
A Versatile Graph-based Approach to
Package Recommendation

Roberto Interdonato, Salvatore Romeo, Andrea Tagarelli

DIMES, University of Calabria

87036 Arcavacata di Rende (CS), Italy

Email: {rinterdonato,sromeo,tagarelli}@dimes.unical.it

George Karypis

Department of Computer Science & Engineering,

Digital Technology Center, University of Minnesota,

Minneapolis, MN, 55455, USA

Email: karypis@cs.umn.edu

Abstract—An emerging trend in research on recommender
systems is the design of methods capable of recommending
packages instead of single items. The problem is challenging due
to a variety of critical aspects, including context-based and user-
provided constraints for the items constituting a package, but also
the high sparsity and limited accessibility of the primary data
used to solve the problem. Most existing works on the topic have
focused on a specific application domain (e.g., travel package
recommendation), thus often providing ad-hoc solutions that
cannot be adapted to other domains. By contrast, in this paper
we propose a versatile package recommendation approach that
is substantially independent of the peculiarities of a particular
application domain. A key aspect in our framework is the
exploitation of prior knowledge on the content type models of
the packages being generated that express what the users expect
from the recommendation task. Packages are learned for each
package model, while the recommendation stage is accomplished
by performing a PageRank-style method personalized w.r.t. the
target user’s preferences, possibly including a limited budget.
Our developed method has been tested on a TripAdvisor dataset
and compared with a recently proposed method for learning
composite recommendations.

I. INTRODUCTION

Recommender systems are essential part in a variety of

information-providing services that aim to satisfy their users’

personalized needs. Emerging applications in e-commerce,

web search, and web services integrated with social me-

dia networks are demanding for systems that are capable

of producing enhanced quality recommendations which take

into account the heterogeneity in the type of information to

personalize and deliver to the users. As a matter of fact,

recommending groups of items is the key to successfully face

a number of applications, ranging from business and leisure

(e.g., trip planning) to education (e.g., course combination),

from finance (e.g., stock market investing) to health-care (e.g.,

diet planning). In all such applications the items of interest

are naturally associated with different types; for example,

hotels, restaurants, and points-of-interest in a travel scenario.

Therefore, it is highly desirable that recommendations are

provided in the form of multi-typed sets of items, or packages.

While the known issues in recommender systems extend to

the recommendation of packages, providing suggestion lists

of packages instead of single items undergoes a number of

new challenges. The primary information used to drive the

recommendation process still corresponds to the user-item

ratings. These are characterized by high sparsity in many

domains whereby items are associated with a cost (i.e., price,

time) besides a value/score. The volume and quality of the

primary data used to learn the packages is also negatively

affected by such a high sparsity, but also by the intrinsic

difficulty in satisfying different kinds of constraints, which

involve compatibility and correlations among items as well

as user-specified constraints (e.g., limited budget). After all,

several problems for package recommendation have been

shown NP-hard, as discussed in [1].

Majority of existing approaches to package recommendation

have focused on a particular application domain, usually

motivated by very attractive application fields such as tourism.

In that case, the design of an effective recommender system

has to rely on how well the specific domain challenges have

been addressed, often resulting in the development of ad-hoc,

hardly generalizable solutions (e.g., [2], [3], [4]). By contrast,

there has also been a host of work dealing with set/package

recommendation for a generic class of data (e.g., [5], [1],

[6], [7]); however, while in some cases being able to express

complex constraints and focusing on efficiency or optimization

aspects, such studies propose overly sophisticated and rigid

systems, and hence how much they could be easy-to-set and

really applicable is not clear. Moreover, a common tendency in

addressing the package recommendation problem is to develop

solutions that are mainly based on top-k query processing (e.g.,

[6], [7]), combinatorial optimization (e.g., [5]), and statistical

models (e.g., [2]), but surprisingly with a limited use of collab-

orative filtering and graph-based authority ranking techniques.

While collaborative filtering should be an essential element in

any information personalization task, authority-based ranking

methods, such as PageRank, are ever-increasingly applied in

a number of information networks, including those supporting

recommender systems [8], [9], [10], [11].

