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Abstract. Over the last decade several prediction methods have been devel-
oped for determining structural and functional properties of individual protein
residues using sequence and sequence-derived information. Most of these meth-
ods are based on support vector machines as they provide accurate and gen-
eralizable prediction models. We developed a general purpose protein residue
annotation toolkit (ProSAT) to allow biologists to formulate residue-wise pre-
diction problems. ProSAT formulates annotation problem as a classification or
regression problem using support vector machines. For every residue ProSAT
captures local information (any sequence-derived information) around the re-
side to create fixed length feature vectors. ProSAT implements accurate and
fast kernel functions, and also introduces a flexible window-based encoding
scheme that allows better capture of signals for certain prediction problems.
In this work we evaluate the performance of ProSAT on the disorder prediction
and contact order estimation problems, studying the effect of the different ker-
nels introduced here. ProSAT shows better or at least comparable performance
to state-of-the-art prediction systems. In particular ProSAT has proven to be
the best performing transmembrane-helix predictor on an independent blind
benchmark. Availability: http://bio.dtc.umn.edu/prosat

1 Introduction
Experimental methods to determine the structure and function of proteins have
been out-paced with the abundance of available sequence data. As such, over the
past decade several computational methods have been developed to characterize
the structural and functional aspects of proteins from sequence information [26].

Support vector machines (SVMs) [28] along with other machine learning
tools have been extensively used to successfully predict the residue-wise struc-
tural or functional properties of proteins [4, 15, 20]. The task of assigning every
residue with a discrete class label or continuous value is defined as a residue
annotation problem. Examples of structural annotation problems include the
secondary structure prediction [11,15,22], local structure prediction [5, 14], and
contact order prediction [18, 27]. Examples of function property annotation in-
clude prediction of interacting residues [20] (e.g., DNA-binding residues, and
ligand-binding residues), solvent accessible surface area estimation [21, 25], and
disorder prediction [4, 9].

We have developed a general purpose protein residue annotation toolkit
called ProSAT. This toolkit uses a support vector machine framework and is
capable of predicting both a discrete label or a continuous value. ProSAT allows
use of any type of sequence information with residues for annotation. For every



residue, ProSAT encodes the input information from the residue and its neigh-
bors. We introduce a new flexible encoding scheme that differentially weighs
information extracted from neighboring residues, based on the distance to the
central residue. ProSAT also uses an exponential second-order kernel function
shown to be effective in capturing pairwise interactions between residues, and
hence improve the classification and regression performance for the annotation
problems [15].

To the best of our knowledge, ProSAT is the first tool that is designed to
allow life science researchers to quickly and efficiently train SVM-based models
for annotating protein residues with any desired property. The kernel functions
implemented are also optimized for speed, by utilizing fast vector-based oper-
ation routines within the CBLAS library [29]. ProSAT 3 is made available as a
pre-compiled binary on several different architectures and environments.

In this paper we report our evaluation studies highlighting the different fea-
tures of ProSAT on the disorder prediction [4] and contact order estimation [27]
problem. ProSAT shows a statistically significant improvement on both the disor-
der prediction (1%) and contact order estimation problems (20%) in comparison
to previously established methods. We have also tested ProSAT on the DNA-
binding [20], and local structure prediction problem (results not reported here).
ProSAT improves over state-of-the-art transmembrane helix prediction meth-
ods [12], as evaluated by an independent benchmark [17]. Recently, ProSAT was
used to develop the best performing transmembrane-helix segment identifica-
tion and orientation system called TOPTMH [1], and improve the compara-
tive modeling ligand-binding regions of proteins [16]. The models trained by
ProSAT are also used to generate predictions for a webserver developed by us
called MONSTER (Minnesota prOteiN Sequence annoTation servER) available
at http://bio.dtc.umn.edu/monster.
2 Problem Definition and Notations
In this paper, we will refer to protein sequences by X and Y , and an arbitrary
residue by x. Given a sequence X of length n, with it are associated derived
features F , a n × d matrix where d is the dimensionality of the feature space.
The features associated with the ith residue xi are the ith row of the matrix F
denoted as Fi. When multiple types of features are considered, the lth feature
matrix is specified by F l. In Figure 1 (a) we show the PSI-BLAST derived
position specific scoring matrix of dimensions n× 20 (discussed in Section 3.2).

