
Journal of Intelligent and Robotic Systems 38: 31–53, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

31

Predicting the Performance of Randomized Parallel
Search: An Application to Robot Motion Planning

DANIEL J. CHALLOU, MARIA GINI, VIPIN KUMAR� and
GEORGE KARYPIS
Department of Computer Science and Engineering, University of Minnesota, Minneapolis,
MN 55455, U.S.A.; e-mail: gini@cs.umn.edu

Abstract. In this paper we discuss methods for predicting the performance of any formulation
of randomized parallel search, and propose a new performance prediction method that is based on
obtaining an accurate estimate of the k-processor run-time distribution. We show that the k-processor
prediction method delivers accurate performance predictions and demonstrate the validity of our
analysis on several robot motion planning problems.

Key words: randomized path planning, randomized parallel search, performance evaluation, parallel
computers.

1. Introduction

Among the many skills autonomous robots require to support their activities is the
ability to plan the paths they must take while conducting those activities. Motion
planning is the process of computing paths that will allow a robot to move to
different positions in its environment without hitting obstacles.

Many motion planning algorithms have been developed (Latombe, 1991), but
most are never used in practice. Motion planning is PSPACE-hard (Reif, 1979),
which implies that, as the number of joints of the robot increases, the problem
quickly becomes computationally unmanageable.

Parallel search algorithms have been shown to be effective for solving combina-
torially explosive problems (Ferreira and Pardalos, 1996), in particular randomized
search problems. When the search space grows as a small exponent of the prob-
lem size, parallel search can provide a speedup proportional to the number of
processors, which means that significantly bigger instances of the problem can be
solved.

We devised (Challou et al., 1993) a parallel formulation of the Randomized
Path Planner (RPP) of Barraquand and Latombe (Latombe, 1991) and applied it
to a variety of motion planning problems (Challou et al., 1998). We have focused
our work on robots with multiple joints and a fixed-base, robots such as the one

� Work supported in part by ARO grant DA/DAAG55-98-1-0441, ARO grant DA/DAAG55-97-
1-021, and NSF grant NSF CCR-9972519.



32 D. J. CHALLOU ET AL.

Figure 1. Start and goal configuration of a Robotics Research K-1207i 7 degrees of freedom arm.
The arm has to move from the shelf cabinet into the box shown in the background. Moving into the
box is difficult because of the limited space for the elbow to move.

shown in Figure 1. The robot shown has 7 degrees of freedom and has a reach
comparable to that of a human arm.

Our parallel formulation has proved extremely effective, sometimes delivering
superlinear speedup, as in the examples illustrated later in Figures 6 and 9. In
our parallel formulation each processor runs the same program. The only inter-
processor communication is an initial broadcast of the workspace and goal to all
processors, and checks for a message indicating that another processor has found a
solution.

However, as the number of processors used is increased, the speedup decreases.
Furthermore, the number of processors required to deliver good performance varies
from problem to problem. Thus, the following question keeps recurring: “How
many processors does the method need to deliver acceptable performance?”

The main question we address in this paper is how to predict the performance of
randomized parallel search formulations. Performance prediction methods capable
of determining the following two quantities are of particular interest: (1) the time
needed to solve a particular problem given a fixed number of processors, and
(2) the number of processors needed to deliver a solution within a given time
bound. The second of these can be obtained from the first, so we will focus on
the first.

These quantities could be obtained easily if the probability distribution of the
run-times were known. However, since it is not, we need a way to estimate it. We
present a performance prediction method that computes accurate estimates of the
time needed to solve a problem, and present results for a variety of motion planning
problems.



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 33

2. Parallel RPP

2.1. A MOTIVATING EXAMPLE

Let us consider the example shown in Figure 1. The example is motivated by the set
of benchmarks proposed as part of the SKALP (SCalable ALgorithms for highly
parallel motion Planning) project at the University of Karlsruhe (Henrich et al.,
1998) and it is of particular interest when using humanoid robots as helpers in a
house. Think of the problems an arm will have to face when placing food from
a shopping bag into a refrigerator or when picking up an object behind another
object.

Given the growing availability of processing time via Internet connected net-
works of workstations, the algorithm discussed in this paper can be used to solve
such problems quickly and ensure minimum use of such capability in order to do
so.

In the example shown there are many local minima in configuration space,
where the arm can easily get trapped. This makes the problem hard for most motion
planning algorithms. However, the random search components of the algorithm we
use, RPP, allow the robot to escape from the local minima.

2.2. DESCRIPTION OF OUR PARALLEL IMPLEMENTATION OF RPP

An outline of our parallel formulation of RPP is given in Figure 2.
Consider a search beginning at the start configuration. The gradient descent

forces the search in the direction of the node that appears more promising. Succes-
sors of a node are generated in a random manner until a successor is found that has
a better heuristic value than the current node. Thus, the first legal successor with a
better value than its parent is adopted as the next step in the path.

However, since the heuristic is often misleading, at some point, the search might
reach a local minimum, where every successor of the current node is worse than
the current node. When this occurs, random search with a randomly chosen depth
bound is executed. This step is called a random walk.

This is followed by Randomized Gradient Descent, which continues until a local
minimum is reached. The sequence of random walk followed by gradient descent
is repeated for a predetermined number K of trials or until a better node is found.
When a better configuration is found the new part of the path found is appended
to the previous path and the process resumes. If, after K trials, no better node has
been found, then Random Backtrack begins from a randomly picked configuration
in the current path. The cycle of random walks followed by gradient descent is then
resumed.

