature and it cannot be used in its
current form to efficiently refine a partition when the graph
is distributed among a grid of processors [8]. In this case we
use a different algorithm that tries to approximate the BKLR
algorithm but is more amenable to parallel computations.
The key idea behind our parallel refinement algorithm is to
select a group of vertices to swap from one part to the other
instead of selecting a single vertex. Refinement schemes that
use similar ideas are described in [5];. However, our algo-
rithm differs in two important ways from the other schemes:
(i) it uses a different method for selecting vertices; (ii) it uses
a two-dimensional partition to minimize communication.

The parallel refinement algorithm consists of a number
of phases. During each phase, at each diagonal processor a
group of vertices is selected from one of the two parts and
is moved to the other part. The group of vertices selected
by each diagonal processor corresponds to the vertices that
lead to a decrease in the edge-cut. This process continues
by alternating the part from where vertices are moved, until
either no further improvement in the overall edge-cut can be
made, or a maximum number of iterations has been reached.
In our experiments, the maximum number of iterations was
set to six. Balance between partitions is maintained by (a)
starting the sequence of vertex swaps from the heavier part
of the partition, and (b) by employing an explicit balancing
iteration at the end of each refinement phase if there is more

than 2% load imbalance between the parts of the partition.

Our parallel variation of the Kernighan-Lin refinement
algorithm has a number of interesting properties that pos-
itively affect its performance and its ability to refine the
partition. First, the task of selecting the group of vertices
to be moved from one part to the other is distributed among
the diagonal processors instead of being done serially. Sec-
ondly, the task of updating the internal and external degrees
of the affected vertices is distributed among all the p proces-
sors. Furthermore, by restricting the moves in each phase
to be unidirectional (i.e., they go only from one partition to
other) instead of being bidirectional (i.e., allow both types
of moves in each phase), we can guarantee that each vertex
in the group of vertices being moved reduces the edge-cut.

In the serial implementation of BKLR, it is possible to
make vertex moves that initially lead to worse partition, but
eventually (when more vertices are moved) better partition is
obtained. Thus, the serial implementation has the ability to
climb out of local minima. However, the parallel refinement
algorithm lacks this capability, as it never moves vertices
if they increase the edge-cut. Also, the parallel refinement
algorithm, is not as precise as the serial algorithm as it swaps
groups of vertices rather than one vertex at a time. However,
our experimental results show that it produces results that are
not much worse than those obtained by the serial algorithm.
The reason is that the graph coarsening process provides
enough global view and the refinement phase only needs to
provide minor local improvements.

4 Experimental Results

We evaluated the performance of the parallel multilevel
graph partitioning and sparse matrix ordering algorithm on
a wide range of matrices arising in finite element applica-
tions. The characteristics of these matrices are described in
Table 1.

Matrix Name No. of Vertices | No. of Edges | Description
4ELT 13606 45878 72D Finite element mesh
| BCSSTR3T 35588 372914 3D Stiffess mairix
3D Stiffness mairix
BRACKZ 62631 366559 3D Finite el ‘mesh
CARNT 34193 1960797 3D Stiffness mairix
2 55476 352238 3D Finite element mesh
CYLINDERY3 45594 T786726 3D Stiffness maitix
[ROTOR 90617 662431 3D Finite element mesh
SHELL33 181200 2313763 3D Suffness mairix
WAVE 156317 1059331 3D Finite element mesh

Table 1: Various matrices used in evaluating the multilevel graph parti-
tioning and sparse matrix ordering algorithm.

®We implemented our parallel multilevel algorithm on a
128-processor Cray T3D parallel computer. Each processor
on the T3D is a 150Mhz Dec Alpha chip. The processors are
interconnected via a three dimensional torus network that has
a peak unidirectional bandwidth of 150Bytes per second, and
a small latency. We used SHMEM message passing library
for communication. In our experimental setup, we obtained
a peak bandwidth of 90MBytes and an effective startup time
of 4 microseconds.

Since, each processor on the T3D has only 64MBytes

317

of memory, some of the larger matrices could not be parti-
tioned on a single processor. For this reason, we compare
the parallel run time on the T3D with the run time of the
serial multilevel algorithm running on a SGI Challenge with
1.2GBytes of memory and 150MHz Mips R4400. Even
though the R4400 has a peak integer performance that is
10% lower than the Alpha, due to the significantly higher
amount of secondary cache available on the SGI machine
(1 Mbyte on SGI versus 0 Mbytes on T3D processors), the
code running on a single processor T3D is about 15% slower
than that running on the SGI. The computed speedups in the
rest of this section are scaled to take this into account!. All
times reported are in seconds. Since our multilevel algorithm
uses randomization in the coarsening step, we performed ail
experiments with a fixed seed.

