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Abstract

Graph partitioning is an enablingtechnology for
parallel processingas it allows for the effective
decompositionof unstructured computationswhose
datadependenciescorrespondto a largesparseand
irregular graph. Eventhoughthe problemof com-
puting high-quality partitioningsof graphsarising
in scientificcomputationsis to a large extent well-
understood,this is far from being true for emerg-
ing HPCapplicationswhoseunderlyingcomputation
involvesgraphswhosedegreedistribution followsa
power-law curve. Thispaperpresentsnew multilevel
graph partitioning algorithmsthat are specifically
designedfor partitioning such graphs. It presents
new clustering-basedcoarseningschemesthat iden-
tify andcollapse togethergroupsof verticesthat are
highly connected. An experimentalevaluation of
theseschemeson 10different graphsshowthat the
proposedalgorithms consistentlyand significantly
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outperformexistingstate-of-the-artapproaches.

1 Intr oduction

Graphpartitioningis anenablingtechnologyfor
parallel processingas it allows for the effec-
tivedecompositionof unstructuredcomputations
whosedatadependenciescorrespondto a large
sparseandirregulargraph. Effective decompo-
sition of suchcomputationscanbeachieved by
computingap-waypartitioningof thegraphthat
minimizesvariousquantitiesassociatedwith the
edgesof the graphsubjectto variousbalancing
constraintsassociatedwith the vertices[28, 9].
Thesimplerversionof theproblembalancesthe
numberof vertices assignedto each partition
whileminimizingthenumberof edgesthatstrad-
dlepartitionboundaries(i.e.,arecutby theparti-
tioning). However, a numberof alternateobjec-
tives and constraintshave been developedthat
aresuitablefor addressingthecharacteristicsof
differentapplicationsand/orparallelcomputing
architectures[12, 3].

Researchin the last fifteenyearshasresulted
in anumberof high-qualityandcomputationally
efficient algorithms[28]. Among them, multi-
level graphpartitioningalgorithms[2, 15, 11,4,
21] arecurrentlyconsideredto be the state-of-
the-artandareusedextensively.

One limitation of existing multilevel graph
partitioningalgorithmsis that they aredesigned
to operateprimarily on graphsthat arederived
from finite elementmeshes(they eithercapture
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the topologyof the meshor the sparsitystruc-
ture of the matricesdefinedon them). These
graphs,even thoughthey are irregular, they do
have somelevel of regularity. Specifically, the
degreedistribution of suchgraphsis relatively
uniform, which is a direct consequenceof the
geometricconstraintsof theunderlyingmeshes.
This is becausein orderfor thenumericalmeth-
ods to converge meshelementsare requiredto
have goodaspectratios,which imposesanover-
all regularityon thegraph.

However, as the field of parallel processing
expandsto include a numberof emerging ap-
plicationsbeyondscientificcomputing,applica-
tions have emerged whoseunderlyingdatade-
pendenciesare describedwith graphsthat are
significantly more irregular. One such exam-
ple aretheparallelexecutionof page-rank-style
computations,that are typically appliedon ei-
ther web-graphsor othergraphsobtainedfrom
varioussocialnetworks(co-authorship,citation,
protein-proteininteractions,etc). The degree
distributionof thesegraphsfollowsa power-law
curve, in which thenumberof verticesof a cer-
tain degreedecreasesexponentiallywith thede-
gree.

As we will see in Section 3 thesepower-
law graphs impose new challengesto multi-
level graphpartitioningalgorithms,assomeof
the key algorithmsthat they employ for their
various phaseswere simply not designedfor
such graphs—causingthem to producepoor-
quality solutions and also require a relatively
highamountof timeandmoreimportantlymem-
ory.

In this paperwe presentnew multilevel graph
partitioningalgorithmsthat arespecificallyde-
signedfor partitioninggraphswhosedegreedis-
tribution follows a power-law curve. Our re-
searchfocusesprimarilyonthecoarseningphase
of the multilevel paradigm and presentnew
clustering-basedcoarseningschemesthat iden-
tify andcollapse togethergroupsof verticesthat
arehighly connected.We presenttwo classesof
clusteringschemes.The first utilizes local in-
formationwhile trying to identify theclustersof

verticeswhereasthe secondclassalso incorpo-
ratesinformationobtainedfrom a corenumber-
ing, which canbe consideredasproviding non-
local informationaboutthe graphsoverall clus-
terstructure.We experimentallyevaluateourap-
proacheson a 10 differentgraphsobtainedfrom
varioussourcesandcomparetheir performance
againsttraditionalmultilevel andspectralgraph
partitioning algorithms. Our resultsshow that
theproposedalgorithmsconsistentlyandsignif-
icantlyoutperformexistingapproaches.

The rest of this paper is organizedas fol-
lows. Section2 provides somekey definitions
usedthroughoutthe paperandprovidesa brief
overview of the multilevel graph partitioning
paradigm. Section3 discussesthe limitations
inherent in the current multilevel graph parti-
tioning algorithmsand provides someillustra-
tive examples. Section4 providesa motivation
and detaileddescriptionof the new clustering
algorithmsdevelopedin this work. Section5
provides a detailedexperimentalevaluation of
theseschemesandcomparesthemagainstexist-
ingstate-of-the-artalgorithms.Finally, Section6
provide someconcludingremarksand outlines
futureresearchdirections.