The idea behind the random walks and randomized backtracking is to find a
place in a different region of the search space where the heuristic is more reli-
able. In that event the gradient descent search can quickly descend toward a goal
configuration.



34 D. J. CHALLOU ET AL.

ALGORITHM. Parallel RPP

repeat
Construct initial path via Randomized Gradient Descent

until a local minimum occurs

while goal not found and no time-out

repeat K times or until improvement found

Form new temporary path from end of initial path by executing

Random Walk to escape local minimum

if TERMINATION MESSAGE RECEIVED

then return NO SOLUTION

Randomized Gradient Descent until a local minimum

if TERMINATION MESSAGE RECEIVED

then return NO SOLUTION

if improvement found

then append new temporary path to end of initial path

if no improvement found

then Randomly Backtrack to a new point in initial path

end while

until goal found or global time-out

if SOLUTION FOUND then
BROADCAST TERMINATION MESSAGE TO ALL PROCESSORS

return solution or no solution

Figure 2. Outline of our parallel formulation of RPP. The capitalized statements show the
message passing needed to run on multicomputers.

There are a number of parameters that control the random parts of the algorithm.
For instance, the duration of the random walk (i.e., the number of collision-free
configurations to be generated and inserted into the path without regard to their
heuristic value) depends on the level of discretization of the work space (the finer
the discretization is the longer the random walk), the total number of attempts to
find a solution, and the total number of attempts to find a solution starting with a
particular initial path.

Within each processor, the randomized search is controlled by a random number
generator with an initial seed guaranteed to be unique among all the processors.
Each processor is assigned a disjoint range of initial seed values, and a specific
value within this range is selected using the processor clock. This probabilistically
ensures each processor searches a different part of the search space.

The randomization in the state generation process, random walks, and random-
ized backtracking are the means by which each processor explores a probabilisti-
cally different part of the search space.



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 35

ALGORITHM. Randomized Gradient Descent

Set the Path to the Current_configuration.

Obtain the robot’s control point positions by computing the forward kinematics of
the Current_configuration.

Set the Heuristic_value to the numerical potential field value associated with the
current control point position(s).

Set the number of Successor_trials to 0.

Set the New_member flag to false.

while (Goal Not Found and Successor_trials < Max_successor_trials)

while (Successor_trials < Max_successor_trials and New_member flag is false)

Set the Candidate_configuration to a

randomly generated successor to the Current_configuration.

Obtain the robot’s control point positions by computing

the forward kinematics of the Candidate_configuration.

Set the Candidate_heuristic_value to the numerical potential

field value associated with the current control point position(s).

if (Candidate_heuristic_value < Heuristic_value

and the Candidate_configuration is Collision Free)

then
Set the New_member flag to true.

Increment the number of Successor_trials.

end while
if (New_member flag is true)

then
Append the Candidate_configuration to the Path.

Set the Current_configuration equal to the Candidate_configuration.

Set the Heuristic_value equal to the Candidate_heuristic_value.

Set the number of Successor_trials to 0.

Set the New_member flag to false.

end while

return Path, Heuristic_value.

Figure 3. Outline of the Randomized Gradient Descent procedure. The procedure attempts to
construct a solution by generating configurations, one at a time, and appending them to the
path if they are suitable.



36 D. J. CHALLOU ET AL.

Figure 4. Length of solution paths found for the problem shown in Figure 1. The length
decreases dramatically as the number of processors increases.

2.3. ADVANTAGES OF PARALLEL MOTION PLANNING

There are many reasons for using parallel randomized search for motion planning.
Speeding up the search process is one of them, finding better solutions by obtaining
shorter paths is another. Due to the random component of the search algorithm,
solutions can be much too long and include many unnecessary moves. However,
when solutions are found with parallel search, better solutions are found more
rapidly, and since the search stops as soon as the first solution is found, the quality
of the solutions improves with the number of processors.

We can see this by examining the example in Figure 4, which shows the average
length of solutions for different numbers of processors for the problem shown in
Figure 1.

To obtain good performance, other motion planning methods have been devised,
which reduce the computation time by doing a significant amount of preprocessing.
The most well known example is the PRM algorithm (Kavraki and Latombe, 1998),
where a roadmap that covers the free space is computed upfront and the motion
planning problem is then solved by finding a path from the start point to the
roadmap, traversing the roadmap, and finding a path from the roadmap to the
goal point. Since preprocessing in PRM is computationally expensive, the use of
parallel processing has been proposed to speed it up (Hsu et al., 1999; Amato and
Dale, 1999). Other methods, such as the one proposed in (Kim and Boley, 2001) to
construct a network of local minima, are also easily parallelizable.



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 37

3. Parallel Search and Performance Prediction Methods

Two types of parallel search formulations have been developed in the literature. In
both formulations the first processor to find a solution sends a termination signal
to the remaining processors, and then reports its solution.

• Communication-based schemes distribute the task to be performed among
processors by using interprocessor communication. Many researchers have
demonstrated the utility of communication-based formulations for solving
a variety of state-space search problems (Rao and Kumar, 1993; Cook and
Varnell, 1998). Grama and Kumar provide a extensive review of parallel tech-
niques for systematic search (Grama and Kumar, 1999).

• In randomized allocation schemes each processor runs the same randomized
search, and no interprocessor communication is used to partition the search
space. Randomized allocation schemes do not insure that there is no dupli-
cation of work, but, in some sense, they probabilistically partition the search
space among processors.

In general, communication-based formulations are more efficient than random-
allocation schemes (Rao and Kumar, 1993), but randomized schemes require little
or no interprocessor communication, and thus they are much easier to implement
on a variety of architectures (Ertel, 1993; Challou et al., 1998).