In order to encode information for a residue ProSAT uses the information
from neighboring residues as well. ProSAT uses a wmer-based encoding to cap-
ture sequence information for residue xi to perform the residue-wise prediction.
ProSAT uses the (2w + 1) rows of the matrix F , Fi−w . . . Fi+w to encapsulate
the feature information associated with the wmer centered at residue xi. This
submatrix is denoted by wmer(Fi) and is linearized to generate a vector of length
(2w + 1)d, where d is the dimension of the matrix F .

As seen in Figure 1(b) for the circled residue, three residues above and below
are also selected and the corresponding information from the feature matrix is
extracted. Further Figure 1(c) represents the linearized submatrix as a vector
which encodes the information for the problem.3 http://bio.dtc.umn.edu/prosat



3 Methods

Example Sequence: FVNQHLCGSHLVEALYLVCGERGFFYTPKA
         A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V   
    F   -3 -3 -4 -4 -3 -3 -4 -4 -2  0  2 -4  0  7 -4 -3 -3  0  4 -1  
    V   -1 -3 -3 -1 -2 -2 -2 -3 -3  1 -1 -2 -1 -3  5  0 -1 -4 -3  4 
    N   -1 -1  5  0 -3 -1 -1 -2 -1 -2 -3  0 -3 -4  3  2  1 -4 -3 -3
    Q   -2  1 -1 -1 -4  7  2 -3  0 -4 -3  1 -1 -4 -1 -1 -1 -3 -2 -3   
    H   -2  1  0 -2 -4  0 -1 -3  9 -4 -3 -1 -2 -2 -3 -1  0 -3  2 -3  
    L   -2 -3 -4 -5 -2 -3 -4 -5 -4  1  5 -3  2  0 -4 -3 -2 -2 -2  0 
    C   -1 -4 -3 -4 10 -4 -4 -3 -4 -2 -2 -4 -2 -3 -4  0 -1 -3 -3 -2
    G   -1 -3 -1 -2 -3 -3 -3  7 -3 -5 -5 -2 -4 -4 -3 -1 -2 -3 -4 -4   
    S    1 -1  0 -1 -2 -1 -1  0 -2 -3 -3  0 -2 -3  0  5  0 -4 -3 -2  
    H   -2 -1  2  1 -4  1  2 -3  8 -4 -4 -1 -3 -2 -3 -1 -2 -3  1 -4 
    L   -2 -3 -4 -5 -2 -3 -4 -5 -4  1  5 -3  1  0 -4 -3 -2 -2 -2  0
    V   -1 -3 -4 -4 -2 -3 -3 -4 -4  2  0 -3  0 -2 -3 -3 -1 -4 -2  6  
    E   -2 -1  1  4 -5  1  5 -3 -1 -4 -4  0 -3 -4 -2 -1 -2 -4 -3 -4  
    A    5 -2 -2 -3 -1 -2 -2 -1 -2 -2 -2 -1 -2 -3 -2  1  1 -3 -3 -1 
    L   -2 -3 -4 -5 -2 -3 -4 -5 -4  1  5 -3  1  0 -4 -3 -2 -2 -2  0   
    Y   -2 -2 -3 -3 -3  1  0 -4  1 -2 -2 -2 -2  3 -4 -2 -2  1  8 -2  
    L   -2 -3 -4 -4 -2 -3 -4 -4 -3  1  4 -3  3  3 -4 -1 -2 -2 -1  0 
    V    0 -3 -4 -4 -2 -3 -3 -4 -4  2  0 -3  0 -2 -3 -2  0 -4 -2  5
    C   -1 -4 -3 -4 10 -4 -4 -3 -4 -2 -2 -4 -2 -3 -4  0 -1 -3 -3 -2  
    G    0 -3 -1 -2 -3  0 -3  6 -3 -5 -4 -2 -3 -4 -3 -1 -2 -3 -4 -4 
    E   -2  0  0  4 -4  0  5 -3 -1 -3 -3  0 -3 -4  1 -1 -2 -4 -3 -1
    R   -2  6  0  0 -4  0 -1 -3 -1 -4 -3  2 -2 -4 -3  0 -1 -4 -3 -3 
    G   -1 -3 -1 -2 -3 -3 -3  7 -3 -5 -5 -2 -4 -4 -3 -1 -2 -3 -4 -4
    F   -3 -4 -4 -4 -3 -4 -4 -2 -2 -1  0 -4 -1  8 -5 -3 -3  0  2 -2  
    F   -3 -3 -4 -4 -3 -4 -4 -4 -1 -1 -1 -4 -1  7 -4 -3 -3  1  5 -2 
    Y   -3 -3 -3 -4 -3 -3 -3 -4  1 -2 -2 -3 -2  4 -4 -3 -3  1  8 -2
    T   -1 -1  3  1 -2  0 -1 -2 -2  0 -2 -1 -2 -3 -1  2  4 -4 -2 -1 
    P   -2 -3 -3 -1 -4 -2 -2 -3 -3 -4 -4 -2 -3 -5  8 -1 -1 -5 -4 -3
    K   -2  3 -1  0 -4  1  0 -2 -1 -3 -2  6  0 -4 -2 -1 -1 -4 -3 -3 
    A    3 -2 -1 -2 -1 -1 -1  2 -2 -2 -2 -1 -2 -3 -2  2  3 -3 -3 -1 