We conceive the package recommendation problem as fol-

lows: Given a set of items of different types along with

contextual information, a set of users along with their item

ratings, and given prior knowledge on a set of package models

of interest: learn how items can be grouped to form context-

aware packages that conform to the specified models, and rank

the learned package instances specifically for any target user.

Our framework, named PackRec, consists of two stages, as

sketched in Fig. 1: (i) an offline stage which is centered on

2013 IEEE 25th International Conference on Tools with Artificial Intelligence

1082-3409/13 $31.00 © 2013 IEEE

DOI 10.1109/ICTAI.2013.130

857

online

Item Ranking
Package
Learning

User-Package
Rating

Target User’s
Package Preference

Computation

users

item
ratings

offline

Package
Recommendation

Network

Package Ranking

package
models

package
recommendations

user id

contextual
constraints

target
user

item
costs

c
c

budget

Fig. 1. Proposed package recommendation framework.

the notion of package model(s) with the objective of inducing

packages for each of the specified package models, and (ii)

an online stage which is in charge of recommending packages

tailored to the target user’s preferences and budget.

A major novelty of our proposal concerns the definition

of a package recommendation framework that integrates well-

established paradigms in information retrieval such as expert

finding, collaborative filtering, and graph-based ranking meth-

ods: expert finding is used to estimate the relevance of items

w.r.t. a package model in a collaborative fashion, user-based

collaborative filtering is employed in an original odds-ratio

based method that models the user’s package preferences (on

which the recommendation network is built), and a biased

PageRank method is finally used to produce a ranked list

of recommendations in the form of packages. Moreover, our

approach features a certain versatility as it can deal with

a wide range of application domains, and can work under

different settings concerning the structure of the packages to

be recommended and even the lack of critical information like

the costs of items and/or the limited budget of users.

A preliminary experimentation on a TripAdvisor dataset has

shown the recommendation ability of our approach despite

the evident criticality of the selected domain. Furthermore, a

comparative evaluation with a recently proposed method for

composite recommendations has emphasized the superiority of

our hypothesis of integration of different information retrieval

techniques against a strategy based on an instance-optimal

cost/value-item-driven knapsack.

II. DEFINITIONS AND NOTATION

We are given a set of users U = {u1, . . . , um} and a

set of items I = {e1, . . . , en}. Users’ rating information

is stored into a matrix RI , where each entry Rue ∈ R
∗

corresponds to the rating given by user u to item e (zero in

case of no rating). Moreover, each item might be associated

with a real value denoting a cost; similarly, each user could

specify a budget, in relation to a given context and time.

Optionally, there may be temporal information about when

TABLE I
MAIN NOTATIONS USED IN THIS PAPER

(in) var. description (out) var. description
u, U user, set of users p package
e, I item, set of items P set of packages
RI user-item rating matrix RP user-package rating matrix
Rue rating of item e by user u Rui rating of package pi by user u
I item type primary param. description
I set of item types α damping factor in Step 5
P package model Usim user similarity thr. in Step 4
P set of package models secondary param. description
C set of contextual constraints ωuI , ωuP weights in Step 3
S set of constants λu, λps smoothing factors in Steps 1 and 3

users have rated/reviewed the items; in this case, under the

usual assumption that more recent ratings better match the

user’s current preferences, the importance of a rating would

be decreased inversely proportional to its timestamp, for which

purpose we will opt for a logarithmic function: for an item e
rated by user u with value v at time t, the actual Rue will be

set as Rue = v+v log(1/(1+Δt)), where Δt is the difference

between the current timestamp and t.
Each item is associated to one type I from a predefined set

of item types I . We will use Ie to indicate the type associated

to item e, and Ue to indicate the set of users related to e.

Constraints might be specified to allow for checking

whether an item satisfies certain contextual conditions (e.g.,

same location for travel items). Therefore, assuming there can

be recognized type-independent yet relevant attributes of the

items (e.g., location), a set of predicate symbols C and a

set of constants S are defined that correspond to the sets of

attribute names and attribute values, respectively. An atom is

an expression of the form c(e, s) with boolean truth values,

where c is a predicate symbol and s is a constant; for example,

location(e,′′Rome′′) evaluates to true if e (hotel, restaurant,

or any type of attraction) is located in Rome.