Recall from the introduction that we are interested in performance prediction
methods that predict the time needed to solve a particular problem given a fixed
number of processors.

Many researchers have shown that, when the run-time distribution is known,
classic probabilistic methods are useful for predicting the range of performance
that can be delivered by randomized parallel search (Mehrotra and Gehringer,
1985; Janakiram et al., 1988; Karp and Zhang, 1993) and other problems in which
each processor runs the same program (Alanberg-Navony et al., 1994). Unfortu-
nately, for any non trivial problem, the run-time distribution is not known in ad-
vance. Therefore, some experimental basis is necessary to obtain an accurate pre-
diction.

Characterizing the run-time distribution has to be done on individual problem
instances, as opposed to be done on a collection of problems. As detailed by
Hoos (1998), averaging over exponentially distributed random variables yields a
random variable of a different distribution type.

Most stochastic search methods start their searches in one (usually randomly
chosen) location in the search space and then do some sort of random walk in
the space. The consensus (see, for example, (Reeves, 1993)) is that the best use of
time is to run several shorter searches starting from multiple locations in the space,
rather than spending all the available time on one search.

If the run-time distribution of the algorithm is exponential, the probability of
finding a solution on k processors when running the algorithm for time t/k is
the same as the probability of finding a solution when running the algorithm on



38 D. J. CHALLOU ET AL.

a single processor for time t (Hoos and Stützle, 1998). If the run-time distribu-
tion of the algorithm is less steep than an exponential distribution, running the
algorithm on a parallel computer will increase performance. In this case the algo-
rithm produces superlinear speedups, which means that doing multiple restarts on
a single processor is equally advantageous. However, if the run-time distribution is
steeper than exponential, parallelizing the computation (or, equivalently, restarting
the search) does not produce the same improvement, and the speedup obtained is
sublinear (Hoos and Stützle, 1998).

The simplest method for obtaining an experimental basis for predictions is to
solve the problem using increasing numbers of processors (i.e., solve the problem
with 1, 2, . . . , k processors, where k is the maximum number of processors that
are available). The run-times obtained on each group of processors will enable
computation of the optimal number of processors required to solve the problem
and the number of processors required to solve the problem in less than a given
time bound.

There are problems with this approach however. First, randomized methods are
nondeterministic, so the run-times obtained on each group of processors varies.
Therefore, many solutions must be obtained on each group of processors in or-
der to obtain an accurate measure of the average run-time and its variance. Thus,
formulating accurate performance predictions with this approach requires a large
amount of time and computing resources.

One possible alternative is to accurately estimate the single processor solution
distribution by computing a large number of solutions on a single processor and
then estimating the performance on larger numbers of processors by using the
single processor distribution. We refer to this method as the T1 estimation method.
Ertel (1992, 1993) proposed such a scheme and used it to compute accurate pre-
dictions of the performance of his parallel formulation on various theorem proving
problems after obtaining a large sample (i.e., between 1000 and 10000 solutions)
from the actual single processor solution distribution.

3.1. THE T1 ESTIMATION METHOD

Let T1 be a random variable denoting the run-times for a uniprocessor randomized
search, and Tk be a random variable which denotes the times taken by k-processors
to find a solution.

We can estimate the probability of finding a solution on a single processor in
time ti using the frequency of the appearance of ti (denoted n(ti)) in the set of N

sequential run-times observed. More formally,

P [T1 = ti] ≈ 1

N
· n(ti), where N =

m∑

i=0

n(ti). (1)



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 39

Once the probabilities have been estimated and associated with each run-time
in the sample, we can use them to estimate the probability distribution function.
This is accomplished as follows.

Let p1(t) denote the estimated probability distribution function of T1. We can
compute p1(t), or P [T1 � t] for a particular ti by summing up all the estimated
probabilities associated with times t0, . . . , ti . In other words,

p1(t) = P [T1 � ti] =
i∑

0

P [T1 = ti].

If an accurate estimate of p1(t) is known, we can compute an accurate estimate
of pk(t), the probability distribution of Tk, as follows:

pk(t) = P [Tk � t] = P
[
min(T 1

1 , T 2
1 , . . . , T k

1 ) � t
]

= 1 − P
[
min(T 1

1 , T 2
1 , . . . , T k

1 ) > t
]

= 1 − P
[
T 1

1 > t and T 2
1 > t and . . . T k

1 > t
]

= 1 − P [T1 > t]k
= 1 − (1 − P [T1 � t])k

= 1 − (1 − p1(t))
k, (2)

where T i
1 is a random variable denoting the run-times for uniprocessor randomized

search on processor i. Note that T i
1 for i = 1, 2, . . . , k are independent identically

distributed random variables with probability distribution p1(t).
This formula can be used to explain the success of parallel randomized alloca-

tion schemes. Suppose a single processor has only a 10% probability that it can
solve a problem within a given time t10%. Then a 32 processor system has over a
96% probability of finding a solution within t10%, and a 64 processor system has
over a 99% chance of doing so.

We define E[T1] as the average uniprocessor run-time, E[Tk] as the average
k processor time, and speedup as

S = E[T1]
E[Tk] . (3)

If E[Tk] is less than E[T1], then, on average, the k processor solution will deliver
speedup over the uniprocessor algorithm. If E[Tk] is less than (1/k)E[T1] then, on
k processors, the parallel randomized allocation formulation will yield superlinear
speedup over the uniprocessor algorithm (on average) (Li and Wah, 1986). This is
because on k processors the first processor to find a solution stops all the others, so
there is no need to wait for solutions that take a long time. On a single trial on a
uniprocessor a bad choice made early might significantly delay the completion of
the search. On k processors a bad choice made by one processor does not prevent
the other processors from making a better choice.