    E   -2 -1  1  4 -5  1  5 -3 -1 -4 -4  0 -3 -4 -2 -1 -2 -4 -3 -4  
    A    5 -2 -2 -3 -1 -2 -2 -1 -2 -2 -2 -1 -2 -3 -2  1  1 -3 -3 -1 
    L   -2 -3 -4 -5 -2 -3 -4 -5 -4  1  5 -3  1  0 -4 -3 -2 -2 -2  0   
    Y   -2 -2 -3 -3 -3  1  0 -4  1 -2 -2 -2 -2  3 -4 -2 -2  1  8 -2  
    L   -2 -3 -4 -4 -2 -3 -4 -4 -3  1  4 -3  3  3 -4 -1 -2 -2 -1  0 
    V    0 -3 -4 -4 -2 -3 -3 -4 -4  2  0 -3  0 -2 -3 -2  0 -4 -2  5
    C   -1 -4 -3 -4 10 -4 -4 -3 -4 -2 -2 -4 -2 -3 -4  0 -1 -3 -3 -2  
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∑/2 ∑/2

E A L Y L V C

 wmer: EALYLVC

(c)

(d)

(b)

(a)

Fig. 1. (a) Input example sequence along with PSI-BLAST profile
matrix of dimensions n × 20, with a residue circled to show the
encoding steps. (b) Example wmer of w = 3 and length seven,
with extracted submatrix from the original PSI-BLAST matrix.
(c) Encoded vector of length 7 × 20 formed by linearizing the
submatrix (d) Flexible encoding showing three residues in the
center using the finer representation, and two residues flanking
the central residues on both sides using a coarser representation
as an averaging statistic. Length of this vector equals 5× 20.

We approach the pro-
tein residue annotation
problem by utilizing lo-
cal sequence information
around each residue in a
supervised machine learn-
ing framework. We use
support vector machines
(SVM) [28] in both clas-
sification and regression
formulations to address
the problem of annotat-
ing residues with dis-
crete labels and contin-
uous values respectively.
We use the publicly avail-
able SVMlight program [10]
for the discriminatory learn-
ing.

3.1 Support Vector
Classification and
Regression
The task of assigning a la-
bel to the residue x from
one of the K possible annotation labels is a typical multiclass classification prob-
lem. The general strategy is to build K one-versus-rest binary SVM classification
models that assign a residue to be in a particular class or not. Let A+ refer to
the residues with on particular label, the positive class, and A− refer to the
remaining residues, the negative class. In its dual formulation, a support vector
machine learns a classification function f(x) of the form

f(x) =
X

xi∈A+
λ
+
i K(x, xi) −

X
xi∈A−

λ
−
i K(x, xi), (1)

where λ+
i and λ−i are non-negative weights that are computed during training

to provide the best possible prediction, and K(., .) is a kernel function designed
to capture the similarity between pairs of residues. Having learned the func-
tion f(x), a new residue x is predicted to be positive or negative depending on
whether f(x) is positive or negative. The value of f(x) also signifies the tendency
of x to be a member of the positive or negative class and can be used to obtain
a meaningful ranking of a set of the residues.

We use the error insensitive support vector regression ε-SVR [28] for learning
a function f(x) for estimation in case of determining a quantity, as in the case of
solvent accessibility prediction problem. Given a set of training instances (xi, yi),
where yi is the continuous value to be estimated for residue xi, the ε-SVR aims
to learns a function of the form

f(x) =
X

xi∈∆+
α
+
i K(x, xi) −

X
xi∈∆−

α
−
i K(x, xi), (2)



where ∆+ contains the residues for which yi − f(xi) > ε, ∆− contains the
residues for which yi − f(xi) < −ε, and α+

i and α−i are non-negative weights
that are computed during training by maximizing a quadratic objective function.
The objective of the maximization is to determine the flattest f(x) in the feature
space and minimize the estimation errors for instances in ∆+ ∪ ∆−. Hence,
instances that have an estimation error satisfying |f(xi)− yi| < ε are neglected.
The parameter ε controls the width of the regression deviation or tube.