2 Backgr ound Material

Definitions An undirectedgraph G = (V, E)
consistsof a setof verticesV anda setof edges
E, such that eachedgeitself is a set of a dis-
tinct pairof vertices.Verticesu andv of an edge
(u, v) aresaidto beincidentto theedge.If there
arefunctionsf and/org thatmapeachvertex v ∈
V and/oreachedge(v, u) ∈ E to a real num-
ber, thenthegraphis consideredto beweighted
with f andg determiningthe vertex- andedge-
weights,respectively. Throughoutthediscussion
wewill assumethatthegraphis weightedandin
casesin which theoriginalgraphis unweighted,
weassumethateachvertex/edge hasaweightof
one.

A power-law graphis a graphwhosedegree
distribution followsa power-law function.More
precisely, afunctionof theformf = αdβ , where
f is thenumberof verticeswhosedegreeis d and
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β < 0 (i.e.,anexponentiallydecayingfunction).
Thesegraphshave a large numberof vertices
with very low degreeanda few verticeswith rel-
atively highdegrees[24]. Thesetypesof graphs
arealsoreferredto asscale-freegraphs. Exam-
ples of suchgraphsinclude the Internetgraph,
instantmessengergraphs,biological networks,
andvarioussocialnetworks.

A partitioningof the setof verticesV into k

disjoint subsets{V1, V2, . . . , Vk} is called a k-
way partitioning of V . Each of thesesubsets
arecalledthe partitions of G. A partitioningis
representedby a vectorP called the partition-
ing vector, suchthat P [i] storesthe partition-id
that the ith vertex is assignedto. A partitioning
is saidto cut andedgee, if its incidentvertices
belongto differentpartitions. The edge-cutof
a partitioningP , denotedby EC(P ) is equalto
thesumof theweightsof theedgesthatarebe-
ing cut by thepartitioning.Thepartition weight
of theith partition,denotedby w(Vi) is equalto
the sumof the weightsof the verticesassigned
to that partition. The total vertex weight of a
graph,denotedby w(V ) is equalto the sumof
theweightsof all theverticesin thegraph.The
load-imbalanceof a k-way partitioningP , de-
notedby LI(P ) is definedto be theratio of the
highestpartition weight over the averageparti-
tion weight.

Graph Partitioning Problem Form ulation Three
distinctgraph-partitioningproblemformulations
have beenusedto map computationsonto the
processorsof a parallelcomputer. Thesearethe
staticgraphpartitioning, thegraphrepartition-
ing, and the multi-constraint, multi-objective
graph-partitioning [14, 13,28].

This paperprimarily focuson thestaticgraph
partitioningproblemwhoseinput is a weighted
undirectedgraphG = (V, E). The weight on
the verticescorrespondto the (relative) amount
of computationrequiredby the corresponding
meshnode/element,whereasthe weight on the
edgecorrespondsto the(relative) amountof data
(or communicationtime) that needsto be ex-
changedin orderfor thecomputationassociated

with vertex to proceed. The goal of the static
graph-partitioningproblemis to computea k-
waypartitioningP , suchthatfor asmallpositive
numberǫ, LI(P ) ≤ 1 + ǫ andEC(P ) is mini-
mized. In most cases,0 < ǫ ≤ .02 [19, 22],
ensuringthat the overall partitioningwill incur
at mosta 2% load imbalance.Staticgraphpar-
titioning is usedto maptraditionalstaticsingle-
phasesimulationsontotheprocessorsof aparal-
lel computer.

Overvie w of the Multile vel Paradigm The key
idea behind the multilevel approachfor graph
partitioningis fairly simpleandstraightforward.
Multilevel partitioning algorithms, instead of
trying to computethepartitioningdirectly in the
original graph, first obtain a sequenceof suc-
cessive approximationsof the original graph.
Eachoneof theseapproximationsrepresentsa
problemwhosesize is smallerthan the size of
the original graph. This processcontinuesun-
til a level of approximationis reachedin which
the graphcontainsonly a few tensof vertices.
At this point, thesealgorithmscomputea par-
titioning of that graph. Since the size of this
graph is quite small, even simple algorithms
such as Kernighan-Lin(KL) [23] or Fiduccia-
Mattheyses (FM) [7] lead to reasonablygood
solutions. The final stepof thesealgorithmsis
to take the partitioningcomputedat the small-
est graphand useit to derive a partitioningof
theoriginalgraph.This is usuallydoneby prop-
agatingthesolutionthroughthe successive bet-
terapproximationsof thegraphandusingsimple
approachesto further refinethe solution. Since
thesuccessive finergraphshavemoredegreesof
freedom,suchrefinementsimprove the quality
of theresultingpartitioning.

In themultilevel partitioningterminology, the
above processis describedin terms of three
phases. The coarseningphase, in which the
sequenceof successively approximategraphs
(coarser) is obtained, the initial partitioning
phase, in whichthesmallestgraphis partitioned,
andtheuncoarseningand refinementphase, in
which the solutionof thesmallestgraphis pro-
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Figure1: The threephasesof the multilevel graphparti-

tioning paradigm. During the coarseningphase,the size

of the graphis successively decreased.During the initial

partitioningphase,abisectionis computed,Duringtheun-

coarseningandrefinementphase,the bisectionis succes-

sively refinedasit is projectedto the largergraphs.G0 is

theinputgraph,whichis thefinestgraph.G i+1 is thenext

level coarsergraphof Gi. G4 is thecoarsestgraph.

jectedto the next level finer graph,andat each
level an iterative refinementalgorithmis usedto
further improve the quality of the partitioning.
Thevariousphasesof multilevel approachin the
context of graphbisectionareillustratedin Fig-
ure1.