40 D. J. CHALLOU ET AL.

An estimate of the expected run-time on k processors for k = 1, . . . ,∞ can be
computed as follows:

E[Tk] =
∑

t

P [Tk = t] · t. (4)

Alternatively, if we assume that the probability that a solution will be found
in a finite time is one, we can compute the expected value with the following
equation (Hoel et al., 1971):

E[Tk] =
∑

t

P [Tk > t] =
∑

t

1 − P [Tk � t]

=
∑

t

1 − pk(t) =
∑

t

(1 − p1(t))
k. (5)

3.2. THE Tk ESTIMATION METHOD

In the same way as we estimate E[T1] from solutions samples on a single processor,
we can estimate E[Tk] directly using solutions samples from the actual Tk solution
set, where k > 1. This is done experimentally by estimating the probability dis-
tribution function pk with a set of samples from the actual Tk. We call this the Tk

estimation method.
The experimentally estimated pk(t) can then be used to predict the performance

on an m-processor system where m 	= k. When m < k we call this downward
prediction, when m > k we call it upward. This can be done as follows.

First, as with the T1 estimation method, a set of k-processor run-times are
experimentally obtained. Next, approximate probabilities are computed for the
experimentally obtained times in a manner similar to Equation (1). Then, for each
time ti , pk(ti) is estimated by using its definition (i.e., pk(ti) = P [Tk � ti] =∑i

0 P [Tk = ti]). As with the single and k processor case, the possible run-times
on the m processor system are the same as for the k-processor system, only the
run-time probabilities differ.

Having experimentally estimated pk(t), we can now compute pm(t) in the fol-
lowing manner. First we solve Equation (2) for p1(t). This yields

p1(t) = 1 − (1 − pk(t))
1/k. (6)

We then derive the equation necessary for predicting the probability distribution
function pm(t) by substituting Equation (6) into Equation (2). Doing so yields the
following result:

pm(t) = 1 − (
1 − (

1 − (1 − pk(t))
1/k

))m

= 1 − (1 − pk(t))
m/k. (7)



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 41

Hence, once an estimate of pk(t) has been computed, pm(t) can be estimated
using Equation (7). The average run-time on m processors can then be predicted
using Equation (5).

3.3. COMPARING THE T1 AND Tk ESTIMATION METHODS

If the estimated p1(t) or pk(t) closely approximate the actual probability dis-
tribution function associated with T1 or Tk, then either method can be used to
accurately predict the performance on a larger number of processors. The accuracy
of the estimated p1(t) or pk(t) can be insured by obtaining a large number of
samples from the actual T1 or Tk. This process is time consuming, particularly
when estimating p1(t).

For example, in order to insure a good prediction using the T1 estimation method,
between one thousand and ten thousand solutions are used to formulate the pre-
dictions shown in (Ertel, 1992, 1993). Computing one thousand uniprocessor so-
lutions from T1 in succession would require over 16 hours for a problem that
requires an average of 60 seconds to solve. Moreover, the examples shown in (Ertel,
1992, 1993) and in Section 4 show that such long uniprocessor run-times are not
uncommon.

The question is: what is the effect on the accuracy of the prediction of using a
smaller number of solutions (e.g., one or two hundred) to estimate p1(t)? Unfor-
tunately, when few solutions are used for T1, the method has poor performance
prediction capability, and tends to yield pessimistic predictions, as reported by
Ertel.

On the other hand, in most cases a smaller number of solutions is sufficient
to obtain an accurate estimate of pk(t). This is because a small sample from the
solution set associated with Tk contains more information about the solution dis-
tribution on larger numbers of processors than a small sample from T1 does. The
reason is that we get many large run-times when sampling T1. However, as the
number of processors k increases, the probability that a k-processor system will
yield a large run-time decreases with k.

In other words, when sampling T1, a significant amount of time is required to
accumulate information that yields minimal information about the average run-
time on a k-processor system. Sample points from Tk tend to be small run-times
because we take the minimum time of k independent runs. These smaller run-times
have a higher probability of occurring in the run-time probability distribution of an
m-processor system, where m > k. Hence, most samples from Tk yield information
about the distribution that is relevant for computing pm(t). Thus, sampling Tk

yields better predictions for Tm (m > k) with fewer solutions than sampling T1.
This is supported by our experimental results shown in Section 4.

There are two drawbacks to the Tk prediction method. First, note that when we
use equation 7 to predict performance on a smaller numbers of processors (i.e., for
m < k), our method will tend to yield optimistic predictions (i.e., predict average



42 D. J. CHALLOU ET AL.

run-times faster than actually available). This will occur because the experimen-
tally computed pk(t) has little or no information about the larger run-times present
in the run-time distribution on smaller numbers of processors, and these larger run-
times are necessary to predict the performance on smaller numbers of processors
accurately.

Second, if a large number of processors is used to predict performance, the Tk

approximation method can yield little meaningful information. This is due to the
inability of the Tk prediction method to predict performance accurately on a smaller
number of processors. One way to avoid this situation is to use a relatively small
number of processors (e.g., 32 as in our experiments), and increase the number
only if the run-times are too long. This is useful when making predictions on a
network of workstations, since it is not always easy to have very large numbers of
them.

In any case, at this point it should be clear that in order to be useful, a per-
formance prediction method should be fast and accurate. These requirements are
somewhat conflicting. Any method that can deliver fast predictions must base its
predictions on a small number of solutions, but accuracy requires a larger number
of solutions. We will show that in our experiments the Tk method produces accurate
results with relatively few solutions.

