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Abstract

In this paper we present a parallel formulation of a multilevel k-way graph partitioning
algorithm. The multilevel k-way partitioning algorithm reduces the size of the graph by col-
lapsing vertices and edges (coarsening phase), finds a k-way partition of the smaller graph, and
then it constructs a k-way partition for the original graph by projecting and refining the parti-
tion to successively finer graphs (uncoarsening phase). A key innovative feature of our parallel
formulation is that it utilizes graph coloring to effectively parallelize both the coarsening and
the refinement during the uncoarsening phase. Our algorithm is able to achieve a high degree
of concurrency, while maintaining the high quality partitions produced by the serial algorithm.
We test our scheme on a large number of graphs from finite element methods, and transporta-
tion domains. Our parallel formulation on Cray T3D, produces high quality 128-way partitions
on 128 processors in a little over two seconds, for graphs with a million vertices. Thus our par-
allel algorithm makes it possible to perform dynamic graph partition in adaptive computations
without compromising quality.
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1 Introduction

Graph partitioning is an important problem that has extensive applications in many areas, including
scientific computing, VLSI design, geographical information systems, operation research, and task
scheduling. The problem is to partition the vertices of a graph in p roughly equal parts, such that the
number of edges connecting vertices in different parts is minimized. For example, the solution of a
sparse system of linear equations Ax = b via iterative methods on a parallel computer gives rise to
a graph partitioning problem. A key step in each iteration of these methods is the multiplication of
a sparse matrix and a (dense) vector. A good partition of the graph corresponding to matrix A can
significantly reduce the amount of communication in parallel sparse matrix-vector multiplication
[26].

The graph partitioning problem is NP-complete. However, many algorithms have been developed
that find a reasonably good partition. Recently, a number of researchers have investigated a class
of algorithms that are based on multilevel graph partitioning that have moderate computational
complexity [4, 5, 12, 13, 15, 7, 31, 20, 19]. In these schemes, the original graph is successively
coarsened down until it has only a small number of vertices, a partition of this coarsened graph
is computed, and then this initial partition is successively refined by using a Kernighan-Lin type
heuristic as it is being projected back to the original graph. Some of these multilevel schemes
[4, 15, 20, 19] provide excellent partitions for a wide variety of graphs. These schemes provide
significantly better partitions than those provided by spectral quite consistently, and are generally
at least an order of magnitude faster than even the state-of-the art multilevel spectral bisection [3].
Despite their small run time, it is important to develop highly parallel formulations of these schemes
for reasons discussed in Section 3.

Developing parallel formulations of multilevel graph partitioning schemes is quite challenging.
Coarsening requires that nodes connected via edges be merged together. Since the graph is distrib-
uted randomly across the processors, parallel coarsening schemes can require a lot of communic-
ation [33, 1, 22]. The Kernighan-Lin refinement heuristic and its variant, that are used during the
uncoarsening phase, appear serial in nature [9], and previous attempts to parallelize them have had
mixed success [9, 6, 22].

In this paper we present a parallel formulation for the multilevel k-way partitioning algorithm
[21]. This formulation is also generally applicable to any multilevel graph partitioning algorithm
that does coarsening of the graph and refines the partitions during the uncoarsening phase [20, 3].
A key feature of our parallel formulation is that it utilizes graph coloring to successfully parallelize
both the coarsening and the refinement phases. Our algorithm is able to achieve high degree of
concurrency while it maintains the high quality of the partitions produced by the serial multilevel
partitioning algorithm. This parallel refinement algorithm can also be used in conjunction with any
other parallel graph partitioning algorithm that requires refinement (e.g., [6]) to improve its quality.
We test our scheme on a large number of graphs from finite element methods, and transportation
domains. Our parallel formulation on Cray T3D, produces high quality 128-way partitions on 128
processors in very small amount of time. Graphs with under 250,000 vertices are partitioned in less
than a second, while graphs with a million vertices require a little over two seconds. Furthermore,
the quality of the produced partitions are comparable (edge-cuts within 5%) to those produced by
the serial multilevel k-way algorithm, and are significantly better (edge-cuts up to 75% smaller)
than those produced by multilevel spectral bisection algorithm.
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2 Multilevel k-way Graph Partitioning

In [21] we presented a k-way graph partitioning algorithm that is based on the multilevel paradigm,
whose complexity is linear on the number of vertices in the graph. The basic structure of a multi-
level algorithm is very simple. The graph G = (V, E) is first coarsened down to a few thousand
vertices, a k-way partition of this much smaller graph is computed (using multilevel recursive bisec-
tion [20]), and then this partition is projected back towards the original graph (finer graph), by peri-
odically refining the partition. Since the finer graph has more degrees of freedom, such refinements
improve the quality of the partitions. The experiments presented in [21] show that our algorithm
produces partitions that are of comparable or better quality than those produced by the multilevel
recursive bisection algorithm [20] and significantly better than those produced by the state-of-the
art multilevel spectral bisection algorithm [3]. Furthermore, our k-way partitioning algorithm is
up to 5 times faster than the multilevel recursive bisection, and up to 150 times faster than multi-
level spectral bisection. The run time of our k-way partitioning algorithm is comparable to the run
time of geometric recursive bisection algorithms [14, 32, 29, 28, 30] while it produces partitions
that are generally 20% better [20]. Note that geometric methods are applicable only if coordinate
information for the graph is available.

The k-way graph partitioning problem is defined as follows: Given a graph G = (V, E) with
|V | = n, partition V into k subsets, V1, V2, . . . , Vk such that Vi ∩ Vj = ∅ for i �= j , |Vi | = n/k,
and

⋃
i Vi = V , and the number of edges of E whose incident vertices belong to different subsets

is minimized. A k-way partition of V is commonly represented by a partition vector P of length
n, such that for every vertex v ∈ V , P[v] is an integer between 1 and k, indicating the partition at
which vertex v belongs. Given a partition P , the number of edges whose incident vertices belong
to different subsets is called the edge-cut of the partition.

Consider a weighted graph G0 = (V0, E0), with weights both on vertices and edges. A multilevel
k-way partition algorithm works as follows:

Coarsening Phase The graph G0 is transformed into a sequence of smaller graphs G1, G2, . . . , Gm

such that |V0| > |V1| > |V2| > · · · > |Vm|.
Partitioning Phase A k-way partition Pm of the graph Gm = (Vm, Em) is computed that partitions

Vm into k parts, each containing roughly |V0|/k vertices of G0.