Upon the basic notion of item, we define a package as a

group of items which might be of different types. Specifically,

a package p can be seen as a subset of I that conforms to

a predefined package model P . We assume the existence of

a set of package models denoted as P , where each package

model is a multiset over I , i.e., P = 〈I(P) ⊆ I, fP〉 where

I(P) denotes the set of valid item types and fP : I(P) →
N

+ indicates the number of repetitions for each item type

in P . Table I summarizes main notations that will be used

throughout this paper.

III. PACKAGE RECOMMENDATION FRAMEWORK

The proposed package recommendation framework (Fig. 1)

takes an input set of users, items, and corresponding ratings

along with knowledge on the types of items, desired package

models and contextual constraints, and performs the following

main steps: offline ranking of the items, learning of the

packages, computation of the user-package ratings, and online

ranking of the packages tailored to any target user. Each of

these steps will be described in the next sections.

A. Step 1: Collaborative, package-model-aware item ranking

The first step is in charge of identifying the best candidate

items to form packages for each of the known models. Given

858

a package model P , the relevance of each item e having type

Ie valid for P is computed using a probabilistic model, which

takes into account three main criteria: (i) the likelihood of e
given P , (ii) the likelihood of Ie given P , and (iii) the a-priori

likelihood of e. We now elaborate on each of these terms.

The likelihood of e given P is expressed by an expert

finding model, where P is assumed to be conditionally in-

dependent to e given u:

Pr(e|P) =
∑
u∈Ue

Pr(e|u) Pr(u|P) (1)

Probability Pr(e|u) measures the relevance of item e for user

u and is estimated as

Pr(e|u) = Rue∑
e′∈I,I(e′)=Ie Rue′

(2)

Probability Pr(u|P) can be rewritten as Pr(P|u) Pr(u).
Pr(u) expresses the strength of a user based on her/his degree

of activity of rating, which is simply estimated as

Pr(u) =

∑
e∈I δu(e)∑

u′∈U
∑

e∈I δu′(e)
(3)

where δu(e) = 1 if u has rated item e, and zero other-

wise. Probability Pr(P|u) is determined using a zeroth-order

Markov model:

Pr(P|u) = Pr(P|θu) =
∏
I∈P

Pr(I|θu) (4)

where Pr(I|θu) can be estimated as: Pr(I|θu) = (1 −
λu) Pr(I|u) + λu Pr(I|U), with smoothing factor λu ∈ [0, 1]
as an input parameter (set to 0.1 by default).

The likelihood of Ie given P , i.e., Pr(Ie|P), is estimated

by linear interpolated smoothing (a.k.a. Jelinek-Mercer):

Pr(Ie|P) ∝ Pr(Ie|θP) =
= (1− λP) Pr(Ie|P) + λP Pr(Ie|P)

(5)

where Pr(Ie|P),Pr(Ie|P) are maximum likelihood estima-

tors, and λP ∈ [0, 1] is a smoothing factor; recall that, for a

generic element x, a multi-set X , and a set of multi-sets X , the

maximum likelihood estimators are determined as fX (x)/|X |
and

∑
X∈X fX (x)/

∑
X∈X |X |, respectively. The smoothing

factor λP is set based on the following hypothesis: the degree

of smoothing should be higher for package models that are

less frequent and more complex; formally, it is defined as

λP = |P|
|P|+mc(P,P) , where mc(P,P) expresses the relative

frequency of containment of model P in P , i.e., the fraction

of package models of which P is subset.

Finally, prior Pr(e) is expressed analogously to (3):

Pr(e) =

∑
u∈U δu(e)∑

e′∈I
∑

u∈U δu(e′)
(6)

Overall, the first step is accomplished by iteratively perform-

ing the following set of equations (∀e∈I s.t. Ie∈I(P), ∀P∈
P) which determines a ranking of all items for the selected

package model:

rankP(e) = [Pr(e|P) + Pr(Ie|P)] Pr(e) (7)

Intuitively, given P , the importance of e according to (7) relies

on the relevance of the item as a candidate to constitute P
(Pr(e|P)) as well as on the relevance of the item’s type w.r.t.