There is one more point we should discuss. When using multiple processors,
even if fewer runs are needed, is the total CPU time needed to run the smaller
number of experiments for Tk higher than the CPU time needed when using T1?
Our experiments show that the total CPU time needed to run enough experiments
for Tk is comparable to the CPU time needed to run a number of experiments for T1

that is too small to get good predictions. In other words, if we had to pay the same
amount for the CPU time on different architectures, it would be more economical
to use Tk than T1.

4. Experimental Results

Each of Figures 5–9 shows a picture of a problem instance. The problems are
shown in decreasing order of difficulty (i.e., the problem that requires the largest
average run-time is shown first, and the problem that requires the smallest average
run-time is shown last). In each case we use a model of a seven-jointed arm.
Each joint on the robot has 128 discrete positions and the workspace consists
of 1283 cells, each representing a volume of approximately 2.1 cubic centime-
ters.

Below the picture in each figure is a table showing the average run-times ob-
tained experimentally and the average run-times predicted for each group of proces-
sors. The average run-times obtained experimentally for T1 and each Tk are the
diagonal entries in each table and are in bold. Entries in a row to the left of the bold-
font diagonal entry predict the run-time required by fewer processors, and times
in a row to the right of a bold-font diagonal entry predict the run-time required



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 43

Number of processors 1 32 64 128 256

E[T1] (128 runs) 107.72 12.52 8.90 5.81 3.72

E[T1] (256 runs) 102.34 11.04 7.42 4.56 2.94

E[T32] (64 runs) – 8.39 5.46 3.43 2.21

E[T64] (64 runs) – 7.45 5.36 3.54 2.38

E[T128] (64 runs) – 6.71 5.02 3.37 2.26

E[T256] (64 runs) – 6.30 4.99 3.48 2.32

Std. dev. (σ ) 108.33 5.24 3.26 2.17 1.26

Avg. speedup (E[T1]/E[TK ]) 1.00 12.02 19.09 30.37 44.11

Number of processors 32 64 128 256

% relative error T1 predictions (128 runs) 49.2 66.0 72.4 60.3

% relative error T1 predictions (256 runs) 31.5 38.4 35.3 26.7

% relative error Tk upward predictions – 1.8 5.0 4.7

% relative error Tk downward predictions 24.9 11.8 3.6 –

Figure 5. Start and goal configurations, average and predicted run-times (in seconds), graphs com-
paring relative prediction errors. (on the left upward predictions, on the right downward predictions),
relative error for the T1 method and worst relative error for the Tk method.



44 D. J. CHALLOU ET AL.

Number of processors 1 32 64 128 256

E[T1] (128 runs) 88.46 3.57 2.04 1.31 1.04

E[T1] (256 runs) 83.02 2.75 1.43 0.92 0.75

E[T32] – 2.23 1.13 0.73 0.60

E[T64] – 2.53 1.28 0.75 0.60

E[T128] – 2.10 1.33 0.80 0.62

E[T256] – 0.97 0.86 0.73 0.62

Std. dev. (σ ) 104.13 2.41 1.39 0.53 0.14

Avg. speedup (E[T1]/E[TK ]) 1.00 37.23 64.86 102.49 133.90

Number of processors 32 64 128 256

% relative error T1 predictions (128 runs) 60.0 59.3 63.7 67.7

% relative error T1 predictions (256 runs) 23.3 11.7 15.0 20.9

% relative error Tk upward predictions – 11.7 8.8 3.3

% relative error Tk downward predictions 56.5 32.8 8.8 –

Figure 6. In this problem, the robot is reaching down into the small box in front of it. The rest of the
figure contains the same information as Figure 5.



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 45

Number of processors 1 32 64 128 256

E[T1] (128 runs) 62.80 6.97 5.06 4.14 3.68

E[T1] (256 runs) 57.28 6.38 4.42 3.31 2.62

E[T32] – 7.05 4.89 3.45 2.53

E[T64] – 5.86 4.69 3.41 2.61

E[T128] – 5.68 4.57 3.50 2.68

E[T256] – 4.33 3.85 3.20 2.55

Std. dev. (σ ) 59.96 3.96 2.35 1.48 0.91

Avg. speedup (E[T1]/E[TK ]) 1.00 8.12 12.21 16.37 22.46

Number of processors 32 64 128 256

% relative error T1 predictions (128 runs) 1.1 7.9 18.3 44.3

% relative error T1 predictions (256 runs) 9.5 5.6 5.4 2.7

% relative error Tk upward predictions – 4.3 1.1 5.1

% relative error Tk downward predictions 38.5 17.9 8.6 –

Figure 7. In this problem instance, the robot is reaching from the solid dark table behind it, through
an opening in the wall on its left, and down to the light table with the hole in it. The rest of the figure
contains the same information as Figure 5.



46 D. J. CHALLOU ET AL.

Number of processors 1 32 64 128 256

E[T1] (128 runs) 22.85 1.98 1.55 1.30 1.18

E[T1] (256 runs) 21.61 1.45 1.08 0.83 0.64

E[T32] – 1.42 1.13 0.91 0.75

E[T64] – 1.29 1.08 0.90 0.75

E[T128] – 1.28 1.09 0.91 0.77

E[T256] – 1.09 1.00 0.87 0.74

Std. dev. (σ ) 23.04 0.52 0.31 0.26 0.20

Avg. speedup (E[T1]/E[TK ]) 1.00 15.22 20.01 23.75 29.20

Number of processors 32 64 128 256

% relative error T1 predictions (128 runs) 39.4 30.3 42.9 59.5

% relative error T1 predictions (256 runs) 2.1 0.0 8.8 13.15

% relative error Tk upward predictions – 4.4 1.1 3.9

% relative error Tk downward predictions 30.3 7.4 4.4 –

Figure 8. In this problem, the robot is reaching around the big box in front of it. The rest of the figure
contains the same information as Figure 5.