Uncoarsening Phase The partition Pm of Gm is projected back to G0 by going through intermedi-
ate partitions Pm−1, Pm−2, . . . , P1, P0.

In the rest of this section we briefly describe the various phases of the multilevel algorithm. The
reader should refer to [21] for further details.

2.1 Coarsening Phase

During the coarsening phase, a sequence of smaller graphs Gi = (Vi , Ei), is constructed from the
original graph G0 = (V0, E0) such that |Vi | > |Vi+1|. Graph Gi+1 is constructed from Gi by finding
a maximal matching Mi ⊆ Ei of Gi and collapsing together the vertices that are incident on each
edge of the matching. In this process no more than two vertices are collapsed together because a
matching of a graph is a set of edges, no two of which are incident on the same vertex. Vertices that
are not incident on any edge of the matching are simply copied over to Gi+1.
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When vertices v, u ∈ Vi are collapsed to form vertex w ∈ Vi+1, the weight of vertex w is set
equal to the sum of the weights of vertices v and u, and the edges incident on w is set equal to the
union of the edges incident on v and u minus the edge (v, u). If there is an edge that is incident to
both on v and u, then the weight of this edge is set equal to the sum of the weights of these edges.
Thus, during successive coarsening levels, the weight of both vertices and edges increases.

Maximal matchings can be computed in different ways [20, 21]. The method used to compute
the matching greatly affects both the quality of the partition, and the time required during the un-
coarsening phase. The matching scheme that we use is called heavy-edge matching (HEM), and
computes a matching Mi , such that the weight of the edges in Mi is high. The heavy-edge matching
is computed using a randomized algorithm as follows. The vertices are again visited in random or-
der. However, instead of randomly matching a vertex with one of its adjacent unmatched vertices,
HEM matches it with the unmatched vertex that is connected with the heavier edge. As a result, the
HEM scheme quickly reduces the sum of the weights of the edges in the coarser. The coarsening
phase ends when the coarsest graph Gm has a small number of vertices.

2.2 Partitioning Phase

The second phase of a multilevel k-way partition algorithm is to compute a k-way partition of the
coarse graph Gm = (Vm, Em) such that each part contains roughly |V0|/k vertex weight of the
original graph. Since during coarsening, the weights of the vertices and edges of the coarser graph
were set to reflect the weights of the vertices and edges of the finer graph, Gm contains sufficient
information to intelligently enforce the balanced partition and the minimum edge-cut requirements.
In our partitioning algorithm, the k-way partition of Gm is computed using our multilevel recursive
bisection algorithm [20], that our experiments have shown that it produces good initial partitions
in relatively small amount of time.

2.3 Uncoarsening Phase

During the uncoarsening phase, the partition of the coarser graph Gm is projected back to the ori-
ginal graph, by going through the graphs Gm−1, Gm−2, . . . , G1. Since each vertex u ∈ Vi+1 contains
a distinct subset U of vertices of Vi , the projection of the partition from Gi+1 to Gi is constructed
by simply assigning the vertices in U to the same part in Gi to the same part that vertex u belongs
in Gi+1.

Even though the partition of Gi+1 is at a local minima, the projected partition of Gi may not.
Since Gi is finer, it has more degrees of freedom that can be used to improve the partition and thus
decrease the edge-cut. Hence, it may still be possible to improve the projected partition by local
refinement heuristics. For this reason, after projecting a partition, a partition refinement algorithm
is used. The basic purpose of a partition refinement algorithm is to select vertices such that when
moved from one partition to another the resulting partition has smaller edge-cut and remains bal-
anced (i.e., each part has the same weight).

The multilevel k-way partitioning algorithm uses a variation of the Kernighan-Lin [25] algorithm,
extended to provide k-way partition refinement. This algorithm, called greedy refinement (GR), is
based on a simplified version of the Kernighan-Lin algorithm, and its complexity is largely inde-
pendent of the number of parts being refined.
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Key to the GR refinement algorithm is the concept of the decrease in the edge-cut achieved by
moving a vertex from one part to another (gain). Consider the graph Gi = (Vi, Ei). For each
vertex v ∈ Vi we define the neighborhood N (v) of v to be the union of the parts that the vertices
adjacent to v belong to. During refinement, v can move to any of the parts in N (v). For each vertex
v we compute the gains of moving v to one of its neighbor parts. In particular, for every b ∈ N (v)

we compute the external degree of v associated with b, E D[v]b as the sum of the weights of the
edges (v, u) such that u belongs to the b part. Also we compute the internal degree of v, I D[v]
as the sum of the weights of the edges (v, u) such that u belongs to the same part as v. Given these
definitions, the gain of moving vertex v to part b ∈ N (v) is E D[v]b − I D[v].

The GR algorithm consists of a number of iterations, and in each iteration all the vertices are
checked in a random order to see if they can be moved. Let v be such a vertex. If v is a boundary
vertex (i.e., N (v) is not empty), then v is moved to the part that leads to the largest reduction in the
edge-cut (i.e., the part with the largest positive gain), subject to partition weight constraints. These
weight constraints ensure that all partitions have roughly the same weight. If the movement of v

cannot achieve any reduction in the edge-cut, it is then moved to the part (if any) that improves
the partition-weight balance but leads to no increase in the edge-cut. After moving vertex v, the
algorithm updates the internal and external degrees of the vertices adjacent to v to reflect the change
in the partition. The GR algorithm converges after a small number of iterations (within four to eight
iterations).