A commonlyusedmethodfor graphcoarsen-
ing is to collapse togetherthe pairsof vertices
that form a matching.A matchingof the graph
is a setof edges,no two of which are incident
on the samevertex. Vertex matchingscan be
computedby a numbermethods,such as ran-
dommatching,heavy-edgematching[18], max-
imumweightedmatching[8], andapproximated
maximumweightedmatching(LAM) [25]. For
example, Figure 2(a) shows a randommatch-
ing alongwith the coarsenedgraphthat results
from collapsingtogetherverticesincidentonev-
ery matchededge. Figure2(b) shows a heavy-
edgematchingthat tendsto selectedgeswith
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Figure 2: A randommatchingof a graphalong with

the coarsenedgraph (a). The samegraph is matched

(andcoarsened)with theheavy-edgeheuristicin (b). The

heavy-edgematchingminimizestheexposededgeweight.

higherweights[18].
A classof partitioningrefinementalgorithms

that are effective in quickly refining the parti-
tioning solutionduring the uncoarseningphase
arethosebasedon variationsof theKernighan-
Lin andFiduccia-Mattheysesalgorithms[15, 1,
5, 21,20, 10].

This paradigmwas independentlystudiedby
Bui and Jones[2] in the context of comput-
ing fill-reducingmatrixreordering,by Hendrick-
sonandLeland[15] in thecontext of finite ele-
mentmesh-partitioning,andby HauckandBor-
riello [11] (called Optimized KLFM), and by
Cong and Smith [4] for hypergraphpartition-
ing. KarypisandKumarextensively studiedthis
paradigmin [19, 17, 21] for the partitioningof
graphs.They presentednovel graphcoarsening
schemesand they showed both experimentally
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andanalyticallythateven agoodbisectionof the
coarsestgraphaloneis alreadya very goodbi-
sectionof the original graph. Thesecoarsening
schemesmadethe overall multilevel paradigm
veryrobustandmadeit possibleto usesimplified
variantsof KL or FM refinementschemesdur-
ing the uncoarseningphase,which significantly
speededup therefinementprocesswithoutcom-
promisingoverall quality.

Multilevel recursive bisectionpartitioningal-
gorithmsareavailablein several public domain
libraries, suchas Chaco[16], METIS [19], and
SCOTCH [26], and are used extensively for
graphpartitioningin a varietyof domains.

3 Motiv ation

Thesuccessof themultilevel graphpartitioning
algorithmsis primarily dueto thesynergy of the
coarseningandrefinementphases.In particular,
agoodcoarseningschemecanhidea largenum-
berof edgeson the coarsestgraph. Figure2 il-
lustratesthis point. The original graphsin Fig-
ures2(a)and(b) have total edgeweightsof 37.
After coarseningis performedoneach,theirtotal
edgeweightsarereduced.Figures2(a) and(b)
show twopossiblecoarseningheuristics,random
andheavy-edge. In bothcases,the total weight
of the visible edgesin the coarsenedgraph is
lessthan that on the original graph. Note that
by reducingtheexposededgeweight,thetaskof
computinga goodquality partitioningbecomes
easier. For example,a worst casepartitioning
(i.e., one that cuts every edge)of the coarsest
graphwill be of higher quality than the worst
casepartitioningof the original graph. Also, a
randombisectionof thecoarsestgraphwill tend
to bebetterthana randombisectionof theorigi-
nal graph. Similarly, beingable to performre-
finementat different coarserepresentationsof
thesamegraphsignificantlyincreasesthepower
of partitioningrefinementalgorithms– allowing
them to climb out of local minima by moving
groupsof verticesata time.

However, the effectivenessof the coarsen-
ing schemesemployedby currentstate-of-the-
art multilevel graphpartitioningalgorithmsdra-
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matically diminishesin the context of power-
law graphs. This is becauseexisting coarsen-
ing schemesdependon beingable to find suf-
ficiently largevertex matchingsto obtaina non-
trivial fractionalreductiononthenumberof ver-
ticesin successively coarsergraphs.Graphsaris-
ing in traditional scientific computingapplica-
tions tendto producesuchmatchings. In most
cases,the sizeof the matchingis very closeto
half thenumberof vertices(i.e.,mostof thever-
ticesgetmatchedwith othervertices),resulting
in graphsizereductionsthatarevery closeto a
factorof two.

On the otherhand,in power-law graphs,be-
causeof the uneven degree distribution, there
are a large numberof low-degree verticesat-
tachedto a relatively few high-degreevertices
that dramaticallylimits the size of the match-
ings that canbe computed. This is becauseas
soon as a high-degree vertex gets matched,it
cannotget matchedwith anothervertex in the
current level. This inability of the matching-
basedcoarseningapproachto find sufficiently
largematchings,hastwo importantimplications.
First,thenumberof exposededgestendtoshrink
at a very slow rate—eliminatinga key advan-
tage ofthemultilevel paradigm.Second,thesize
of successively coarsergraphsdoesnot reduce
quickly—increasingthe amountof memoryre-
quired to store thesegraphs. As a result, the
coarseningis usuallyterminatedat a muchear-
lier point (otherwisethememorycomplexity of
theseschemeswill be quadraticon the number
of vertices),resultingin a graphwhosesizeis in
generalsmallerthanthe original oneby a con-
stantfactor.