4.1 Graph Partitioning

The performance of the parallel multilevel algorithm for
the matrices in Table 1 is shown in Table 2 for a p-way
partition on p processors, where p is 16, 32, 64, and 128.
The performance of the serial multilevel algorithm for the
same set of matrices running on an SGI is shown in Table 3.
For both the parallel and the serial multilevel algorithm, the
edge-cut and the run time are shown in the corresponding
tables. In the rest of this section we will first compare the
quality of the partitions produced by the parallel multilevel
algorithm, and then the speedup obtained by the parallel
algorithm.

Figure 2 shows the size of the edge-cut of the parallel
multilevel algorithm compared to the serial multilevel algo-
rithm. Any bars above the baseline indicate that the parallel
algorithm produces partitions with higher edge-cut than the
serial algorithm. From this graph we can see that for most
matrices, the edge-cut of the parallel algorithm is worse than
that of the serial algorithm. This is due to the fact that the
coarsening and refinement performed by the parallel algo-
rithm are less powerful. But in most cases, the difference in
edge-cut is quite small. For nine out of the ten matrices, the
edge-cut of the parallel algorithm is within 10% of that of
the serial algorithm. Furthermore, the difference in quality
decreases as the number of partitions increases. The only
exception is 4ELT, for which the edge-cut of the parallel
16-way partition is about 27% worse than the serial one.
However, even for this problem, when larger partitions are
considered, the relative difference in the edge-cut decreases;
and for the of 128-way partition, parallel multilevel does
slightly better than the serial multilevel.

Figure 3 shows the size of the edge-cut of the parallel
algorithm compared to the Multilevel Spectral Bisection al-
gorithm (MSB) [3]. The MSB algorithm is a widely used
algorithm that has been found to generate high quality par-
titions with small edge-cuts. We used the Chaco [10] graph
partitioning package to produce the MSB partitions. As be-
fore, any bars above the baseline indicate that the parallel
algorithm generates partitions with higher edge-cuts. From
this figure we see that the quality of the parallel algorithm

'The speedup is z:omlputcd as 1.15* Tsg;/ Tr3p, where Tsgy and Tr3p
are the run times on SGI and T3D, respectively.

p =16 P =32 p =64 p =128
~Matrix T, ECis S Tp ECs; S T, ECq S T, ECig S

4ELT 048 1443 6.0 0.48 1995 7.0 048 3210 835 0.48 4734 11.1
BCSSTK31 1.28 27215 10.7 | 1.02 43832 17.0 | 087 67134 236 | 078 98673 316
BCSSTK32 1.69 43987 120 1 133 71378 192 | 1.05 | 104332 | 284 | 092 | 155321 | 379
CK2 2.14 14987 8.6 1.83 21545 122 1 136 32134 16.8 1 135 43343 219
CANT 3720 | 199567 | 13.4 | 2.29 | 322498 | 237 | 171 | 441459 | 380 | 1.47 | 575231 | 49.7
COPTER2 2.05 72498 74 178 32763 11T 1.59 43230 140 | 142 60543 182
INDER93 | 235 | 131534 | 143 1.71 198675 | 245 | 1.34 | 288340 | 39.2 | T.05 [415632 | 56.3
ROTOR 3.16 26332 11.0 | 2.89 39785 144 | 240 57540 20.0 T 210 77450 264
SHELLS3 5.80 54765 1351 440 86320 7235 | 325 | 130836 | 35.3 | 2.67 | 200057 | 499
AVE 5.10 57543 10.3 | 470 76785 133 {373 [101210 | 1991 3.09 | 138245 | 26.8

Table 2: The performance of the parallel multilevel graph partitioning aigorithm. For each matrix, the performance is shown for 16, 32, 64, and 128
processors. T, is the parallel run time for a p-way partition on p processors, E C, is the edge-cut of the p-way partition, and § is the speedup over the

serial multilevel algorithm.

Matrix Ti6 ECs T ECs n ECes Ti2s ECin
JELT 749 1141 291 1836 3.55 7965 462 4600
BCSSTK31 11.96 25831 15.08 42305 17.82 65249 21.40 97819
BCSSTK32 1762 | 43740 | 2221 | 70454 | 2597 | 106430 | 3029 [152081 |
| BRACKZ 16.02 14679 19.48 21063 2218 29983 2572 42625
CANT 3732 | 199395 | 4722 | 319186 | 36.53 | 442398 63.50 574853
COPTERZ 1322 | 21992 17.14 | 31364 1930 | 43721 22.50 58809 |
CYLINDERS3 | 29.21 | 126232 | 36.48 | 195532 | 45.68 | 289630 51.39 416190
| "ROTOR 30.13 24515 36.09 37100 41.83 33228 48.13 75010
SHELL93 69.97 51687 86.23 81384 99.65 | 124836 | 11586 | 185323
WAVE 45775 | 51300 | 5437 | 71339 | 6444 | 97978 7198 | 125785

Table 3. The performance of the serial multilevel graph partitioning algorithm on an SGl, for 16-, 32-, 64-, and 128-way partition. 7 is the run time for a

p-way partition, and EC), is the edge-cut of the p-way partition.