3 Need for Parallel Graph Partitioning

Even though the multilevel partitioning algorithms produce high quality partitions in a very small
amount of time, being able to perform partitioning in parallel is important for many reasons and is
critical to many applications. The amount of memory on serial computers is not enough to allow the
partitioning of graphs corresponding to large problems that can now be solved on massively paral-
lel computers and workstation clusters. By performing graph partitioning in parallel, the algorithm
can take advantage of the significantly higher amount of memory available in parallel computers. In
the context of large-scale finite element simulations, adaptive grid computations dynamically adjust
the discretization of the physical domain. Such dynamic adjustments to the grid lead to load imbal-
ances, and thus require repartitioning of the graph for efficient parallel computation. Being able to
compute good partitions fast (in parallel) is essential for reducing the overall run time of this type
of applications. In some problems computational effort in each grid cell changes over time [6]. For
example, in many codes that advect particles through a grid, large temporal and spatial variations in
particle density can introduce substantial load imbalance. Dynamic repartition of the correspond-
ing vertex-weighted graph is crucial to balance the computation. Furthermore, with recent devel-
opment of highly parallel formulations of sparse Cholesky factorization algorithms [11, 24, 10, 34],
numeric factorization on parallel computers can take much less time than the step for computing a
fill-reducing ordering on a serial computer, making that to be the new bottleneck. For example, on a
1024-processor Cray T3D, some matrices can be factored in less that two seconds using our parallel
sparse Cholesky factorization algorithm [24], but serial graph partitioning (required for ordering)
two orders of magnitude more time.
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4 Parallel Formulation

Developing a highly parallel formulation for the multilevel k-way partitioning algorithm is par-
ticularly difficult because both the task of computing a maximal matching during the coarsening
phase, and the task of refining the partition during the uncoarsening phase appear to be quite serial
in nature.

Out of the three phases of the multilevel k-way partitioning algorithm described in Section 2, the
coarsening and the uncoarsening phases require the bulk of the computation (over 95%). Hence,
it is critical for any efficient parallel formulation of the multilevel k-way partitioning algorithm to
successfully parallelize these two phases. Recall that during the coarsening phase (Section 2.1), a
matching of the edges is computed, and it is used to contract the graph. One possible way of comput-
ing the matching in parallel is to have each processor only compute matchings between the vertices
that it stores locally, and use these local matchings to contract the graph. Since each pair of matched
vertices resides on the same processor, this approach requires no communication during the con-
traction step. This approach works well as long as each processor stores relatively well connected
portions of the entire graph. In particular, if the graph was distributed among the processors in a
partitioned fashioned, then this approach would have worked extremely well. This is not a realistic
assumption in most cases, since finding a good partition of the graph is the problem we are trying to
solve by the multilevel k-way partitioner. Nevertheless, this approach of local matchings can work
well, when the number of processors used is small relative to the size of the graph, and the average
degree of the graphs is relatively high. The reason is that even a random partition of a graph among
small number of processors can leave many connected components at each processor. Our earlier
work on parallelizing the multilevel recursive bisection algorithm [22] used a two-dimensional dis-
tribution of the graph, which required the vertices of the graph to be partitioned only among

√
p

processors. Hence, this graph distribution allowed moderate amount of coarsening even by using
purely local matchings. An alternate approach is to allow vertices belonging to different processors
to be matched together. This global matching significantly complicates the parallel formulation be-
cause not only it requires a distributed matching algorithm, but also requires communication when
the contracted graph is constructed (since pairs of vertices that are contracted together can reside
on different processors). However, compared to local matching schemes, global matching provides
better quality matchings, and its ability to contract the graph does not depend on the number of pro-
cessors, or the existence of a good pre-partition.

During the uncoarsening phase, the k-way partition is iteratively refined as it is projected to suc-
cessively finer graphs. The serial algorithm scans the vertices and moves any vertices that lead to
a reduction in the edge-cut. Any parallel formulation of this algorithm will need to move a group
of vertices at a time in order to speedup the refinement process. This group of vertices needs to
be carefully selected so that every vertex in the group contributes to the reduction in the edge-cut.
For example, it is possible that processor Pi decides to move a set of vertices Si to processor Pj to
reduce the edge-cut because the vertices in Si are connected to a set of vertices T that are located
on processor Pj . But, in order for the edge-cut to improve by moving the vertices in Si , the vertices
in T must not move. However, while Pi selects Si , processor Pj may decide to move some or all
the vertices in T to some other processor. Consequently, when both sets of vertices are moved by
Pi and Pj , the edge-cut may not improve; and it may even get worse. Clearly, the group selection
algorithm must eliminate this type of unnecessary vertex movements. One possible way of perform-
ing the k-way refinement is to pairwise refine partitions [6]. That is, assuming that we have four
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partitions all having common boundaries, we do a 4-way refinement by performing the following 2-
way refinements: (1,2), (3,4), (1,3), (2,4), (1,4), (2,3). Since we have a total of four processors, two
of these 2-way refinements can go on at the same time. The pairs that can be refined concurrently
are determined by a matching of the processor graph. However, this parallel refinement algorithm
restricts the type of vertex movements that can be performed in each step. Hence, it lacks the global
view that is available in the serial algorithm, in which each vertex is free to move to the part that
leads to the maximum reduction in the edge-cut. Furthermore, any such refinement scheme will
require that the vertices of each part reside on a single processor. That is, during refinement, the
vertices are physically moved from one processor to another. This requires significant communic-
ation in the multilevel graph partitioning context, because we need to send not only the adjacency
list of the vertex at the current coarse graph Gl , but also the adjacency lists of all the vertices in the
graphs G0, G1, . . . , Gl−1, that have been collapsed to that vertex.

We have developed highly parallel formulations for all three phases of the multilevel k-way graph
partitioning algorithm. Our formulation utilizes graph coloring to compute a global matching in
the coarsening phase and a highly effective parallel variation of the Kernighan-Lin refinement in
the uncoarsening phases. We also exploit the task-level parallelism of the initial graph partitioning
algorithm to further reduce the already small run time of this phase.

Let p be the number of processors used to compute a p-way partition of the graph G = (V, E).
G is initially distributed among the processors using a one-dimensional distribution, so that each
processor receives n/p vertices and their adjacency lists. At the end of the algorithm, a partition
number is assigned to each vertex of the graph. In the next sections we describe our parallel formu-
lations for the three phases of the multilevel k-way partitioning algorithm described in Section 2.