3.2 Sequence-based Information
ProSAT can use any general user-supplied features. In our empirical evaluation
for a given protein X of length n we encode the sequence information using PSI-
BLAST position specific scoring matrices, predicted secondary structure, and
position independent scoring matrices like BLOSUM62. These feature matrices
are referred to as P, S, and B, respectively and are described below.
Position Specific Scoring Matrices The profile of a protein is derived by com-
puting a multiple sequence alignment of it with a set of sequences that have a
statistically significant sequence similarity, i.e., they are sequence homologs as
ascertained by PSI-BLAST [2]. In Figure 1 (a) we show the PSI-BLAST derived
position specific scoring matrix for a sequence of length n. The dimensions of
this matrix n×20. For every residue the PSI-BLAST matrix captures evolution-
ary conservation information by providing a score for each of the twenty amino
acids.

The profiles in this study were generated using the latest version of the PSI-
BLAST [2] (available in NCBI’s blast release 2.2.10 using blastpgp -j 5 -e
0.01 -h 0.01) searched against NCBI’s NR database that was downloaded in
November of 2004 and contains 2,171,938 sequences.
Predicted Secondary Structure Information We use YASSPP [15] to predict sec-
ondary structure and generate a position-specific secondary structure matrices.
For a length n sequence, the result is S, a n × 3 feature matrix. The (i, j)th
entry of this matrix represents the propensity for residue i to be in state j,
where j ∈ {1, 2, 3} corresponds to the three secondary structure elements: alpha
helices, beta sheets, and coil regions.
Position Independent Scoring Matrices A less computationally expensive feature
of protein sequences may be obtained from a position independent scoring matrix
such as the BLOSUM62 substitution matrix. The primary motivation for using
BLOSUM62-derived feature vectors is to improve the classification accuracy in
cases where a sequence does not have a sufficiently large number of homologous
sequences in NR. In these cases PSI-BLAST fails to compute a correct align-
ment for some segments of the sequence giving a misleading PSSM [9, 15]. To
make effective use of ProSAT’s capabilities we create a n × 20 feature matrix,
referred to as B, where each row of the matrix is a copy of the BLOSUM62 row
corresponding to the amino acid at that position in the sequence.

By using both PSSM- and BLOSUM62-based information, the SVM learner
can construct a model that is partially based on non-position specific infor-
mation. Such a model will remain valid in cases where PSI-BLAST could not
generate correct alignments due to lack of homology to sequences in the nr
database [15].



3.3 Kernel Functions

A kernel function computes a similarity between two objects and selection of an
appropriate kernel function for a problem is key to the effectiveness of support
vector machine learning. We consider several individual kernels of interest and
then proceed to describe combinations of kernels used in this study. Throughout
this section we use F and G be the feature matrix for sequences X and Y
respectively. A specific residue of X is denoted xi and its associated vector of
features is Fi.
Window Kernel Our contribution in this work is a two-parameter linear window-
kernel, denoted by Ww,f which computes the similarity between two wmers,
wmer(xi) and wmer(yj) according to their features wmer(Fi) and wmer(Gj),
respectively. The kernel function is defined as

Ww,f (xi, yj) =
fP

k=−f
〈Fi+k, Gj+k〉+

〈
wP

k=f+1
Fi+k,

wP
k=f+1

Gj+k〉+

〈
wP

k=f+1
Fi−k,

wP
k=f+1

Gi−k〉.

(3)

The parameter w governs the size of the wmer considered in computing the
kernel while f offers control over the fine-grained versus coarse-grained sections
of the window. Rows within ±f contribute an individual dot product to the
total similarity while rows outside this range are first summed and then their
dot product is taken. In all cases f ≤ w and as f approaches w, the window
kernel becomes simply a sum of the dot products, the most fine-grained simi-
larity measure considered. This window encoding is shown in Figure 1(d) where
the positions away from the central residue are averaged to provide a coarser
representation, whereas the positions closer to the central residue provide a finer
representation. The rationale behind this kernel design is that some problems
may require only approximate information for sequence neighbors which are far
away from the central residue while nearby sequence neighbors are more im-
portant. Specifying f � w merges these distant neighbors into only a coarse
contribution to the overall similarity, as it only accounts for compositional infor-
mation and not the specific positions where these features occur. The window
kernel is defined as a dot-product, which makes it equivalent to linear kernel with
a feature encoding scheme that takes into account the two variable parameters,
w and f . Hence, we can embed the dot-product based W within other complex
kernel functions.
Exponential Kernels Another individual kernel we use extensively is the second
order exponential kernel, Ksoe, developed in our earlier works for secondary
structure and local structure information prediction [15, 23]. Given any base
kernel function K, we define K2 as