Paraliel Muttievel Parttion ve Serial Mullleve! Partiion

Parallel Mulilevet Partition va Multileve! Spectral Bleection

T3 16PEML S2PEML BN G4PEML EEE 128PEML —— SedabML baseine)

£ 16PE-ML PEML GNT GAPEML ENE 128PEML —— MSB (baseline)

-

S

Figure 2: Quality (size of the edge-cut) of our parallel multilevel algorithm
relative to the serial multilevel algorithm.

is almost never worse than that of the MSB algorithm. For
eight out of the ten matrices, the parallel algorithm gener-
ated partitions with fewer edge-cuts, up to 50% better in
some cases. On the other hand, for the matrices that the
parallel algorithm performed worse, it is only by a small
factor (less than 6%). This figure (along with Figure 2) also
indicates that our serial multilevel algorithm outperforms
the MSB algorithm. An extensive comparison between our
serial multilevel algorithm and MSB, can be found in [14].
Tables 2 and 3 also show the run time of the paraliel al-
gorithm and the serial algorithm, respectively. A number
of conclusions can be drawn from these results. First, as
p increases, the time required for the p-way partition on
p-processors decreases. Depending on the size and charac-
teristics of the matrix this decrease is quite substantial. The
decrease in the parallel run time is not linear to the increase
in p but somewhat smaller for the following reasons: (a) As
p increases, the time required to perform the p-way partition
also increases; (there are more partitions to perform). (b)

Figure 3. Quality (size of the edge-cut) of our paraliel muitilevel algorithm
relative to the multilevel spectrat bisection algorithm.

The parallel multilevel algorithm incurs communication and
idling overhead that limits the asymptotic speedup to O (,/p)
unless a good partition of the graph is available even before
the partitioning process starts [16].

4.2 Sparse Matrix Ordering

We used the parallel multilevel graph partitioning algorithm
to find a fill reducing ordering via nested dissection. The
performance of the parallel multilevel nested dissection al-
gorithm (MLND) for various matrices is shown in Table 4.
For each matrix, the table shows the parallel run time and the
number of nonzeros in the Cholesky factor L of the result-
ing matrix for 16, 32, and 64 processors. On p processors,
the ordering is computed by using nested dissection for the
first log p levels, and then multiple minimum degree [19]
(MMD) is used to order the submatrices stored locally on
each processor.

Figure 4 shows the relative quality of both serial and par-

318

Matrix Ti6 1L} Ty 1L] Tes JL]
BCSSTK31 1.7 | 5588914 | 1.3 | 5788387 T0 | 6229749
[BCSSTK32 22 7007711 1.7 7269703 13 1430756
BRACK2 29 | 7788096 | 2.5 | 7690143 T.8 | 7687988 |
CANT 4.4 | 79818759 | 2.8 | 28854330 | 2.2 | 28358362
| COPTERZ 2.6 | 12905725 | 2.1 | 12833682 | 1.6 | 12694031
| CYLINDERI3 | 35 [15581849 | 2.2 | 13662010 | 1.7 | 13636651
| ROTOR 61 | 23193761 | 4.0 | 24196647 | 3.0 | 24624924
SHELL33 8.5 | 40968330 1 57 40089031 4.5 1 35774130
[WAVE 8.7 | 8T65TI83 1 6.3 85317972 | 48 1 87243323

Table 4: The performance of the parallel MLND algorithm on 16, 32, and
64 processors for computing a fill reducing ordering of a sparse matrix.
T, is the run time in seconds and |L| is the number of nonzeros in the
Cholesky factor of the matrix.

allel MLND versus the MMD algorithm. These graphs were
obtained by dividing the number of operations required to
factor the matrix using MLND by that required by MMD.
Any bars above the baseline indicate that the MLND algo-
rithm requires more operations than the MMD algorithm.
From this graph, we see that in most cases, the serial MLND
algorithm produces orderings that require fewer operations
than MMD. The only exception is BCSSTK32, for which
the serial MLLND requires twice as many operations.

Comparing the parallel MLND algorithm against the se-
rial MLND, we see that the orderings produced by the paral-
lel algorithm requires more operations (see Figure 4). How-
ever, as seen in Figure 4, the overall quality of the parallel
MLND algorithm is usually within 20% of the serial MLND
algorithm. The only exception in Figure 4 is SHELL93.
Also, the relative quality changes slightly as the number of

processors used to find the ordering increases.