4.1 Computing a Coloring of a Graph

A coloring of a graph G = (V, E) assigns colors to the vertices of G so that adjacent vertices have
different color. We like to find a coloring such that the number of distinct colors used is small. Our
parallel graph coloring algorithm consists of a number of iterations. In each iteration a maximal
independent set of vertices I is selected using a variation of Luby’s [27] algorithm. All vertices in
this independent set are assigned the same color. Before the next iteration begins, the vertices in I
are removed from the graph, and this smaller graph becomes the input graph for the next iteration.
A maximal independent set I of a set of vertices S is computed in an incremental fashion using
Luby’s algorithm as follows. A random number is assigned to each vertex, and if a vertex has a
random number that is smaller than all of the random numbers of the adjacent vertices, it is then
included in I . Now this process is repeated for the vertices in S that are neither in I nor adjacent to
vertices in I , and I is augmented similarly. This incremental augmentation of I ends when no more
vertices can be inserted in I . It is shown in [27] that one iteration of Luby’s algorithm requires a
total of O(log |S|) such augmentation steps to find an independent set of a S.

In our implementation of Luby’s algorithm, we perform only a single augmentation step to com-
pute the independent set during each iteration. Hence, the independent set computed is not max-
imal. Even though this leads to an increase in the number of required colors, it significantly reduces
the overall run time required to color the graph. Furthermore, this modification does not signific-
antly impact the run times of the coarsening and uncoarsening phases, because the number of colors
increases only moderately.

Luby’s algorithm can be implemented quite efficiently on a shared memory parallel computer,

7



since for each vertex v, a processor can easily determine if the random value assigned to v is the
smaller among all the random values assigned to the adjacent vertices. However, on a distributed
memory parallel computer, for each vertex, random values associated with adjacent vertices that are
not stored on the same processor needs to be explicitly communicated. In our implementation of
Luby’s algorithm, prior to performing the coloring in parallel, we perform a communication setup
phase, in which appropriate data structures are created to facilitate this exchange of random num-
bers. Note these data structures are used in all the phases of our parallel multilevel graph partition-
ing algorithm.

4.2 Coarsening Phase

Recall from Section 2.1 that during the coarsening phase a sequence G1, G2, . . . , Gm of success-
ively smaller graphs is constructed. Graph Gi+1 is derived from Gi by finding a maximal matching
Mi of Gi and then collapsing the vertices incident on the edges of Mi . Since the matching Mi is a
maximal independent set of edges, we can use Luby’s parallel algorithm on the dual graph of Gi

to compute a global matching in parallel. However, computing a matching using this algorithm is
particularly expensive because the dual graph usually has significantly more vertices than Gi . Our
graph coloring based approach algorithm for computing a matching is faster. Furthermore, coloring
is also essential for parallelizing the partition refinement performed during the uncoarsening phase.

Our parallel matching algorithm is based on an extension of the serial algorithm that utilizes
graph coloring to structure the sequence of computations. Consider the graph Gi = (Vi , Ei) that
has been colored using our parallel formulation of Luby’s algorithm, and let Match be a variable
associated with each vertex of the graph, that is initially set to -1. At the end of the computation,
the variable Match for each vertex v stores the vertex that v is matched to. If v is not matched, then
Match = v. To simplify the presentation, we first describe the algorithm assuming that the target
parallel computer has a shared memory architecture, and later show how this algorithm is imple-
mented on a distributed memory machine.

The matching Mi is constructed in an iterative fashion. During the cth iteration, vertices of color
c that have not been matched yet (i.e., Match = -1) select one of their unmatched neighbors using
the heavy-edge heuristic, and modify the Match variable of the selected vertex by setting it to their
vertex number. Let v be a vertex of color c and (v, u) be the edge that is selected by v. Since the
color of u is not c, this vertex will not be selecting a partner vertex at this iteration. However, there is
a possibility that another vertex w of color c may select (w, u). Since both vertices v and w perform
their selections at the same time, there is no way of preventing that. This is handled as follows. After
all vertices of color c select an unmatched neighbor they synchronize. The vertices of color c that
have just selected a neighbor, read the Match variable of their selected vertex. If the value read is
equal to their vertex number, then their matching was successful, and they set their Match variable
equal to the selected vertex; otherwise the matching fails, and the vertex remains unmatched. Note
that if more than one vertex (e.g., v and w) want to match with the same vertex (e.g., u), only one
of the writes in the Match variable of the selected vertex will succeed; and this determines which
matching survives. However, by using coloring, we restrict which vertices select partner vertices
during each iteration; thus, the number of such conflicts is significantly reduced. Also note that
even though a vertex of color c may fail to have its matching accepted due to conflicts, this vertex
can still be matched during a subsequent iteration corresponding to a different color.

The above algorithm is implemented quite easily on a distributed memory parallel computer as
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follows. The writes into the Match variables are gathered all together and are sent to the correspond-
ing processors in a single message. Similarly, the reads from the Match variables, are gathered by
the processors that store the corresponding variables and they are send in a single message to the
requested processors. Furthermore, during this read operation, the processors who own the Match
variables also determine if they will be the ones storing the collapsed vertex in Gi+1. This is done
in a randomized fashion. Our experiments has shown that this simple heuristic leads to a very good
load balance.

After a matching Mi is computed, each processor knows how many vertices (and the associated
adjacency lists) it needs to send and how many it needs to receive. Each processor, then sends and
receives these subgraphs, and it forms the next level coarser graph by merging the adjacency lists
of the matched vertices. The coarsening process ends when the graph has O(p) vertices.

4.3 Partitioning Phase

During the partitioning phase, a p-way partition of the graph is computed using a recursive bisec-
tion algorithm. Since the coarsest graph has only O(p) vertices, this step can be performed serially
in O(p log p) time without significantly affecting the performance of the entire algorithm. Never-
theless, in our algorithm we also parallelize this phase by using a parallel algorithm that parallelizes
the recursive nature of the algorithm. This is done as follows: The various pieces of the graph are
gathered to all the processors using an all-to-all broadcast operation [26]. At this point the pro-
cessors perform recursive bisection using an algorithm that is based on nested dissection [8] and
greedy partition refinement. However, each processor explores only a single path of the recursive
bisection tree. At the end each processor stores the vertices that correspond to its part of the p-way
partition. Note that after the initial all-to-all broadcast operation, the algorithm proceeds without
any further communication.