P (Pr(Ie|P)). Yet, Pr(e) accounts for the popularity of e
independently of the generation of packages, and hence acts

to penalize items that are less rated by the users.

B. Step 2: Context-driven package learning

The item rankings computed at the previous step are used

to construct a set of package instances for all package models

in P . Besides the type compatibility to ensure for the items

w.r.t. any given package model P , contextual constraints at the

instance level might also be satisfied. Therefore, predefined

contextual predicates could be here applied to extract a subset

of P-compatible items, for each of the |P| item types that

conform to P . Given a DNF formula A over a subset C ⊆ C
of predicates and a subset S ⊆ S of constants, a set of items

IAI is derived for each item type I ∈ I(P) such that IAI
contains the items of type I that also satisfies A.

We automatically select the top-ranked items for the various

types valid for a given package model by pipelining Pareto-
frontier computations over the IAI . For each IAI , alternatives

among the items are evaluated according to their normalized

cost/normalized score ratio, where the item scores are com-

puted by (7); i.e., upon an ordering of the items by increasing

cost/value ratios, the next item with smallest rank is added to

the Pareto-frontier if it is not dominated by any item already

in the Pareto-frontier. To check whether a candidate item is

dominated by any alternative in the Pareto-frontier, it will

suffice to find the most expensive alternative which is still

cheaper than the candidate item, since it does not dominate the

candidate item, neither can any other alternative in the Pareto-

frontier. It should be however noted that for some types of

items, either the cost information is not applicable or the value

(score) dimension should weight more than the cost of items;

consequently, a cost/value based strategy for the selection of

top items might not necessarily lead to the best choice in terms

of item coverage. For this purpose, we also used a cost-free

selection strategy such that an item will be included in the top-

ranked list for type I if its score has a percentage decrease

from the top-1 item which is not greater than the average of

the percentage decreases of all items from the top-1 item.

The set of packages for each model P is finally computed

as the result of the Cartesian product of the |P| sets of selected

type-specific items for P . Each package p is provided in the

form of a set of items.

C. Step 3: Package rating

Once a set P of packages for all package models has been

learned, user ratings for the packages need to be computed.

Such ratings can certainly be inferred from the ratings of the

items that belong to a package: however, the usual sparsity

of the user-item matrix is expected to be further exacerbated

when selecting the small bunch of items that constitutes any

given package. In order to alleviate this issue, we introduce

a smoothing scheme that refines the actual Rue, with e ∈ p:

859

(1− λps)Rue + λpsRe, where Re denotes the average rating

of e over all users, with λps set to 0.1 by default.

Besides users’ ratings of the items constituting a package,

other information might be taken into account when computing

the rating of a user for a package. A user may want to

differentiate among the types of items constituting a package:

given user u and package p, this can be expressed by a set

of weights ωuI ∈ [0, 1], with I ∈ I each of which might act

as a damping (or even as nullifying) factor for a particular

item type; by default, such weights are set to 1 meaning

that all constituent items are fully considered when rating the

package. Moreover, a user may specify prior preferences over

package models, based on her/his individual exogenous source

of information: this is expressed by a coefficient ωuP ∈ [0, 1]
(set to 1 by default), for each P ∈ P .

The above types of information are combined to define a

package rating function p-score : U × P → R
∗, which is

computed for any given user u and package p as:

p-score(u, p)=ωuP

∑
e∈p ωuIe [(1− λps)Rue + λpsRe]∑

e∈p ωuIe
(8)

A user-package rating matrix, denoted as RP , is derived by

storing the computed p-score(u, p) values, for all u ∈ U and

p ∈ P . Hereinafter we will use notation Rui to denote the

rating given by user u to package pi.