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 47

Number of processors 1 32 64 128 256

E[T1] (128 runs) 20.59 0.59 0.47 0.42 0.40

E[T1] (256 runs) 19.86 0.50 0.35 0.31 0.28

E[T32] – 0.42 0.35 0.31 0.28

E[T64] – 0.39 0.33 0.28 0.25

E[T128] – 0.38 0.34 0.30 0.26

E[T256] – 0.36 0.33 0.30 0.27

Std. dev. (σ ) 35.42 0.16 0.08 0.06 0.05

Avg. speedup (E[T1]/E[TK ]) 1.00 47.29 60.18 66.20 73.56

Number of processors 32 64 128 256

% relative error T1 predictions (128 runs) 40.5 42.4 40.0 48.1

% relative error T1 predictions (256 runs) 19.0 6.0 3.3 3.7

% relative error Tk upward predictions – 6.0 6.6 7.4

% relative error Tk downward predictions 14.3 3.0 0.0 –

Figure 9. In this problem, the robot is moving its hand from over the dark table next to it down
and through the small opening in the table in front of it. The rest of the figure contains the same
information as Figure 5.



48 D. J. CHALLOU ET AL.

by larger numbers of processors. The number of processors for which a time is
experimentally estimated or predicted is determined by the number of processors
listed at the top of its column.

Average speedup is calculated from the average run-times for N = 256 samples
from T1, and N = 64 samples from each Tk, k = 32, . . . , 256. We used 64 solu-
tions to estimate Tk, because, for the examples shown here, the sample standard
deviation indicated that 64 solutions were enough to provide an accurate estimate
of the actual k processor distribution.

Graphs of the relative error delivered by the T1 and Tk prediction methods
for upward and downward predictions are shown. The percent relative error is
calculated using the following formula:

|experimental avg. run-time − predicted avg. run-time|
experimental avg. run-time

× 100. (8)

Each graph shows the percent relative error for T1 estimated with N = 128
and N = 256 solutions. The graph on the left shows the percent relative error
for upward predictions (i.e., predictions for increasing numbers of processors). In
addition to the relative error for the T1 predictions, the predictions made from Tk

for k = 32, 64, and 128 processors are also shown. The graph on the right shows
the percent relative error for downward predictions (i.e., predictions for decreasing
numbers of processors). In addition to the relative error for the T1 predictions, the
predictions made from Tk for k = 64, 128, and 256 processors are shown as well.

The table at the bottom of each figure shows the percent relative error delivered
on each number of processors by T1 estimated with N = 128 and N = 256 solu-
tions. The table also shows the highest and lowest percent relative error delivered
by the Tk prediction method for upward and downward predictions. The highest
and lowest percent relative error shown for each group of processors is selected
from all predictions made for that group of processors. The data form the table
included at the top of each figure is used to compute the relative error.

The times shown were obtained on a CM-5 parallel computer (Corporation,
1992). The reason for the choice was convenience of access to a large number
of processors. However, the CM-5 processors are slow and with limited memory
(32 Megabytes), so the timing results should not be taken as the best timing the
algorithm can produce today on faster processors. Since many of the runs were
made in time sharing mode, the run-times were obtained by multiplying the average
node expansion time by the number of node expansions. All times are in seconds.

5. Discussion

5.1. PREDICTING PERFORMANCE ON INCREASING NUMBERS OF PROCESSORS

As our analysis predicts, the Tk prediction method requires fewer solutions in order
to formulate an accurate prediction than the T1 prediction method. For instance,



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 49

consider the example in Figure 5. The table at the bottom of the figure shows
that the minimum relative error delivered by T1 approximated with 256 solutions
is 26.7% and the maximum relative error delivered delivered by Tk approximated
with 64 solutions is 5%. For the problem instance in Figure 6, the minimum relative
error delivered by T1 approximated with 256 solutions is 11.7% and the maximum
relative error delivered by the Tk approximated with 64 solutions is 11.7%. Thus
the most inaccurate predictions delivered by the Tk method estimated using 64 so-
lutions are more accurate than, or equal to the accuracy of the best predictions
delivered by the T1 method estimated with 256 solutions for the most time consum-
ing problems shown. In addition, the maximum relative error delivered by the Tk

prediction method in the remaining examples is 7.4%, while the maximum relative
error delivered by the T1 method estimated with 256 solutions exceeds 10% in
2 cases.

Furthermore, 11 of the 15 predictions delivered by the Tk method are equal to,
or more accurate than, the predictions delivered by T1 prediction method based
on 256 solutions. The only exceptions include one prediction for one group of
processors on each of the problems depicted in Figures 7 and 8, and two predictions
made from T64 for the problem depicted in Figure 9.

Consider the relative error graph for upward prediction in each example when
only 128 solutions are used to estimate T1. In each problem shown, the upward
performance predictions delivered by the Tk method are significantly more accu-
rate than then predictions delivered by the T1 method. Specifically, the minimum
relative error delivered by the T1 method when T1 is estimated with 128 solutions is
approximately twice the maximum relative error delivered by the Tk method when
Tk is estimated with 64 solutions (e.g., see the error delivered by the Tk and T1

methods for 64 processors in Figure 7).
Hence, from our results it should be clear that the Tk prediction method re-

quires significantly fewer solutions in order to formulate accurate performance
predictions for a larger number of processors (i.e., when m > k) than the T1

method. Finally, consider the predictions formulated from T1 with 128 solutions
shown in each example. With the exception of 32 processors for problem 7, they
are pessimistic for each group of processors in every problem shown. Thus, the
data from our examples overwhelmingly confirm that predictions formulated with
the T1 method are pessimistic (and inaccurate) when T1 is estimated with too few
samples.