4.4 Uncoarsening Phase

In the uncoarsening phase, the partition is projected from the coarse graph to the next level finer
graph, and it is refined using the greedy refinement algorithm (Section 2.3). Recall that during a
single phase of the refinement algorithm the vertices are randomly traversed, and the vertices that
lead to a decrease in the edge cut switched parts. After each such vertex movement, the external
degrees of the adjacent vertices are updated to reflect the new partition.

In the parallel formulation of greedy refinement, we retain the spirit of the serial algorithm, but we
change the order in which the vertices are traversed to determine if they can be moved to different
parts. In particular, the single phase of the refinement algorithm is broken up into c sub-phases,
where c is the number of colors of the graph to be refined. During the cth phase, all the vertices of
color c are considered for movement, and the subset of these vertices that lead to a reduction in the
edge-cut (or improve the balance without increasing the edge-cut) are moved. Since, the vertices
with the same color form an independent set, the total reduction in the edge-cut achieved by moving
all vertices at the same time is equal to the sum of the edge-cut reductions achieved by moving
these vertices one after the other. After performing this group movement, the external degrees of
the vertices adjacent to this group are updated, and the next color is considered.

During the parallel refinement, we can physically move the vertices as they change partitions.
That is, each processor initially stores all the vertices of a single part, and as vertices move between
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parts during refinement, they can also move between the corresponding processors. However, as
discussed earlier, this approach when applied to the coarsened graphs requires significant commu-
nication, since information about all the successively finer graphs need to be send. In our parallel
refinement algorithm we solve this problem as follows. Vertices do not move from processor to
processor, but only the partition number associated with each vertex changes. Since the vertices
are initially distributed in a random order, each processor stores vertices that belong to almost all
p parts. This ensures that during refinement each processor will have some boundary vertices that
needs to be moved, leading to a generally load balanced computation. Furthermore, this also leads
to a simpler implementation of the parallel refinement algorithm, since vertices (and their adjacency
lists) do not have to be moved around. Of course, all the vertices are moved to their proper location
at the end of the partitioning algorithm, using a single all-to-all personalized communication [26].

The balance conditions are maintained as follows. Initially, each processor knows the weights of
all p parts. During each refinement sub-phase, each processor enforces balance constraints based
on these partition weights. For every vertex it decides to moves it locally updates these weights.
At the end of each sub-phase, the global partition weights are recomputed, so that each processor
knows the exact weights. Even though, this scheme is less exact than the serial balance constraints,
our experiments have shown that the hybrid of local and global partition weight constraints is able
to produce well balanced partitions.

The above parallel refinement algorithm is highly concurrent, since the number of colors is very
small (less than 20 for 3D finite element meshes) while the number of vertices is very large. Fur-
thermore, since both the serial and parallel refinement algorithms are similar in spirit, both exhibit
similar partition refinement capabilities. Furthermore, this coloring-based parallel refinement al-
gorithm can be used in any other algorithm that uses Kernighan-Lin-type local refinement.

5 Experimental Results

We evaluated the performance of our parallel multilevel k-way graph partitioning algorithm on a
wide range of graphs arising in different application domains. The characteristics of these graphs
are described in Table 1.

We implemented our parallel multilevel algorithm on a 128-processor Cray T3D parallel com-
puter. Each processor on the T3D is a 150Mhz Dec Alpha (EV4). The processors are interconnec-
ted via a three dimensional torus network that has a peak unidirectional bandwidth of 150Bytes per
second, and a small latency. We used SHMEM message passing library for communication. In our
experimental setup, we obtained a peak bandwidth of 90MBytes and an effective startup time of 4
microseconds.

Since, each processor on the T3D has only 64MBytes of memory, some of the larger graphs could
not be partitioned on a single processor. For this reason, we compare the parallel run time on the
T3D with the run time of the serial multilevel k-way algorithm running on a SGI Challenge with
0.5GBytes of memory and 150MHz Mips R4400. Even though the R4400 has a peak integer per-
formance that is 10% lower than the Alpha, due to the significantly higher amount of secondary
cache available on the SGI machine (1 Mbyte on SGI versus 0 Mbytes on T3D processors), the
code running on a single processor T3D is about 20% slower than that running on the SGI. Since
the nature of the multilevel algorithm discussed is randomized, we performed all experiments with
fixed seed.
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Graph Name No. of Vertices No. of Edges Description
144 144649 1074393 3D Finite element mesh
598A 110971 741934 3D Finite element mesh
AUTO 448695 3314611 3D Finite element mesh
BRACK2 62631 366559 3D Finite element mesh
COPTER2 55476 352238 3D Finite element mesh
M14B 214765 1679018 3D Finite element mesh
MAP1 267241 334931 Highway network
MDUAL 258569 513132 Dual of a 3D Finite element mesh
MDUAL2 988605 1947069 Dual of a 3D Finite element mesh
OCEAN 143437 409593 3D Finite element mesh
ROTOR 99617 662431 3D Finite element mesh
WAVE 156317 1059331 3D Finite element mesh

Table 1: Various graphs used in evaluating the parallel multilevel k-way graph partitioning al-
gorithm.

Note that the algorithm used for computing the initial partition of the graph in the parallel mul-
tilevel algorithm (see Section 4.3) is different than the multilevel recursive bisection used in the
serial algorithm. The multilevel algorithm produces significantly better initial partitions than nes-
ted dissection but it requires more time. Consequently, the initial partitioning step may become a
bottleneck for very large number of processors, particularly for smaller graphs. However, due to the
k-way refinement performed in the uncoarsening phase, the final partitions are only slightly worse
than those produced by the serial k-way algorithm (that uses the multilevel recursive bisection al-
gorithm for computing initial partitions).

Partition Quality Table 2 shows the quality of the partitions produced by the parallel k-way al-
gorithm as well as the amount of time it took to produce these partitions on a Cray T3D for the
problems of Table 1. Partitions for in 16, 32, 64, and 128 parts are shown, each produced on 16,
32, 64, and 128 processors, respectively. Table 3 shows the quality of the partitions and the amount
of time required by the serial algorithm running on the SGI for the same problems.