D. Step 4: Target user’s package recommendation network

A package recommendation network will be designed for

any given target user, and used to produce a ranking (prob-

ability distribution) over the set of packages obtained from

the offline stage, thus providing recommendations to the

target user. The network is modeled as a directed graph in

which vertices are the learned packages and edges are drawn

according to a function that models the user’s preference on

pairs of packages. The role of this preference function is

to define the transition probabilities in the package ranking

model discussed later. The sign of the preference function will

determine the orientation of the edge, while a pair of reciprocal

edges will be drawn in case of no preference expressed for

any two packages. The strength of the connection between two

packages is set to be proportional to the value of the preference

function. Formally, the package recommendation network for

the target user u is defined as Gu = 〈V, E , wu〉, with set of

vertices V = P , set of edges E = {(pi, pj)|pi, pj ∈ P ∧
πu(pj , pi) ≥ 0}, and edge weighting function wu : E → R

+

such that wu(i, j) = eπu(pj ,pi).

Package preference function: Given a user u, our objective

is to model a function of the form πu : P × P → R,

with πu(pi, pj) > 0 when package pi is considered as more

preferable to package pj for user u, and vice versa, whereas

πu(pi, pj) = 0 means that there is no preference between the

two packages. We require that πu(pi, pi) = 0, for all pi ∈ P
and πu(pi, pj) = −πu(pj , pi), for all pi, pj ∈ P . Moreover,

to adequately determine the strength of preference, we are

interested in modeling the target user’s package preferences

in a collaborative setting.

Let us denote with Uij the set of users that have rated pi or

pj , or both. We define in terms of odds ratio the strength of

association of two random variables: the one expressing the

condition “users in Uij are similar to u” and the other one

expressing the event “pi is rated higher than pj”. Hence, an

odds ratio greater than (resp. lower than) 1 indicates that the

event of rating pi higher than pj is more likely to occur in the

group of users similar (resp. not similar) to u, while an odds

ratio equal to 1 indicates that whether or not users are similar

to u is irrelevant to prefer pi over pj .

To determine user similarity, we can resort to various

similarity measures used in collaborative filtering [10]. The

extent to which two users are considered as similar to each

other can be controlled by a minimum-similarity threshold,

henceforth denoted as Usim, which can be experimentally

varied.

The collaborative-based preference odds ratio computed for

each pair pi, pj is then combined with the variation in u’s

ratings of pi, pj to model the preference function.

πu(pi, pj) = (Rui −Ruj)(ORu,ij)
1−2χu,i,j,OR (9)

where χu,i,j,OR is the indicator function for the event “(Rui−
Ruj) < 0”, and

ORu,ij =
N>

u

N<
u

· notN
<
u

notN>
u

(10)

with N>
u (resp. notN>

u) indicating the add-one smoothed

number of users similar (resp. not similar) to u that have rated

pi strictly higher than pj , N<
u (resp. notN<

u) indicating the

add-one smoothed number of users similar (resp. not similar)

to u that have rated pi strictly lower than pj .

It can be noted that the two terms in (9) play a different

role in modeling the preference function: while the “versus”

of preference is determined by (Rui − Ruj), the odds ratio

acts as a strengthening (resp. damping) factor if there is a

concordance (resp. discordance) in sign between the difference

of u’s ratings and the logarithm of the odds ratio. Note also

that, as required, πu(pi, pj) = −πu(pj , pi) since it holds that

ORu,ij = OR−1
u,ji and χu,i,j,OR = 1−χu,j,i,OR, which ensure

that the overall odds ratio term is identical in both πu(pi, pj)
and πu(pj , pi).

E. Step 5: Package ranking

We develop a PageRank-style method for ranking the set

of packages specifically for each target user. PageRank-style

methods have been already successfully applied to item recom-

mendation problems [8], [9], [10], [11]. A major motivation is

that the underlying Markov chain model is effective to face the

usual lack of rating or preference information that characterize

many users. In other terms, if preferences between packages

pi, pj have been expressed by some users, and preferences

between packages pi, pk have been expressed by other users,

the preferences regarding pj , pk are not known and hence can

be inferred through an iterated random walk. In our package

recommendation setting, an intuitive interpretation of the clas-

sic PageRank idea is that the importance of a package (i.e.,

860

the likelihood of being preferred to other packages) both relies

on and influences the importance of neighboring packages in

the network Gu. This is captured by the following equation

that computes the ranking score ri for a given package pi:

ri =
∑

j∈In(i)

wu(j, i)∑
h∈Out(j) wu(j, h)

rj (11)

where, for any vertex i, In(i) and Out(i) denote the in-

neighbor and out-neighbor sets, respectively. The above equa-

tion can be written in the equivalent matrix notation as

r = STr, where S is the package connectivity stochastic

matrix defined as S = Dout
−1W + aeT/|V|, such that W

is the weighted adjacency matrix of Gu, Dout = diag(We)
is the diagonal matrix storing the (weighted) out-degrees

with e denoting a |V|-dimensional column vector of ones,

and a is the dangling-vertex vector such that ai = 1 if

vertex i has zero out-degree (i.e., package pi is not rated),

and 0 otherwise. To ensure the convergence of the Markov

chain with S to a stationary distribution, the usual primitivity

adjustment is introduced as a convex combination of S with

another stochastic matrix defined as B = vvT/|B|. Vector

v and set B are equal by default to e and V , respectively,

but v can be replaced with any vector whose non-negative

components sum up to 1 and that can be used to personalize

the PageRank to boost a specific subset of vertices (base-set

B). B is also known as teleportation matrix, since the random

walker can decide not to follow the link structure by selecting

a vertex with relevance 1/|B|. A parameter α between 0 and 1

(commonly set to 0.85) controls the proportion of the random

walk based on the link structure as opposed to teleporting:

r = αSTr+ (1− α)v/|B|.
We define a cost-sensitive personalization of our PageRank-

based method, according to the following two criteria: (i) B
corresponds to the subset of packages in P having the same

model as the packages that have been rated by u, and (ii) each

of the selected packages in B must have a cost (computed over

its constituting items) not greater than a specified budget bu.

IV. RELATED WORK

In the last few years recommendation of sets/packages

of items has been studied from various perspectives and

with different levels of expressiveness. [12] proposes a gen-

eral decision support system for the definition of composite

alternative recommendations. While different user-specified

requirements are taken into account, the recommendation

process is highly interactive, as it utilizes the target user’s

feedback to feed a preference learner module, and hence it

might continue iteratively until the user is satisfied with one

of the alternatives. [6] approaches the problem from a top-

k query processing perspective, by introducing the class of

entity package finder query. Such queries are used to identify

the top-k tuples of entities, according to the relevance of

each entity w.r.t. a given set of keywords. Like our approach,

associations among the entities (i.e., item types) are known

in advance; however, entity package finder queries cannot

directly handle user-specified constraints such as budget to

control the identification of most relevant packages and, in

general, they do not consider a collaborative-based support

to provide a personalized recommendation to a target user.

In [7], complex yet customized recommendations are defined

declaratively as a high-level workflow over relational data, in

which traditional and enhanced relational algebra operators

are used to specify user-requirements and to generate virtual

nested relations. The approach in [7] is designed to maximize

flexibility in recommendation, however at the cost of higher

complexity of the recommendation engine and difficulty to

control contextual and cost requirements.

Unlike our work, the approaches in [4], [3] exploit geo-

temporal and multimedia data to provide recommendations

about popular touristic places. Both studies however do not

take item/package rating into consideration, thus they are

limited to provide composite recommendations for a set of

user-specified temporal constraints. The latter differences w.r.t.

our work are also present in [13], which studies the general

problem of set-based queries with aggregation constraints.

In [2], travel packages are generated through the TAST

(tourist-area-season topic) model, based on latent topic dis-

tributions of tourist-season pairs. Such topic distributions are

used to find seasonal nearest neighbors for each tourist, and

collaborative filtering based ranking is employed to person-

alize suggestions. An extension of the TAST model, named

TRAST (tourist-relation-area-season topic) is also defined to

model the tourist relationships in a travel group. The approach

in [2] can provide recommendations only for users who have

traveled at least once in the existing travel records, i.e., users

who have rated at least one package, while our approach

can even handle target user’s partial ratings about the items

constituting the candidate packages to recommend. While in

our model a package might contain different item types, each

one with arbitrary multiplicity, in [2] a package is substantially

an array of landscapes. Also, the TAST/TRAST models are in

principle applicable to other scenarios but only provided that

certain assumptions hold at the basis of the topic model.