5.2. PREDICTING PERFORMANCE ON DECREASING NUMBERS

OF PROCESSORS

Consider the downward predictions formulated by the Tk method shown in the
table below the figure in each of the examples. The data show, as our analysis
predicts, that the Tk prediction method tends to predict lower than actual runtimes
on decreasing numbers of processors. Recall that this is because the k-processor



50 D. J. CHALLOU ET AL.

solution has little information about the longer run-times that tend to be present in
the run-time distributions on smaller numbers of processors.

Nonetheless, consider the graphs showing the relative error for downward pre-
dictions for each example. They show that the Tk method is reasonably effective
for predicting performance on one-half the number of processors used to compute
the estimate. In particular, the Tk method delivers more accurate predictions on one
half the number of processors used to compute the estimate than the T1 method
estimated with 256 solutions in 13 out of 15 cases. The two cases are the perfor-
mance predictions for 32 processors formulated from T64 for problems 7 and 8.
In both cases the predictions are less accurate than the predictions formulated for
32 processors from T1 estimated with 256 solutions.

In all other cases, the relative error for predictions on one-half the actual number
of processors used to estimate Tk is a maximum of a little over 10%. In addition, for
problems 5 and 9, all the downward predictions formulated from Tk are more accu-
rate than the predictions formulated by T1 estimated with 256 solutions. Thus, our
experimental results indicate that the Tk prediction method is useful for predicting
performance on one half as many processors, but not for formulating “long-range”
performance predictions on decreasing numbers processors.

5.3. WHICH METHOD DELIVERS ACCURATE PREDICTIONS FASTER: T1 OR Tk?

Our analysis in Section 3.3 and our discussion above show that the T1 method
requires more solutions than the Tk method in order to formulate predictions with
the same degree of accuracy.

For the problems in Figures 5 and 8 the minimum relative error delivered by
T1 estimated with 128 solutions is over 30%. In addition, in problem 7, the er-
ror ranges between a little over one percent to over 44%. Thus, the predictions
formulated with 128 solutions from T1 are virtually meaningless for each of the
aforementioned problems.

If the number of solutions from T1 is raised to 256, then the accuracy of the
T1 estimation method becomes, in some cases, close to the accuracy of the Tk

method. The relative error in the predictions formulated by the T1 method decreases
dramatically for problems 7 and 8, but remains relatively high for problem 5 (i.e.,
over 25% in all cases).

For each problem, there is a number of processors k for which both the T1

and Tk methods require the same total CPU time in order to deliver equally accurate
predictions. We call this the crossover point. The crossover point depends on the
speedup (and efficiency) available on a particular problem instance. For example,
in our examples, problem 7 delivers the lowest overall speedups (and efficiencies).
The total CPU times for each number of processors show that the crossover point is
approximately 32 processors. Thus, for this problem, when 32 processors or fewer
are used predict the performance, the Tk estimation method will outperform the T1

estimation method.



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 51

Examples 8 and 5 also show that as the available speedup increases, then the
number of processors on which the Tk method outperforms the T1 method in terms
of speed and accuracy also increases. For example, for problem 8, the available
speed up on the problem instance is higher than for problem 7 and it outperforms
the T1 method on up to 64 processors. In addition, for problem 5 it appears that the
Tk method will outperform the T1 method in terms of speed and accuracy on even
larger numbers of processors.

If a large number of processors is available, then it may seem that a faster
method for predicting performance might be to simply obtain solutions from T1 us-
ing each processor, and then use the T1 method to formulate predictions. However,
again consider the problem which yields the minimum speedup in our experiments
pictured in Figure 7. Next, assume 256 processors are available for formulating
predictions. On average 57.28 sec. would be required to compute 256 run-times
using the T1 method.

Conversely, if the Tk method is emulated for k = 32 then, on average, 8 solu-
tions can be obtained from T32 using 256 processors in an average time of E[T32],
or 7.05 sec. In order to compute an accurate prediction from T32, 64 solutions
are required. The time required to obtain 64 solutions from T32 in this manner
is E[T32] · 8, or 56.4 sec. Thus, the Tk method outperforms the T1 method even
when a fairly significant number of processors and only low speedups are available,
provided that a small k is used. Finally, the analysis and results also show that if
a parallel machine is not available, emulating a k processor randomized parallel
search on a single processor is the fastest way to compute a useful set of solutions.

6. Concluding Remarks

To conclude, both our analysis and experimental results show that the Tk estima-
tion method delivers more accurate predictions with fewer solutions than the T1

estimation method. The results above also confirm our analysis showning that, if
too few solutions are used to estimate T1, then the T1 method delivers pessimistic
predictions. Furthermore, our results also show that the margin by which the Tk

method outperforms the T1 method is determined by the speedup available on the
number of processors k used to formulate the prediction.

The estimation methods presented are useful for determining the parallel re-
sources required by the robot motion planning system. The resources necessary to
deliver a particular level of performance can be determined as follows. Select a
reasonable number of typical reaches in the given environment. Obtain an estimate
of how many processors are necessary to obtain acceptable performance for each
instance and select the minimum number of processors for all reaches attempted. If
no solution can be found in the desired amount of time on the number of processors
available, the method is also useful for indicating whether the desired performance
can be obtained by adding more processors.