Figure3 illustratesthesepointsby comparing
threekey parametersof the coarseninghistory
of threegraphs(Google,Actor, andAuto). The
parametersare the numberof vertices,number
of edges,and the exposededgeweight of the
successively coarsergraphs. Among the three
graphs,the first two correspondto power-law
graphswhereasthe third one correspondsto a
graphobtainedfrom a 3D finite elementmesh.
Theseplotsillustratethatunlike themesh-based

graph for which all three parametersdecrease
rapidly during the courseof coarsening,these
parameterstendto decreasevery slow andonly
by a smallfactor forthepower-law graphs.

Theseresultssuggestthat in order to lever-
age the key conceptsand power of the multi-
level graphpartitioningparadigmfor power-law
graphs,new coarseningmethodsneedto bede-
velopedthatdonotexhibit thelimitationsof cur-
rentmatching-basedapproaches.

4 Clustering-Based Coarsening
Schemes

The approachthat we took in order to cor-
rect the limitations of matching-basedcoarsen-
ing schemesis to allow arbitrarysizesetsof ver-
ticesto be collapsedtogether. By doingso, we
try to directly attackthe sourceof the problem
andensure(up to a point) that the sizeof each
successive coarsergraphwill decreaseby a non-
trivial fraction.

Since our goal is to producea sequenceof
successively coarsergraphsthatarebothsmaller
and also have a much smaller exposededge-
weight, the problemof finding the setsof ver-
ticesto be collapsedtogethercanbe thoughtof
asa specialcaseof finding a larger numberof
small and highly connectedsubgraphs. Find-
ing such subgraphsis a well-studiedproblem
in thecontext of graph-basedclusteringin data-
mining[6] andanumberof algorithmshavebeen
developedfor solvingit.

However, oneof our initial designconsidera-
tionswasto developcoarseningschemeswhose
complexity is not significantlyhigher than that
of existing matching-basedschemes. For this
reason,the primary focus of our researchwas
on developing rathersimple but fast clustering
approaches.Towards this goal we considered
extensionsof theheuristicmatching-basedalgo-
rithms that allow thediscovery of arbitrarysize
subgraphs.

The operation of most of the existing
matching-basedschemescanbesummarizedas
follows [28]. They usea certainpolicy to order
theedgesof thegraphandconsiderthemfor in-
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clusion in the matchingbasedon this ordering.
For eachedge(v, u) that they consider, if both
v andu areunmatched,thenthepair of vertices
getsmatchedwith eachotherandarecombined
in the next level coarsergraph. However, if ei-
ther v or u hasalreadybeenmatchedwith an-
othervertex, thenthisedgeis ignoredandit does
notcontributeto thematching.If afterconsider-
ing all edges,someverticesremainunmatched,
thenthey arejustcopiedto thenext level coarser
graph.

Within this framework, all the methodsthat
we considerin this paperallow an unmatched
vertex v to potentiallybe matched with one of
its adjacentverticesu even if u hasalreadybeen
matched.By allowing this, we essentiallyasso-
ciatev with theclusterof verticesthatu belongs
to; thus, incrementallyconstructingthe various
clustersof verticesthat will form the nodesof
thenext level coarsergraph.

Specifically, we considera numberof algo-
rithms that differ along two orthogonaldimen-
sions. The first is the overall strategy that is
usedto visit the edgesof the graphandsecond
is the schemethat is usedto order the edges
within eachstrategy—givingapreferenceto cer-
tainclusteringsover others.

4.1 Edge Visiting Strategies

We considertwo generalstrategies for visiting
the variousedgesof the graphduring the pro-
cess ofidentifying the clustersof vertices to
collapse together. Thesestrategies will be re-
ferred to as the globally greedystrategy (GG)
andastheglobally random-locallygreedystrat-
egy (GRLG).For therestof thediscussionin this
sectionwe assumethatthereis a functionto or-
der a set of edgesE in somepreferenceorder
F(E). Thesefunctionswill be describedlater
in Section4.2, but the motivation behindthem
is to allow thecoarseningalgorithmsto identify
clustersof highly connectedvertices.

Algorithms that follow the GG strategy will
orderall theedgesof G = (V, E) accordingto
F(E) and thenvisit thembasedon this order-
ing. The motivation behind this strategy is to

fully takeadvantageof theinformationencapsu-
latedin theselectedpreferenceorderby allowing
the algorithmto considerfor groupingtogether
verticesthataremostlikely to bepartof a good
cluster.

On theotherhand,algorithmsthat follow the
GRLGstrategy will visit theverticesof thegraph
in arandomorderandfor eachvertex v they will
useF to locally ordertheedgesI(v) thatarein-
cidenton v. Themotivationbehindthis strategy
is to eliminatethe potentiallyexpensive stepof
computinga globalorderingof all theedgesbut
still retainkey elementsof the greedynatureof
theGG strategy.

Additional Considerations A potentialproblem
thatcanarisewith theabove schemesis thatthe
mayendupconstructinga relatively smallnum-
berof ratherlargeclusters.As a result,thenum-
berof verticesof thesuccessively coarsergraphs
candecreaseby afactorthatis muchgreaterthan
two. Suchrapid coarseningscanadverselyim-
pact the effectivenessof multilevel refinement,
asthenumberof levelsthatit operatesoncanbe
small. The GG andGRLG strategiesovercome
thisproblemby employingtwo constraints.