The quality of the partitions produced by the parallel relative to those produced by the serial k-
way partitioning algorithm is graphically shown in Figure 1. From this figure we see that the edge-
cut produced by the parallel algorithm is quite close to that produced by the serial algorithm. For
most graphs, the edge-cut of the parallel algorithm is worse than that of the serial algorithm by at
most a factor of 5%, while for some graphs, the parallel algorithm is somewhat better (by 1% to
3%). Since both the coarsening and uncoarsening phases of the parallel algorithm are similar (Sec-
tions 4.2 and 4.4), the reason for the small deviation compared to the serial algorithm can be traced
back to the use of nested-dissection in the initial partition phase. However, the quality differences
can be eliminated if the multilevel bisection is used during the initial partitioning phase.

The quality of the parallel partitioning algorithm relative to the widely used, multilevel spectral
bisection (MSB) [3], is shown in Figure 2. The MSB partitions were produced using the state-of-
the art MSB algorithm as implemented in the Chaco 2 [16] graph partitioning package. From this
figure we see that the quality of our parallel multilevel k-way partitioning algorithm is usually 10%
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16-way 32-way 64-way 128-way
Graph Name EdgeCut Time EdgeCut Time EdgeCut Time EdgeCut Time
144 44742 3.021 65845 1.956 87573 1.270 120365 0.977
598A 31211 2.436 47037 1.557 61225 1.039 90724 0.805
AUTO 91540 8.384 139760 5.071 197166 3.255 264662 2.215
BRACK2 13454 0.858 20675 0.589 30161 0.426 43937 0.389
COPTER2 20677 0.938 30714 0.638 42047 0.475 58470 0.424
M14B 50554 4.455 77944 2.834 108294 1.834 159825 1.383
MAP1 343 0.942 701 0.583 1174 0.398 1956 0.344
MDUAL 13144 2.637 20004 1.600 25575 1.058 35457 0.795
MDUAL2 24800 10.241 36227 5.778 50114 3.442 71355 2.250
OCEAN 10392 1.240 16529 0.799 25311 0.551 35846 0.446
ROTOR 25146 1.684 38134 1.128 53547 0.819 78163 0.670
WAVE 49502 1.914 72969 1.245 98572 0.894 131896 0.743

Table 2: The performance of the parallel multilevel k-way partitioning algorithm on Cray T3D. For
each graph, the performance is shown for 16-, 32-, 64-, and 128-way partitions on 16, 32, 64, and
128 processors, respectively. The times are in seconds.

16-way 32-way 64-way 128-way
Graph Name EdgeCut Time EdgeCut Time EdgeCut Time EdgeCut Time
144 42987 12.140 63425 12.900 85967 13.620 116870 15.380
598A 30081 9.230 44604 9.320 62520 10.190 86891 11.050
AUTO 88125 48.490 135629 49.880 190508 51.640 259948 54.610
BRACK2 13539 3.680 20133 4.000 29515 4.520 42775 5.740
COPTER2 20852 3.970 30273 4.510 41672 5.160 56619 5.990
M14B 49029 18.830 75316 19.440 108874 20.560 153048 22.070
MAP1 323 9.580 674 10.020 1104 10.140 1881 11.210
MDUAL 13688 14.840 20715 15.890 25946 16.560 34235 18.790
MDUAL2 23891 74.050 34144 76.800 47628 76.910 67364 79.380
OCEAN 10033 7.160 16183 7.650 24483 8.370 34015 9.640
ROTOR 24723 7.140 36396 7.680 52463 8.380 73881 9.530
WAVE 47939 10.850 69370 11.490 95747 12.240 125925 14.100

Table 3: The performance of the serial multilevel k-way partitioning algorithm. For each graph,
the performance is shown for 16, 32, 64, and 128-way partitions. The times are in seconds on an
SGI Challenge.
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to 20% better than that of MSB, and for some graphs, it is up to 75% better.

Parallel Runtime From Table 2 we can see that the run time of the parallel algorithm is very
small. For 9 out of the 12 graphs, the parallel algorithm requires less than one second to produce an
128-way partition on 128 processors. Even for the larger graphs (AUTO with half a million vertices,
and MDUAL2 with one million vertices) it requires only 2.2 seconds.

AUTO MDUAL MDUAL2
Phase Name 16PEs 128PEs 16PEs 128PEs 16PEs 128PEs
Communication Setup 0.978 0.279 0.290 0.114 1.730 0.386
Graph Coloring 2.480 0.477 0.581 0.102 2.239 0.351
Computing Matching 1.271 0.353 0.458 0.111 1.752 0.385
Graph Contraction 2.115 0.421 0.676 0.122 2.674 0.436
Initial Partition 0.006 0.051 0.009 0.079 0.004 0.098
k-way Refinement 1.534 0.634 0.623 0.267 1.842 0.594
Total Runtime 8.384 2.215 2.637 0.795 10.241 2.250

Table 4: The amount of time (in seconds) required by the different phases of the parallel partitioning
algorithm for some graphs, on 16 and 128 processors.

Table 4, analytically shows the amount of time required by the different phases of the parallel
graph partitioning algorithm for some of the graphs of our experimental testbed. Note that during
the communication setup phase, the processors determine how many interface vertices they need
to send and receive, and setup the appropriate data structures for this communication. From this
table we see that as the number of processors increase the amount of time required by each phase
decreases. The only exception is the initial partitioning phase, for which the time actually increases.
This is because, both the size of the coarsest graph and the number of parts increases with the num-
ber of processors. However, the amount of time required by this phase is very small compared to
the run time of the entire partitioning algorithm.