52 D. J. CHALLOU ET AL.

Acknowledgements

We would like to thank Jean Claude Latombe at Stanford University for providing
access to implementations of the Random Path Planner; Curtis Olson for porting
the software to a network of Unix/Linux workstations, and for writing visualiza-
tion and animation tools; the University of Minnesota Army High Performance
Computing Research Center for supporting the work.

References

Alanberg-Navony, N., Itai, A., and Moran, S.: 1994, Average and randomized complexity of
distributed problems, Technical Report, Technion, Haifa, Israel.

Amato, N. M. and Dale, L. K.: 1999, Probabilistic roadmap methods are embarrassingly parallel,
in: Proc. IEEE Internat. Conf. on Robotics and Automation, pp. 688–694.

Challou, D., Boley, D., Gini, M., Kumar, V., and Olson, C.: 1998, Parallel search algorithms for robot
motion planning, in: K. Gupta and A. del Pobil (eds), Practical Motion Planning in Robotics:
Current Approaches and Future Directions, Wiley, New York, pp. 115–131.

Challou, D., Gini, M., and Kumar, V.: 1993, Parallel search algorithms for robot motion planning,
in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Vol. 2., pp. 46–51.

Cook, D. J. and Varnell, R. C.: 1998, Adaptive parallel iterative deepening search, J. Artificial
Intelligence Res. 9, 139–166.

Corporation, T. M.: 1992, The connection machine CM-5 Technical Summary, Thinking Machines
Corporation, Cambridge, MA.

Ertel, W.: 1992, OR-parallel theorem proving with random competition, in: A. Voronokov (ed.),
LPAR’92: Logic Programming and Automated Reasoning, Lecture Notes in Artificial Intelli-
gence 624, Springer, Berlin, pp. 226–237.

Ertel, W.: 1993, Massively parallel search with random competition, in: Working Notes of the 1993
AAAI Spring Symposium for Innovative Applications of Massive Parallelism, pp. 62–69, AAAI
Press, Menlo Park, CA; available as Technical Report No. TR SS-93-04.

Ferreira, A. and Pardalos, P. (eds): 1996, Solving Combinatorial Optimization Problems in Parallel:
Methods and Techniques, Lecture Notes in Computer Science 1054, State-of-the-Art Surveys,
Springer, New York.

Grama, A. and Kumar, V.: 1999, State of the art in parallel search techniques for discrete optimization
problems, IEEE Trans. Knowledge Data Engrg. 11(1), 28–35.

Henrich, D., Wurrl, C., and Woern, H.: 1998, Multi-directional search with goal switching for robot
path planning, in: A. P. del Pobil, J. Mira and M. Ali (eds), Tasks and Methods in Applied
Artificial Intelligence, Lecture Notes in Artificial Intelligence 1416, Springer, Berlin, pp. 75–84.

Hoel, P., Port, S., and Stone, C.: 1971, Introduction to Probability Theory, Houghton Mifflin
Company, Boston, MA.

Hoos, H. H.: 1998, Stochastic Local Search – Methods, Models, Applications, PhD Thesis, the
Darmstadt University of Technology, Germany.

Hoos, H. H. and Stützle, T.: 1998, Evaluating Las Vegas algorithms – Pitfalls and remedies, in: Proc.
of the 14th Conf. on Uncertainty in Artificial Intelligence, pp. 238–245, Morgan Kaufmann, Los
Altos, CA.

Hsu, D., Latombe, J., Motwani, R., and Kavraki, L.: 1999, Capturing the connectivity of high-
dimensional geometric spaces by parallelizable random sampling techniques, in: P. Pardalos and
S. Rajasekaran (eds), Advances in Randomized Parallel Computing, Combinatorial Optimization
Series, Kluwer Academic Publishers, Dordrecht, pp. 159–182.

Janakiram, V., Agrawal, D., and Mehrotra, R.: 1988, A randomized parallel backtracking algorithm,
IEEE Trans. Computers 37(12), 1665–1675.



PREDICTING THE PERFORMANCE OF RANDOMIZED PARALLEL SEARCH 53

Karp, R. and Zhang, Y.: 1993, Randomized parallel algorothms for backtrack search and branch
-and-bound computation, J. ACM 40(3), 765–789.

Kavraki, L. E. and Latombe, J. C.: 1998, Probabilistic roadmaps for robot path planning, in: K. Gupta
and A. del Pobil (eds), Practical Motion Planning in Robotics: Current Approaches and Future
Directions, Wiley, New York, pp. 33–53.

Kim, S. W. and Boley, D.: 2001, Building and navigating a network of local minima, J. Robotic
Systems 18(8), 405–419.

Latombe, J. C.: 1991, Robot Motion Planning, Kluwer Academic Publishers, Norwell, MA.
Li, G.-J. and Wah, B. W.: 1986, Coping with anomalies in parallel branch-and-bound algorithms,

IEEE Trans. Computers 35.
Mehrotra, R. and Gehringer, E. F.: 1985, Superlinear speedup through randomized algorithms,

in: Proc. of Internat. Conf. on Parallel Processing, pp. 291–300.
Rao, V. N. and Kumar, V.: 1993, On the efficiency of parallel backtracking, IEEE Trans. Parallel

Distributed Systems 4(4), 427–437.
Reeves, C. R.: 1993, Modern Heuristic Techniques for Combinatorial Problems, Wiley, New York.
Reif, J.: 1979, Complexity of the Mover’s problem and generalizations, in: Proc. of IEEE Symposium

on Foundations of Computer Science, pp. 421–427.