First, during the cluster discovery process,
boththeGG andGRLG strategieskeeptrackof
the currentnumberof verticesin the next-level
coarsergraph. That is, thesizeof thegraphas-
sumingthat no furtherclusteringhasbeenper-
formed andany unmatchedverticesweresimply
copiedto the coarsergraph. If that size drops
bellow half of the sizeof the currentgraph,no
further clusteringis being performed,and the
next-level coarsergraphis constructedfrom the
currentinformation.This constraintensuresthat
the sizeof successive coarsergraphsdecreases
by at mosta factorof two.

Second,they set a limit on the size of the
clusterthatcanbe formedanywhereduring the
coarseningprocess.This limit is specifiedin the
form of a maximumvertex weight (MaxVWgt)
thatany clustercanhave. During thecoarsening
phase,if an edgewill resultin thecreationof a
clusterwhosesizeis greaterthanMaxVWgt, then
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that particularclusterdoesnot get formed and
the edgeis skipped. The value ofMaxVWgtis
setto be1/20thof thetotal vertex weightof the
original graph,which essentiallylimits the size
of the coarsestgraphat least20 vertices. The
effect of this constraintis two fold: (i) it throt-
tles the coarseningrate,and (ii) it ensuresthat
the sizeof the coarsestverticesdo not become
solargesothatit will beinfeasibleto computea
balancedtwo-waypartitioning.

4.2 Edge Ordering Criteria

Our experiencewith multilevel graphpartition-
ing algorithmsin the context of scientificcom-
puting applications[17] showed that the effec-
tivenessof the variousmatchingschemeswas
relatedwith (i) their ability to collapse together
regionsof the graphthat correspondedto well-
connectedsubgraphsand(ii) theirability to pro-
ducecoarsergraphswhoseverticeshave arela-
tively uniformsizedistribution.

Guidedby thesetwo principleswe developed
a numberof differentorderingcriteriathatcom-
bine variouspiecesof information. This infor-
mationis obtainedby eitheranalyzingeachedge
in the context of its local environment(i.e., the
edgeandits incidentvertices)or in a somewhat
largercontext derived bytakingintoaccountcer-
tainaspectsof its nearbytopology.

Local Envir onment For eachedgee = (v, u)
we consideredthreepiecesof information that
canbeobtainedby analyzinge, v, andu. These
aretheweightof theedge(w(e)), theweightof
thevertices(w(v) andw(u)), andthedegreeof
thevertices(d(v), d(u)).

The weight of the edgeis importantbecause
it providesinformationaboutthestrengthof the
connectionbetweenverticesv and u. In addi-
tion, since during the coarseningprocess,the
weightsof the edgesareset to be equalto the
sum of the weights of the edgesof the origi-
nal graphthat connectverticesencapsulatedin
v with vertices encapsulatedin u, they pro-
vide important information on whetheror not
the subgraphobtainedby combining v and u

is well-connected. Thus, everything else be-
ing equal,we will preferedgesthat have high
edge-weightover edgesthat do not. Note that
this is also the primary motivation behind the
heavy-edgematchingschemeused in existing
matching-basedcoarseningschemes.

Thesumof theweights(w(v) + w(u)) is im-
portantas it affects the size distribution of the
verticesin the coarsergraphs. In particular, if
w(v)+w(u) is veryhigh,thenthiswill decrease
theeffectivenessof theKL/FM-type refinement
algorithmsasit will prevent themfrom moving
it acrossthe partition boundary(assumingthat
suchmovesimprovethecut). Thereasonfor this
is that dueto its size,sucha move may leadto
a highly unbalanced(i.e., infeasible)bisection.
Thus,everythingelsebeingequal,we will pre-
fer edgeswhosesumof vertex weightsis small.

The degreeof eachvertex is importantas it
providesinformationastohow many otheredges
exist in thegraphthatcanbeusedto clusterei-
ther v or u. For example,if min(d(v), d(u)) is
one, then this edgeis the only way by which
oneof the verticescanbe includedin a cluster.
Everything else being equal,we shouldprefer
edgesthat have at leastonevertex with a very
smalldegreeassuchedgesprovidethebest(and
in many casestheonly) opportunityfor the low
degreevertex to be includedin a cluster. Note
that if suchedgesarenot beengiven priority, by
the time they will endbeingconsidered,it may
bethatthesizeof theresultingclusterwill have
grown too large,preventingtheformationof this
cluster.

Non-local Envir onment To obtain information
about the non-localenvironmentof eachedge
weusetheconceptof thegraphcore,whichwas
first introducedby Seidman[27]. Given agraph,
G = (V, E), a subgraphH inducedby C ⊆ V

is a coreof orderk, written asHk, iff for every
v ∈ C, dH(v) ≥ k, wheredH(v) is thedegreeof
vertex v in H. The core number of a vertex v

(Γ(v)) is themaximumorderof a corethatcon-
tainsthatvertex. Coresexhibit thefollowing two
properties[29]:
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• Nestedrelationfor i < j, Hj ⊂ Hi.

• For any core,Hi, it i s notnecessarythatHi

bea connectedcomponent.

The corenumberof a vertex v andthe prop-
erties of the cores provide information as to
whetheran edgee = (v, u) is part of well-
connectedsubgraphor not. In particular, dueto
the nestedrelation, for every edgee = (v, u)
we know that thereis an inducedsubgraphthat
containse whoseminimum degree is at least
min(Γ(v), Γ(u)). Thus, everything else being
equal,we will preferedgesthat have high core
numbers,or edgeswhosecorenumbersarecom-
parable.Thereasonwhy thesecondsetof edges
are of interest is becausethe representsome
of the bestpotentialclustersof the verticesin-
volved.