K2(x, y) = K(x, y) + (K(x, y))2. (4)

which is a second-order kernel in that it computes pairwise interactions between
the elements x and y. We then define Ksoe as

Ksoe(x, y) = exp

0B@1 +
K2(x, y)q

K2(x, x)K2(y, y)

1CA (5)



which normalizes K2 and embeds it into an exponential space.
We also use the standard radial basis kernel function (rbf ), defined for some

parameter γ by Krbf (x, y) = exp(−γ||x−y||2). By setting a specific γ parameter
and using normalized unit length vectors the standard rbf kernel can be shown
equivalent (upto a scaling factor) to a first order exponential kernel obtained by
removing the K2(x, y) term in Equation 4, and plugging the modified kernel in
Equation 5.

In this paper, we denote the soe to be the kernel Ksoe using the Ww,f as
the base, rbf to be the kernel Krbf using the normalized form with Ww,f as the
base, and lin to be the base linear kernel Ww,f .

3.4 Integrating Information
To integrate the different information, we use a linear combination of the kernels
derived for different feature matrices. Consider two sequences with features F l

and Gl for l = 1, . . . , k, our fusion kernel using the is defined

Kfusion(xi, yj) =
kX

l=1
ωl K

soe(F
l
i , G

l
j) (6)

where the weights ωl are supplied by the user. Note the soe kernel in Equation 6
can be replaced by the lin, and rbf kernels.

In the future we intend to explore the possibility of automatically learning
the weights ωl. This can be done by using some of the recent multiple kernel
integration work that combines heterogeneous information using semidefinite
programming [19], second order cone programming [3], and semi-infinite linear
programming [24].
4 Case Studies
ProSAT was tested on a wide variety of local structure and function prediction
problems. Here we present a case study on the disorder prediction, contact order
estimation and transmembrane-helix prediction problems. We review the meth-
ods used for solving the problems, and provide comparative results by using
standard benchmarks which are described below.

ProSAT was also tested on the DNA-binding prediction problem [20], ligand-
binding prediction problem, solvent accessibility surface area estimation [21,25],
and local structure alphabet prediction problem [5]. The results of these exper-
iments are not reported here for sake of brevity. ProSAT showed comparable to
the state-of-the-art prediction systems for the different problems.

4.1 Experimental Protocol

The general protocol we used for evaluating the different parameters, and fea-
tures, as well as comparing to previously established studies remained fairly
consistent across the different problems. In particular we used a n-fold cross
validation methodology, where 1/nth of the database in consideration was used
for testing and the remaining dataset was used for training, with the experiment
being repeated n times.



Table 1. Classification Performance on the Disorder Dataset.

w f = 1 f = 3 f = 5 f = 7 f = 9 f = 11
ROC F1 ROC F1 ROC F1 ROC F1 ROC F1 ROC F1

Plin

3 0.775 0.312 0.800 0.350 - - - - - - - -
7 0.815 0.366 0.817 0.380 0.816 0.384 0.816 0.383 - - - -
11 0.821 0.378 0.826 0.391 0.828 0.396 0.826 0.400 0.824 0.404 0.823 0.403
13 0.823 0.384 0.829 0.398 0.832∗ 0.405 0.830 0.404 0.828 0.407 0.826 0.409

Prbf

3 0.811 0.370 0.811 0.369 - - - - - - - -
7 0.845 0.442 0.849 0.450 0.848 0.445 0.845 0.442 - - - -
11 0.848 0.464 0.855 0.478 0.858 0.482 0.858 0.480 0.855 0.470 0.853 0.468
13 0.848 0.473 0.855 0.484 0.859 0.490 0.861∗ 0.492 0.860 0.487 0.857 0.478

Psoe

3 0.815 0.377 0.816 0.379 - - - - - - - -
7 0.847 0.446 0.852 0.461 0.852 0.454 0.851 0.454 - - - -
11 0.848 0.469 0.856 0.482 0.860 0.491 0.862 0.491 0.861 0.485 0.862 0.485
13 0.847 0.473 0.856 0.485 0.861 0.491 0.864 0.495 0.865∗ 0.494 0.864 0.492