The speedup achieved by the parallel algorithm on Cray T3D over the serial algorithm running on
SGI is shown in Figure 3. For the smaller graphs, the parallel algorithm achieves a speedup in the
range of 14 to 17 on 128 processors, and as the size of the graphs increases the speedup improves
to the 20 to 35 range. As discussed earlier, due to architectural differences between Cray T3D and
SGI Challenge, the run time of the multilevel partitioning code running on a single processor of
the SGI is somewhat smaller than that running on a single processor of the Cray T3D. Thus, the
actual speedups (i.e., with respect to the serial algorithm algorithm running on a single processor
of the Cray T3D) are higher by a factor of about 20%. Furthermore, as discussed in Section 4,
the parallel algorithm incurs the additional computational overhead of computing graph coloring
during the coarsening phase, an overhead that it is not present in the serial algorithm. In addition to
the coloring overhead, the parallel algorithm also requires a communication setup phase that is used
to exchange information about the interface vertices. Again, on the serial algorithm, this overhead
is not present. For instance, for AUTO, from Table 4 we see that out of the run time of 2.2 seconds
on 128 processors, the above two overheads take 0.8 seconds, which is 36% of the total run time.
Also note that for MAP1, MDUAL, and OCEAN, for which the above two overheads are smaller
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Figure 1: Quality of the partitions produced by the parallel relative to the serial multilevel k-way
partitioning algorithm. For each graph, the ratio of the edge-cut of the parallel to that of the serial
algorithm is plotted for 16-, 32-, 64-, and 128-way partitions. Bars under the baseline indicate that
the parallel algorithm produces partitions with smaller edge-cut than the serial algorithm.
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Figure 2: Quality of the partitions produced by the parallel multilevel k-way partitioning algorithm
relative to the multilevel spectral bisection (MSB). For each graph, the ratio of the edge-cut of the
parallel to that of the serial algorithm is plotted for 16-, 32-, 64-, and 128-way partitions. Bars under
the baseline indicate that the parallel algorithm produces partitions with smaller edge-cut than the
spectral bisection algorithm.
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(since these graphs have smaller average degrees), they achieve better speedup than other graphs
with similar number of vertices.
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Figure 3: The speedup achieved by the parallel partitioning algorithm running on Cray T3D over
the serial algorithm running on SGI. For each graph, the speedup on 16, 32, 64, and 128 processors
is shown.

Effects of Initial Graph Distribution The experiments shown in Table 2 were performed by ini-
tially distributing the graphs to the processors in a block distribution. That is as the graphs were
read from the file, consecutive n/p vertices were assigned to each processor. We refer to this as the
as-is distribution. This ordering is somewhat different than the random distribution that was as-
sumed in the description of the parallel algorithm (Section 4), and was chosen for its simplicity. To
study the performance of our parallel algorithm under different initial graph distribution schemes
we performed experiments using both random and pre-partitioned distributions. In both cases, a
permutation was applied to the graph before distributing onto the processors. In the case of random
distribution, this permutation was computed randomly, whereas in the case of the pre-partitioned
distribution, this permutation was computed from a serial p-way partition of the graph.

Table 5 shows run time of these two different distribution schemes for two of the larger graphs
in our experimental testbed. Comparing these run times with those shown in Table 4 we see that
there is little difference between the random and the as-is distributions. The run time of the random
distribution is only higher by less than 1%, which was expected since both distributions result in
initial partitions that cut more than 90% of the edges. However, the run time is significantly re-
duced when the pre-partitioned distribution is used. For example, in the case of MDUAL2, on 16
processors, the run time of the pre-partitioned distribution is almost half of that achieved by either
the random or the as-is distributions. This reduction in run time is due to the following two reasons:
(a) reduced communication requirements, and (b) better cache utilization.

For the pre-partitioned graph distribution, the number of edges that get cut as a result of the ini-
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AUTO MDUAL2
16PEs 128PEs 16PEs 1

Phase Name Random Pre-Partitioned Random Pre-Partitioned Random Pre-Partitioned Random
Communication Setup 1.002 0.391 0.288 0.180 1.732 0.447 0.403
Graph Coloring 2.503 1.840 0.493 0.231 2.257 1.384 0.354
Computing Matching 1.265 0.726 0.362 0.129 1.772 0.812 0.386
Graph Contraction 2.122 1.192 0.429 0.163 2.692 1.296 0.438
Initial Partition 0.007 0.005 0.060 0.054 0.004 0.010 0.088
k-way Refinement 1.541 1.216 0.663 0.550 1.853 1.264 0.597
Total Runtime 8.430 5.370 2.295 1.310 10.310 5.213 2.266

Table 5: The amount of time (in seconds) required by the different phases of the parallel partitioning
algorithm for different initial vertex distributions, on 16 and 128 processors.

tial distribution is significantly reduced to only 7.5% for AUTO, and 3.6% for MDUAL2. Con-
sequently, the distributed graph has significantly fewer interface vertices. In each of the graph col-
oring, matching, contraction, and partition refinement algorithms, communication is a significant
fraction of the overall run time. So reduction in the run time is due to reduced communication re-
quired for the pre-partitioned graph. The reduced communication requirements can be clearly seen
in the amount of time required by the communication setup phase (especially for 16 processors),
whose complexity highly depends on the number of interface vertices. Besides reducing commu-
nication overheads, the much better data locality that is produced by the pre-partitioned distribution,
also significantly improves cache utilization. This is particularly important on a machine like the
Cray T3D, since it has only a small amount of primary cache (8Kbytes) and no secondary cache.
This improved cache reuse is the primary reason for the almost 50% improvement achieved by the
the coloring, matching, and contraction algorithms. The primary significance of the cache can also
be seen when looking at the time required by the k-way refinement. In this case, the improvements
are not as dramatic (somewhere between 27% and 40% on 16 processors). This is because, during
k-way refinement only a few vertices get moved; hence, there is limited cache reuse.

6 Related Work

Developing parallel graph partitioning algorithms has received a lot of attention [9, 14, 33, 6, 18, 2,
1, 22] due to its extensive applications in many areas. However, most of this work was concentrated
on parallelizing algorithms that produce poor-quality partitions, such as serial algorithms based on
geometric graph partitioning [14, 6], or algorithms that have very high computational requirements,
such as spectral bisection [18]. Recently, a number of researchers have developed graph partitioning
algorithms that are based on the more powerful and less expensive multilevel graph partitioning
algorithms [33, 1, 22]. However, with the exception of our earlier work [22], none of these parallel
algorithms perform any partition refinement, that is shown to significantly improve the quality of
the produced partitions [15, 20].

Raghavan [33] presents a parallel formulation of a nested dissection ordering algorithm that is
based on multilevel graph partitioning. Raghavan’s parallel algorithm uses one-dimensional par-

16



titioning of the graphs and construct successive coarser graphs by computing matchings between
different pairs of processors at each coarsening level. Although this matching is more powerful than
the local matching scheme described in Section 4, it does not produce global matchings across all
processors. Her multilevel algorithm finds a bisection of the coarser graph and then it is projected
onto the original graph without any refinement. This algorithm obtains speedup in the range of 25
to 40 on 128-processor CM5. Due to the absence of partition refinement, the orderings produced
by this algorithm are significantly worse than those produced by multilevel ordering algorithms
[20, 17].