Note that the notion of the graph core has
beenextendedbeyond just the degreeof a ver-
tex to alsoincludemoregeneralfunctionssuch
as the sum-of-the-edge-weights[29]. Since
we aredealingwith weightedgraphs,we used
this latter corenumberingdefinition. Note that
thereis aO(|V |)-time algorithmto computethe
corenumberingin the context of degreesanda
O(|V | log |V |)-timealgorithmfor thecaseof the
sum-of-the-edge-weights.

4.3 Putting Everything Together

A large numberof coarseningapproachescan
be developedby combiningthe two edgevisit-
ing strategies and the four edgeorderingcrite-
ria. Due to spaceconstraints,in this paperwe
focuson a subsetof themthatour initial studies
showed to representsomeof the bestcombina-
tions. The key characteristicsof theseschemes
aresummarizedin Table1.

5 Experimental results

5.1 Dataset Description

We evaluatedtheperformanceof thenew coars-
eningschemeson ten differentgraphsobtained
from various sources. The characteristicsof
thesegraphsareshown in Table2.

GloballyGreedyStrategies
Orderingschemesfor edgese = (v, u)

CoarsenScheme Description Order
GDCS Sortedlist of edgesby

1. d(v) + d(u) Ascending
2. w(e) Descending

GFC Sortedlist of edgesby
1. w(e) Descending
2. w(u) + w(v) Ascending

GHELD Sortedlist of edgesby
1. w(e) Descending
2. d(v) + d(u) Ascending

GCORE Sortedlist of edgesby
1. sqrt(Γ(u)) + sqrt(Γ(v)) Descending
2. w(e) Descending

GFCDC Sortedlist of edgesby
1. w(e) Descending
2. w(v) + w(u) Ascending
3. abs(Γ(u) − Γ(v)) Ascending

GFCC Sortedlist of edgesby
1. w(e) Descending
2. w(u) + w(v) Ascending
3. Γ(u) + Γ(v) Descending

GloballyRandom,Locally GreedyStrategies
Schemesto ordertheedgese = (v, u) incidentonv

CoarsenScheme Description Order
LDHE 1. d(u) Minimum

2. w(e) Maximum
HELD 1. w(e) Maximum

2. d(u) Minimum
FC 1. w(e) Maximum

2. w(u) Minimum
FCC 1. w(e) Maximum

2. w(u) Minimum
3. Γ(u) Maximum

FCDC 1. w(e) Maximum
2. w(u) Minimum
3. abs(Γ(u) − Γ(v)) Minimum

CORE 1. sqrt(Γ(u)) Maximum
2. w(e) Maximum

Table 1: The variouscoarseningschemesdevelopedby

combiningdifferentedgevisiting strategiesandordering

criteria. The orderof the criteriadeterminestheir role as

theprimary, secondary, or tertiaryimportance.

TheCitation datasetwascreatedfrom theci-
tationgraphusedin KDD Cup20031. Eachver-
tex in this graphcorrespondsto a documentand
eachedgecorrespondsto acitationrelation.Be-
causethepartitioningalgorithmsdealwith undi-
rectedgraphs,thedirectionof thesecitationswas
ignored. The DBLP datasetwas createdfrom
the co-authorshipinformation from Computer
Scienceresearchpublications2. Verticesin the
graphrepresentauthorsandedgesexistsif apair

1http://www.cs.cornell.edu/projects/kddcup/
datasets.html

2http://www.informatik.uni-trier.de/ley/db/index.html
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Degree f = αdβ fit
Dataset #vertices #nedges µ σ min max α β

Citations 27400 352504 25.73 45.56 1 2468 3.34 -7.92
DBLP 310138 1024262 6.61 9.94 1 344 6.33 -8.81
Actor 498925 1460791 5.86 11.39 1 646 2.51 -1.89
Google 198782 295063 2.97 12.14 1 1471 1.35 -2.28
NDwww 325729 1090107 6.69 42.82 1 10721 1.62 -5.83
Overture 75002 411013 10.96 53.93 1 6619 3.51 -1.43
PPI 59191 160737 5.43 12.30 1 1116 2.42 -1.55
Scan 228263 320149 2.81 8.36 1 1937 1.34 -1.77
Lucent 112969 181639 3.22 4.93 1 423 4.37 -1.19
Scan+Lucent 284772 449228 3.16 9.05 1 1978 1.47 -5.36

Table2: Characteristicsof thedifferentgraphsusedto evaluatethemultilevel partitioningalgorithm.

of authorshaveco-authoredat leastonepublica-
tion. TheGoogledatasetwasobtainedfrom the
2002GoogleProgrammingContest3. Theorigi-
naldatasetcontainsvariousweb-pagesandlinks
from various“edu” domain. We convertedthe
datasetinto an undirectedgraphin which each
vertex correspondsto aweb-pageandan edgeto
a hyperlinkbetweenweb-pages.In creatingthis
graph,we keptonly thelinks between“edu” do-
mainsthatconnectedsitesfrom differentsubdo-
mains. The NDwwwdatasetis a completemap
of the nd.edudomain4. Eachvertex represents
a web pageand an edgerepresentsa link be-
tweentwo pages.TheOverture datasetwasob-
tainedfrom OvertureInc (now part of Yahoo!)
and is similar in natureto the Google dataset
andcorrespondsto a three-level deepcrawl out
of ten seedCS homepageof major Universi-
ties. The PPI datasetis createdfrom Database
of InteractingProteins(DIP)5. Each vertex in
thisgraphcorrespondsto aparticularproteinand
there is an edgebetweena pair of proteinsif
theseproteinshave beenexperimentallydeter-
mined to interactwith eachother. The SCAN
datasetcorrespondsto theInternetmapobtained
using the Mercatorsoftware. Eachvertex rep-
resentsan Internetrouter and an edgeimplies
thatthetwo routersattheendpointsareadjacent.
The Lucentdatasetwas constructedvia tracer-
outerscollectedby theInternetMappingproject