P Ssoe

3 0.836 0.418 0.838 0.423 - - - - - - - -
7 0.860 0.472 0.862 0.476 0.860 0.473 0.859 0.468 - - - -
11 0.861 0.490 0.867 0.496 0.868 0.498 0.868 0.495 0.866 0.488 0.865 0.485
13 0.860 0.497 0.867 0.503 0.870 0.503 0.871∗ 0.503 0.870 0.498 0.868 0.492

P S Bsoe

3 0.842 0.428 0.841 0.428 - - - - - - - -
7 0.869 0.497 0.870 0.499 0.869 0.494 0.867 0.489 - - - -
11 0.871 0.516 0.875 0.518 0.877 0.517 0.877 0.512 0.874 0.508 0.873 0.507
13 0.869 0.519 0.875 0.522 0.878 0.521 0.879∗∗ 0.519 0.879 0.518 0.876 0.514

DISPro [4] reports a ROC score of 0.878. The numbers in bold show the best models for a
fixed w parameter, as measured by ROC. P, B, and S represent the PSI-BLAST profile, BLO-
SUM62, and YASSPP scoring matrices, respectively. soe, rbf , and lin represent the three dif-
ferent kernels studied using the Ww,f as the base kernel. * denotes the best classification re-
sults in the sub-tables, and ** denotes the best classification results achieved on this dataset.
For the best model we report a Q2 accuracy of 84.60% with an errsig rate of 0.33.

4.2 Evaluation Metrics

We measure the quality of the methods using the standard receiver operating
characteristic (ROC) scores. The ROC score is the normalized area under the
curve that plots the true positives against the false positives for different thresh-
olds for classification [8]. We also compute other standard statistics, and report
the F1 score which takes into account both the precision and recall for the
prediction problem.

The regression performance is assessed by computing the standard Pearson
correlation coefficient (CC) between the predicted and observed true values for
every protein in the datasets. We also compute the root mean square error
rmse between the predicted and observed values for every proteins. The results
reported are averaged across the different proteins and cross validation steps.
For the rmse metric, a lower score implies a better quality prediction.

We also compute a statistical significance test, errsig to differentiate between
the different methods. errsig is the significant difference margin for each score
and is defined as the standard deviation divided by the square root of the number
of proteins.

4.3 Disorder Prediction

Some proteins contain regions which are intrinsically disordered in that their
backbone shape may vary greatly over time and external conditions. A disor-
dered region of a protein may have multiple binding partners and hence can
take part in multiple biochemical processes in the cell which make them criti-
cal in performing various functions [7]. Disorder region prediction methods like
IUPred [6], Poodle [9], and DISPro [4] mainly use physiochemical properties of
the amino acids or evolutionary information within a machine learning tool like
bi-recurrent neural network or SVMs.



ProSAT was evaluated on the disorder prediction problem by training binary
classification model to discriminate between residues that belong to part of dis-
ordered region or not. For evaluating the disorder prediction problem we used
the DisPro [4] dataset which consisted of 723 sequences (215612 residues), with
the maximum sequence identity between sequence pairs being 30%.

We used the PSI-BLAST profile matrix denoted by P, a BLOSUM62 derived
scoring matrix denoted by B, and predicted secondary structure matrix denoted
by S feature matrices both independently, and in combinations . We varied the
w, and f parameters for the W, and also compared the lin, rbf , and soe kernels.
Table 1 shows the binary classification performance measured using the ROC
and F1 scores achieved on the disorder dataset after a ten fold cross validation
experiment, previously used to evaluate the DISPro prediction method.

Comparing the ROC performance of the Psoe , Prbf , and P lin models across
different values of w and f used for parameterization of the base kernel (W),
we observe that the soe kernel shows superior performance to the lin kernel
and slightly better performance compared to the normalized rbf kernel used in
this study. This verifies results of our previous studies for predicting secondary
structure [15] and predicting RMSD between subsequence pairs [23], where the
soe kernel outperformed the rbf kernel.

The performance ProSAT on the disorder prediction problem was shown to
improve when using the P, B, and S feature matrices in combination rather
than individually. We show results for the P S and P S B features in Table 1.
The flexible encoding introduced by ProSAT shows a slight merit for the disorder
prediction problem. These improvements are statistically significant as evaluated
by the errsig measure.

The best performing fusion kernel improves the accuracy by 1% in comparison
to DisPro [4] that encapsulates profile, secondary structure and relative solvent
accessibility information within a bi-recurrent neural network.