Barnard [1] has developed a parallel formulation of multilevel spectral algorithm. This algorithm
uses a one-dimensional mapping of the graph to the processors and it uses a parallel formulation of
Luby’s [27] algorithm to compute a maximal independent set of vertices to construct the next level
coarser graph. Note that the coarsening scheme used in Barnard’s algorithm can not be used in any
multilevel graph partitioning algorithm [4, 15, 20, 21, 33]. The reason is that the coarsened graph of
the multilevel spectral algorithms does not have enough information to enforce balance constraints
and partition quality. This coarsening scheme uses a maximal independent set of vertices (instead of
a maximal independent set of edges used in multilevel graph partitioning algorithms); hence, it can
use Luby’s algorithm directly on the original graph. Table 6 shows the parallel performance of the
of multilevel spectral bisection and the our multilevel k-way partition for two of the problems in our
experimental testbed1. From this table we see that our parallel algorithm produces partitions whose
quality is significantly better than those produced by the multilevel spectral bisection algorithm. In
particular for MDUAL on 16 processors, our algorithm cuts 2.8 times fewer edges than the spectral
algorithm. Furthermore, our algorithm is 25 to 30 times faster than the spectral algorithm, which
is consistent with the serial computational requirements of the two algorithms. Since both parallel
formulations of multilevel spectral bisection and the multilevel k-way partitioning algorithms have
similar communication overheads (i.e., proportional to the number of interface vertices), their relat-
ive run time requirements do not change with the use of parallel computers, as both scale similarly.

598a MDUAL
16PEs 128PEs 16PEs 128PEs

Parallel Algorithm Edge-cut Time Edge-cut Time Edge-cut Time Edge-cut Time
Recursive Spectral Bisection 37583 67.450 103928 22.478 37235 65.490 54692 18.971
Multilevel k-way Partitioning 31211 2.436 90724 0.805 13144 2.637 35457 0.795

Table 6: The performance of the parallel multilevel spectral bisection and our parallel k-way par-
titioning algorithms on 16- and 128-processor Cray T3D.

Diniz et al., [6] present a parallel formulation of the inertial algorithm [30] for partitioning. This
algorithm computes a k-way partition using inertial recursive bisection (which is naturally paral-
lel), and then does pairwise partition refinement using the Kernighan-Lin heuristic as described in
Section 4. Their experiments show that the quality of the partitions produced by the parallel inertial
algorithm, are 10% to 30% worse compared to the serial implementation of the inertial algorithm
that uses sequential KL refinement. This decrease in partition quality is due to fact that pairwise

1The parallel multilevel spectral bisection of Barnard was made available to us by Cray Research.
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partition refinement is not as effective as the coloring-based global refinement scheme used by our
algorithm.

Karypis and Kumar [22] present a parallel formulation of the serial multilevel recursive bisec-
tion algorithm [20] for graph partitioning and sparse matrix ordering. That algorithm uses a two-
dimensional distribution of the graph to the processors and computes a local heavy-edge matching
on the diagonal processors as discussed in Section 4. When the size of the matchings produced
in successive coarsening levels becomes small, the graph is successively folded to smaller halves
of the processor grid. This local matching produces sufficient coarsening as long as the average
degree of the coarse graphs is sufficiently large (proportional to the square root of the number of
processors). However, if the degree of the graphs is small (as it is the case for finite element meshes
and their duals), then this local matching cannot sufficiently reduce the size of the graph before fold-
ing is required. Hence, for these graphs the speedup achieved is somewhat limited. For common
problems, our parallel formulation of multilevel k-way partitioning presented in this paper is 3 to
4 times faster on 128 processors, while the quality is better by about 5% to 10% compared with the
formulation in [22].

7 Conclusion

In this paper we presented a scalable and highly parallel formulation of one of the fastest and most
accurate serial graph partitioning algorithms ever. Our parallel formulation of the multilevel k-way
partitioning algorithm, is able to produce very good partitions of very large unstructured graphs in
very small amount of time. Graphs with over a million vertices can be partitioned in 128 parts in
a little over two seconds on an 128-processor Cray T3D. The theoretical analysis presented in [23]
shows that both the run time and scalability of our algorithm is within a factor of O(log p) from
the theoretical lower bound for any parallel graph partitioning algorithm.

To our knowledge this is the first algorithm that successfully provides a highly parallel partition-
ing refinement algorithm. Even though our partition refinement is based on a relatively simple vari-
ant of the Kernighan-Lin type of algorithms, the concurrency that is exposed by using coloring can
also be used to implement more sophisticated algorithms. For example, refinement algorithms that
are able to climb out of local minima by performing some moves that do not decrease the edge-cut
[15, 20], can be easily implemented using the techniques described in this paper.

The performance achieved by our algorithm allows for the development of efficient and scalable
parallel formulations for many diverse problems that utilize and operate on unstructured graphs.
High quality domain decomposition techniques used in scientific computing [35] can be completely
parallelized, removing the computational bottleneck created by serial domain decomposition prior
to parallel computation. This also allows for the creation of highly parallel preconditioners for it-
erative methods based on domain decomposition as well as on incomplete factorizations [23]. Fur-
thermore, adaptive finite element methods can now be effectively parallelized, since the mesh can
be repartitioned on the fly very fast. In such applications, the adaptation of the mesh will result in a
localized increase in the number of mesh elements. One way of repartitioning such a mesh is to take
the added elements and equally distribute them among the processors, prior to invoking our paral-
lel k-way refinement algorithm. Since the graph is almost nicely partitioned (with the exception of
the added elements), our parallel algorithm will achieve even higher performance due to reduced
communication overheads and better cache utilization (see Table 5). Furthermore, in the context
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of repartitioning adaptively refined graphs, the performance of our parallel multilevel k-way parti-
tioning algorithm can be further reduced. In this context, both the coloring and the matching phases
can be modified to utilize much faster serial algorithms on the vertices that are internal to the do-
mains assigned to each processor. By only requiring to perform distributed coloring and distributed
matching for the interface nodes of the various domains, the overall run time of these phases will
reduce significantly.
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