3http://www.google.com/programming-contest/
4http://www.nd.edu/networks/resources.htm
5http://dip.doe-mbi.ucla.edu/

at Lucentlaboratories.Eachvertex representsa
routerandan edgeindicatesadjacency between
the routers.The SCAN+Lucentdatasetwasob-
tainedby the merging of information from the
LucentandSCAN datasets6. The Actor dataset
wasconstructedfrom theactordata oftheInter-
netMovie Database(IMDB) 7. Verticesrepresent
actorsandmovies.Eachedgehasanactorasone
endpointanda movie astheotherandindicates
thattheactorplayedin themovie.

Since the original version of the above
datasetscontaineda large numberof singleton
vertices and/or very small connectedcompo-
nents,we first extractedfrom eachdatasetthe
largestconnectedcomponentandusedit for our
evaluation. The statisticspresentedin Table 2
correspondto the largestconnectedcomponent
andnot theoriginaldataset.

5.2 Experimental Methodology

Sincemany of theschemesunderconsideration
arerandomizedin nature,in orderto ensurethat
the resultsarenot biasedin any way, we com-
puted 100 different bisectionsfor each graph
and report the averagecuts. In the caseof the
schemesfollowing theGRLG strategy, eachdif-
ferentrun wasperformedusinga differentran-
domly obtainedorderingof the vertices. In the
caseof theGGstrategies,randomizationwasin-
troducedasa tie-breakingmechanism.

6All three of these datasetscan be obtainedfrom
http://www.isi.edu/div7/scan/mercator/maps.html.

7http://www.nd.edu/networks/resources.htm.

10



Theperformanceof thedifferentschemespre-
sentedin this paperwerecomparedagainsttwo
existing partitioningalgorithms.Thefirst is the
bisectionalgorithmprovidedby METIS [19] (us-
ing the pmetis program)and the secondis
the spectralpartitioningalgorithmprovided by
Chaco[16]. Note that the bisectionsproduced
by spectralwere further refinedby usinga KL
refinementalgorithm(i.e., the SPECTRAL-KL
optionof Chaco).

Notethatdueto spaceconstraints,our exper-
imentalevaluationwaslimited to only two-way
partitionings.However, therelativeperformance
of the different schemesremainsthe samefor
largernumberof partitions.

5.3 Results

Thecutsobtainedby thevariousschemesacross
thedifferentdatasetsareshown in Table3. This
table shows the performanceof 12 different
schemes,the tenintroducedin thispaperandde-
scribedin Table 1 along with the performance
achieved by METIS and Spectral. The last row
of the tablecontainsthe minimumcut achieved
over thedifferentschemes,whereasthelastcol-
umn (labeled“ACRB”) shows the AverageCut
Relativeto the Best. For a particularscheme,
this measureis obtainedby computingthe ratio
of the cutobtainedonaparticulargraphover the
minimumcut obtainedby thedifferentschemes,
averagedover the differentdatasets.The value
of ACRB will be greaterthanor equalto one.
A valuecloseto one indicatesthat a particular
schemeobtainscutsthat areeitherthe smallest
or very closeto the smallestobtained,whereas
a largevalueindicatesthat thecutsobtainedby
a schemearemuchworsethanthebest cutsob-
tainedby thedifferentschemes.

In addition to the direct cut-basedcompar-
isons,Table4 comparesthevariousschemesby
analyzingthe extent to which the differencein
performancebetweeneachpair of schemesis
statisticallysignificantor not. For our statisti-
cal significancetestingwe usedthe Wilcoxon’s
paired signed rank test using a 5% signifi-
cancelevel. Note that the last column(labeled

“Win-Loses”) displays the differencebetween
the numberof schemesin which a particular
schemeis statisticallybetterandthe numberof
schemesin which the schemesis statistically
worse.Thus,apositivevalueindicatesascheme
that doeswell whereasa negative value repre-
sentsa schemethatdoespoorly.

Discussion Looking at the resultsfrom these
tableswe can makea numberof observations.
First, comparingtheGG with theGRLG strate-
gies we can see that the GG schemesdo not
performas well as the GRLG ones. The best
globally greedyschemehasan ACRB value of
1.57 as comparedto the best locally greedy
ACRB value of1.06. Moreover, the advantage
of GRLGover GGisalsostatisticallysignificant.
In factalmostall GRLGschemesoutperformthe
GGschemes.

Second,comparingorderingschemesthatuse
local informationagainstschemesthat also in-
corporatenon-localinformationprovide by the
corenumbering,wecanseethatcorenumbering
aloneleadsto poorly performingschemes(e.g.,
CORE/GCORE).However, the combinationof
local informationwith corenumberingleadsto
improvedresults.In fact,theFCDC,whichis the
bestperformingschemein termsof ACRB com-
binesinformationabouttheedgeweight,vertex
weights,andcores.However, thedifferencebe-
tweenFCDCandFC(whichusesonly edge-and
vertex-weights)is notstatisticallysignificant.