4.4 Contact Order Estimation

Pairs of residues are considered to be in contact if their Cβ atoms are within
a threshold radius, generally 12 Å. Residue-wise contact order [27] is an aver-
age of the distance separation between contacting residues within a sphere of
set threshold. Previously, a support vector regression method [27] has used a
combination of local sequence-derived information in the form of PSI-BLAST
profiles [2] and predicted secondary structure information [11], and global infor-
mation based on amino acid composition and molecular weight for good quality
estimates of the residue-wise contact order value. Amongst other techniques,
critical random networks [18] use PSI-BLAST profiles as a global descriptor for
this estimation problem.

ProSAT was used to train ε-SVR regression models for estimating the residue-
wise contact order on a previously used dataset [27] using the fusion of P and
S features, with a soe kernel. This dataset consisted of 680 sequences (120421
residues), and the maximum pairwise sequence identity for this dataset was 40%.

In Table 3 we present the regression performance for estimating the residue
wise contact order by performing 15-fold cross validation. These results are eval-



uated by computing the correlation coefficient and rmse values averaged across
the different proteins in the dataset.

Analyzing the effect of the w and f parameters for estimating the residue-wise
contact order values, we observe that a model trained with f < w generally shows
better CC and rmse values. The best models as measured by the CC scores are
highlighted in Table 3. A model with equivalent CC values but having a lower
f value is considered better because of the reduced dimensionality achieved by
such models.

The best estimation performance achieved by our ε-SVR based learner uses
a fusion of the P and S feature matrices and improves CC by 21%, and rmse
value by 17% over the ε-SVR technique of Song and Barrage [27]. Their method
uses the standard rbf kernel with similar local sequence-derived amino acid and
predicted secondary structure features. The major improvement of our method
can be attributed to our fusion-based kernel setting with efficient encoding, and
the normalization introduced in Equation 5.
4.5 Transmembrane-Helix Prediction
Proteins which span the cell membrane have proven difficult to crystallize in
most cases and are generally too large for NMR studies. Computational meth-
ods to elucidate transmembrane protein structure are a quick means to obtain
approximate topology. Many of these proteins are composed of a inter-cellular,
extra-cellular, transition, and membrane portions where the membrane portion
contains primarily hydrophobic residues in helices (a multi-class classification
problem). Accurately labeling these four types of residues allows helix segments
allows them to be excluded from function studies as they are usually not involved
in the activity of the protein. MEMSAT [12] in its most recent incarnation uses
profile inputs to a neural network to predict whether residues in a transmem-
brane protein are part of a transmembrane helical region or not.

Kernytsky and Rost have benchmarked a number of methods and maintain
a server to compare the performance of new methods which we employ in our
evaluation [17]. We evaluate ProSAT using this independent static benchmark.
Firstly, we perform model selection on a set of 247 sequences used previously by
the Phobius algorithm [13]. We use the Psoe kernel with w and f parameters
set to 7 to train a four-way classification model for predicting the residue to be
in either the helical region, non-helical region, inter-cellular region, and extra-
cellular region. Using the trained model we annotate each of the 2247 sequences
in the static benchmark (no true labels known to us)4. The performance of
ProSAT is shown in Table 4, which is better in comparison to state-of-the-art
methods. The predictions from ProSAT were further smoother using a second-
level model to build the best performing transmembrane helix identification
system called TOPTMH [1]. The reader is encouraged to find more details about
experimental results in the TOPTMH [1] study.
4.6 Runtime Performance of Optimized Kernels
We also benchmark the learning phase of ProSAT on the disordered dataset com-
paring the runtime performance of the program compiled with and without the
4 Static Benchmark for testing Transmembrane helix prediction at

http://cubic.bioc.columbia.edu/services/tmh benchmark



Table 2. Runtime Performance of ProSAT on the Disorder Dataset (in seconds).

w=f=11 w=f=13 w=f=15
#KER NO YES SP #KER NO YES SP #KER NO YES SP

Plin 1.93e+10 83993 45025 1.86 1.92e+10 95098 53377 1.78 1.91e+10 106565 54994 1.93

Prbf 1.91e+10 79623 36933 2.15 1.88e+10 90715 39237 2.31 1.87e+10 91809 39368 2.33

Psoe 2.01e+10 99501 56894 1.75 2.05e+10 112863 65035 1.73 2.04e+10 125563 69919 1.75

The runtime performance of ProSAT was benchmarked for learning a classification model on
a 64-bit Intel Xeon CPU 2.33 GHz processor. #KER denotes the number of kernel evalu-
ations for training the SVM model. NO denotes runtime in seconds when the cblas library
was not used, YES denotes the runtime in seconds when the cblas library was used, and SP
denotes the speedup achieved using the cblas library.