Parasel Multhevel Nested Disection va Mulipie

T35 SoqMUND 16PE-MLND BEH 32PE-MLND IR G4PE-MLND —— MMD (baveline)

COPTER2 CYLWNDERS3

SHELLSY

WAVE

Figure 4. Quality of our parallel MLND algorithm relative to the multiple
minimum degree algorithm and the serial MLND algorithm.

Comparing the run time of the parallel MLND algorithm
(Table 4) with that of the parallel multilevel partitioning
algorithm (Table 2) we see that the time required by order-
ing is somewhat higher than the corresponding partitioning
time. This is due to the extra time taken by the approx-
imate minimum cover algorithm and the MMD algorithm
used during ordering. But the relative speedup between 16

and 64 processors for both cases are quite similar.

References

[1] Stephen T. Barnard, Pmrsb: Parallel multilevel recursive spectral bisection. In
Supercomputing 1995, 1995.

319

[21

3

-

{4]

(5}

[6

{7

[8]

9]

(10]

[11

[12]

[13]

(14]

{15]

[16]

[17]

[18]

[19]

[20]

[21]

{22

Stephen T. Barnard and Horst Simon. A parallel implementation of multilevel
recursive spectral bisection for application to adaptive unstructured meshes. In
Proceedings of the seventh SIAM conference on Parallel Processing for Scientific
Computing, pages 627-632,1995.

Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of re-
cursive spectral bisection for partitioning unstructured problems. In Proceedings
of the sixth SIAM conference on Parallel Processing for Scientific Computing,
pages 711--718,1993.

T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization.
In 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445-452,
93.

Pedro Diniz, Steve Plimpton, Bruce Hendrickson, and Robert Leiand. Parallel
algorithms for dynamically partitioning unstructured grids. In Proceedings of
the seventh SIAM conference on Parallel Processing for Scientific Computing,
pages 615-620, 1995.

A.Georgeand J. W.-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981,

Madhurima Ghose and Edward Rothberg. A parallel implementtaion of the
multiple minimum degree ordering heuristic. Technical report, Old Dominion
University, Norfolk, VA, 1994,

J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a
message-passing multiprocessor. Internation Journal of Parallel Programming,
(16):498-513, 1987.

M. T. Heath and Padma Raghavan. A Cartesian parallel nested dissection algo-
rithm. Technical Report 92-1772, Department of Computer Science, University
of Illinois, Urbana, IL, 1992. To appear in SIAM Journal on Matrix Analysis
and Applications, 1994.

Bruce Hendrickson and Rober Leland. The chaco user’s guide, version 1.0.
Technical Report SAND93-2339, Sandia National Laboratories, 1993.

Bruce Hendrickson and Rober Leland. A multilevel algorithm for partitioning
graphs. Technical Report SAND93-1301, Sandia National Laboratories, 1993,

Zdenek Johan, Kapil K. Mathur, S. Lennart Johnsson, and ThomasJ. R. Hughes.
Finite element methods on the connection machine cm-5 system. Technical
report, Thinking Machines Corporation, 1993,

G. Karypis and V. Kumar. Analysis of multilevel graph partition-
ing. Technical Report TR 95-037, Department of Computer Science,
University of Minnesota, 1995. Also available on WWW at URL
http:/fwww.cs.umn.edu/ karypis/papers/mlevel.analysis.ps.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. Technical Report TR 95-035, Department of Com-
puter Science, University of Minnesota, 1995. Also available on WWW at
URL http://www.cs.umn.edu/karypis/papers/mlevel serial.ps. A short version
appears in Intl. Conf. on Parallel Processing 1995.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irreg-
ular graphs. Technical Report TR 95-064, Department of Computer Sci-
ence, University of Minnesota, 1995. Also available on WWW at URL
http://www.cs.umn.edu/ karypis/papers/mlevel kway.ps.

G. Karypis and V. Kumar Parallel multilevei graph partitioning.
Technical Report TR 95-036, Department of Computer Science, Uni-
versity of Minnesota, 1995. Also available on WWW at URL
http://www.cs.umn.edu/ karypis/papers/mlevel paraliel.ps.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 1970.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Intro-
duction to Parallel Computing: Design and Analysis of Algorithms. Ben-
jamin/Cummings Publishing Company, Redwood City, CA, 1994.

J. W-H. Liu. Mcdification of the minimum degree algorithm by multiple elim-
ination. ACM Transactions on Mathematical Sofiware, 11:141~153,1985.

Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric
approach to graph separators. In Proceedings of 31st Annual Symposium on
Foundations of Computer Science, pages 538-547,1991.

Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications,
11(3):430-452,1990.

Padma Raghavan. Parallel ordering using edge contraction. Technical Report
CS-95-293, Department of Computer Science, University of Tennessee, 1995.