Third, comparingthe performanceachieved
by the variousschemesproposedin this paper,
we canseethat threeof them,FCDC, FC, and
HELD produceresultsthatarequitecomparable
(the schemesarenot statisticallydifferentfrom
eachother)andarethebestperformingschemes.

Fourth, comparingthe performanceachieved
by theabove threeschemesagainstthatachieved
by METIS andSpectral,we canseethatall three
of themproduceresultsthataresubstantiallybet-
ter than either one of them. Also, in addition
to theabove threeschemes,METIS is alsobeing
outperformedby FCC,whereasSpectralis also
outperformedby FCCandLDHE.
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Citations DBLP Actor Google NDwww Overture PPI Scan Lucent Scan+Lucent ACRB
FC 17122 51972 42376 6791 1813 25855 9286 4404 2378 7779 1.07
FCDC 15868 52405 42404 6867 1866 26029 8926 4560 2387 7594 1.06
HELD 20264 51967 40000 6725 1863 25740 8845 4370 2490 7762 1.08
FCC 17836 53246 42985 6913 1827 26498 9226 4537 2464 7829 1.09
LDHE 22829 55387 39762 7159 3546 26321 9772 6019 2904 10176 1.31
GCORE 15196 56923 57796 10934 8121 30752 11535 5817 3754 10291 1.69
GDCS 23786 56628 40809 8006 6425 28044 10177 7096 3142 11889 1.57
GFC 15191 71846 51568 8922 5410 30073 10552 7847 3699 12343 1.59
GFCDC 15503 71347 51776 10395 9480 27992 10272 7409 3673 11905 1.80
GHELD 28395 61672 49103 7540 6270 32046 10529 7953 3096 12563 1.66
CORE 23466 80620 47579 13506 9505 33141 12629 7604 4908 13957 2.05
GFCC 14914 85087 50714 19596 10610 34036 13788 15747 5039 24463 2.54
METIS 14925 61242 113962 14758 6638 34973 12853 11575 4323 6411 1.94
Spectral 25765 72450 78342 7144 8120 33588 7469 4950 3874 22047 1.91
Minimum 14914 51967 39762 6725 1813 25740 7469 4370 2378 6411

Table3: Thecutsof thedifferentcoarseningschemesaveragedover 100runs.

FC FCDC HELD FCC LDHE GCORE GDCS GFC GFCDC GHELD CORE GFCC METIS Spectral Win-Loses
FC = = = > > > > > > > > > > > 11

FCDC = = = > > > > > > > > > > > 11
HELD = = = = > > > > > > > > > > 10
FCC < < = = = > > > > > > > > > 7

LDHE < < < = = = > > > > > > = > 4
GCORE < < < < = = = = = = = > = = -3
GDCS < < < < < = = = = > > > = = -2
GFC < < < < < = = = = = > > = = -3

GFCDC < < < < < = = = = = > > = = -3
GHELD < < < < < = < = = = = = = = -6
CORE < < < < < = < < < = = = = = -8
GFCC < < < < < < < < < = = = = = -9
METIS < < < < = = = = = = = = = = -4
Spectral < < < < < = = = = = = = = = -5

Table4: Resultsof statisticalsignificancetestingusingWilcoxon’s pairedsignedrank testusing5% significancelevel.

The entriesmarkedwith a “<” (“>”) indicatethat the schemeof the row performsstatisticallyworse(better)thanthe

schemeof thecolumn.Entriesmarkedwith a “=” indicatethatthedifferencebetweenthetwo schemesis notstatistically

significant. The last columndisplaysthedifferencebetweenthenumberof schemesin which the schemein the row is

statisticallybetterandthenumberof schemesin whichtheschemesis statisticallyworse.
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Finally, to illustrate how the coarsening
schemesdevelopedin this paperovercomethe
limitations of the matching-basedcoarsening
schemesdescribedin Section3, Figure4 shows
therateatwhichthenumberof vertices,number
of edges,andtheexposededge-weightdecreases
for the FC coarseningschemeand the heavy-
edgematching-based(HEM) schemefor Google
and Actor. Note that the resultsfor HEM are
identicalto thoseshown in Figure3. As we can
seefrom theseplots,thecoarseningschemesare
quite effective in producingsuccessive coarser
graphsin which all threeof thesequantitiesre-
duceat amuchhigherratethanHEM.

6 Conc lusions and Directions for Fu-
ture Research

This paperfocusedon the problemof develop-
ing graphpartitioningalgorithmsfor power-law
graphs. Towardsthis goal it presenteda num-
ber of new algorithmsbasedon the multilevel
graphpartitioningparadigmthat weredesigned
to leveragethe strengthsinherentto theseap-
proachesandto addressthechallengesimposed
due to the uneven degree distribution of these
graphs.

The comprehensive experimentalevaluation
showed that threeof the methodsintroducedin
this paperachieve consistentlysomeof thebest
results,outperformingbothexistingstate-of-the-
art multilevel methodsas well as more tradi-
tional partitioningapproachesbasedon spectral
methods.

The researchin this papercan be extended
alonga numberof directionsincluding the de-
velopmentof even bettercoarseningschemesas
well asthedevelopmentof effective paralleliza-
tion strategiesfor them. In addition,oneof the
issuesthatneedto be further investigatedis the
extent to which the informationprovidedby the
graphcorescanalsobeusedto improve theper-
formanceof traditionalmatching-basedcoarsen-
ing schemes.
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