Table 3. Residue-wise Contact Order Estimation Performance

w f = 1 f = 3 f = 5 f = 7 f = 9 f = 11
CC rmse CC rmse CC rmse CC rmse CC rmse CC rmse

P Ssoe

3 0.704 0.696 0.708 0.692 - - - - - - - -
7 0.712 0.683 0.719 0.677 0.723 0.672 .722 0.672 - - - -
11 0.711 0.681 0.720 0.673 0.725 0.667 0.725 0.666 0.724 0.666 0.722 0.667
15 0.709 0.680 0.719 0.672 0.726∗∗ 0.665 0.726 0.664 0.725 0.664 0.723 0.664

CC and rmse denotes the average correlation coefficient and rmse values. The numbers in
bold show the best models as measured by CC for a fixed w parameter. P, and S repre-
sent the PSI-BLAST profile and YASSPP scoring matrices, respectively. soe, rbf , and lin
represent the three different kernels studied using the Ww,f as the base kernel. * denotes
the best regression results in the sub-tables, and ** denotes the best regression results
achieved on this dataset. For the best results the errsig rate for the CC values is 0.003.
The published results [27] uses the default rbf kernel to give CC = 0.600 and rmse = 0.78.

CBLAS subroutines. These results are reported in Table 2 and were computed
on a 64-bit Intel Xeon CPU 2.33 GHz processor for the P lin , Prbf , and Psoe

kernels varying the wmer size from 11 to 15. Table 2 also shows the number of
kernel evaluations for the different models. We see speedups ranging from 1.7 to
2.3 with use of the CBLAS library. Similar experiments were performed on other
environments and other prediction problems, and similar trends were seen.
5 Conclusions and Future Directions
In this work we have developed a general purpose support vector machine based
toolkit for easily developing predictive models to annotate protein residue with
structural and functional properties. ProSAT was tested with different sets of
features on several annotation problems. Besides the problems illustrated here
ProSAT was used for developing a webserver called MONSTER5 that predicts
several local structure and functional properties using PSI-BLAST profiles only.
ProSAT also showed success in predicting and modeling ligand-binding site re-
gions from sequence information only [16].

The empirical results presented here showed the capability of ProSAT to ac-
cept information in the form of PSI-BLAST profiles, BLOSUM62 profiles, and
predicted secondary structure. ProSAT was tested with the soe, rbf , and lin
kernel function. In addition, the results showed that for some problems (contact
order estimation), by incorporating local information at different levels of granu-
larity with the flexible encoding, ProSAT was able to achieve better performance
when compared to the traditional fine-grain approach.

Presently we are studying different multiple kernel integration methods that
would automatically weight the contribution of different information in Equa-
tion 6. An optimal set of weights can be learned using semi-definite program-
ming [19], and semi-infinite linear programming [24]. Currently, ProSAT auto-
matically performs a grid search over the different parameters for selecting the
5 http://bio.dtc.umn.edu/monster



Table 4. Performance of ProSAT and TOPTMH on the trans-membrane helix prediction
problem

Method Psoe TOPTMH MEMSAT3 TMHMM1 PHDpsihtm08 HMMTOP2 PHDhtm08
Q2 84 84 83 80 80 80 78
REC 81 75 78 68 76 69 76
PRE 87 90 88 81 83 89 82

Q2, REC, and PRE denote the per-residue accuracy, recall and precision respectively.
Results for MEMSAT3 [12], TOPTMH [1] and Psoe were obtained by evaluating it on
the TMH static benchmark [17] and submitting the results of prediction to the server.
We use the Psoe kernel with w = f = 7. All the other results were obtained from the
TMH static benchmark evaluation web-site. Note, TOPTMH [1] uses ProSAT for perform-
ing per-residue annotation, and then uses a set of hidden markov models to improve the
per-segment accuracy.

best model. The multiple kernel integration work can also be used to select the
best model. This would allow the biologist to use ProSAT effectively. Further like
the TOPTMH [1] system, we would like to smooth the predictions obtained from
the residue-level predictors. This can be done by training a second level model
or incorporating domain specific rules. A second level SVM-based model [15]
has been implemented in ProSAT already, and preliminary results show good
promise.

We believe that ProSAT provides to the practitioners an efficient and easy-
to-use tool for a wide variety of annotation problems. The results of some of
these predictions can be used to assist in solving the overarching 3D structure
prediction problem. In the future, we intend to use this annotation framework
to predict various 1D features of a protein and effectively integrate them to
provide valuable supplementary information for determining the 3D structure of
proteins.
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