The composite recommendation system proposed in [5]

is centered on a domain-independent approach that extends

the knapsack problem. It assumes the availability of multiple

recommender systems to score the items for a specific user

and of an external information source that provides the items’

costs. Given a cost budget and an integer k, the method

computes top-k variable-length packages to recommend. Two

approximation algorithms are developed, an instance-optimal,

pseudo-polynomial algorithm and a greedy algorithm. Unlike

our work, packages are learned regardless of the specific

type and compatibility constraints of the constituting items;

moreover, the knapsack-like approach adopted in [5] is by

nature not particularly tailored to the various target user’s

preferences, which are in fact simply summarized in the

specification of the budget constraint and whose understanding

cannot easily be refined in a collaborative fashion.

Nevertheless, we involved the approach by [5] in a com-

parative evaluation with our PackRec, not only because the

two works are both domain-independent and do not rely on

861

TABLE II
PACKAGE MODELS AND STATISTICS ABOUT THE LEARNED PACKAGES.

Group Location # Ratings per # Learned Percentage of packages covered by each budget range Package Models
Location Packages

1
Amsterdam 58,746 126 3.97%, 28.57%, 54.76%, 84.92% P1: Hotel, Restaurant, Museums, HistoricSites, ArchitecturalBuildings
Buenos Aires 56,926 64 15.63%, 18.75%, 51.56%, 56.25%, 81.25% P2: Hotel, Restaurant, Landmarks/PointsofInterest, Parks, Entertainment
Istanbul 59,538 64 15.63%, 60.94% P3: B&B, Restaurant, Performances, Entertainment

P4: Hotel, Restaurant, HistoricSites, Civic/ConventionCenters

2

Barcelona 73,389 68 4.41%, 7.35%, 19.12%, 54.41%, 82.35% P5: Hotel, Restaurant, Museums, HistoricSites, ReligiousSites
Chicago 60,852 64 75.00%, 87.50% P6: Hotel, Restaurant, HistoricSites, Gardens
Honolulu 38,049 80 11.25%, 18.75%, 45.00%, 62.50% P7: B&B, Restaurant, Museums, Theaters
San Francisco 69,041 64 62.50%, 87.50%, 93.75% P8: Hotel, Restaurant, HistoricSites
Sydney 39,276 68 5.88%, 14.71%, 75.00%, 98.53%
WashingtonDC 46,403 64 14.06%, 25.00%, 76.56%, 95.31%

3
Edinburgh 52,382 112 21.43%, 57.14%, 77.68% P9: Hotel, Restaurant, Museums, ArchitecturalBuildings, ReligiousSites
Rome 28,428 104 15.38%, 23.08%, 30.77%, 65.38%, 82.69%, 88.46% P10: Hotel, Restaurant, Parks, Entertainment
Venice 51,873 64 17.19%, 37.50%, 50.00%, 70.31%, 79.69% P11: B&B, Restaurant, Performances, Entertainment

P12: Hotel, Restaurant, ArchitecturalBuildings, ReligiousSites

4
Niagara Falls 17,843 96 3.13%, 11.46%, 40.63%, 90.63% P13: Hotel, Restaurant, Theaters
Playa del Carmen 28,629 88 5.68%, 12.50%, 15.91%, 18.18%, 72.73%, 86.36% P14: Hotel, Restaurant, Entertainment, SportsCamps/Clinics
Sharm El Sheikh 21,431 64 6.25%, 21.88%, 40.63%, 59.38%, 75.00% P15: B&B, Restaurant, Entertainment, SportsCamps/Clinics

P16: Hotel, Restaurant, Theaters, Parks

a text processing via language modeling (like [2] does), but

also because this evaluation allowed us to stress our PackRec

under a different setting in which the schema of the learned

packages can be highly varying and is not user-provided.

V. EXPERIMENTAL EVALUATION

A. Data and evaluation methodology

To assess our approach we chose to focus on the travel

planning domain, given the increasing interest it has produced

as a major application for package recommendation tasks. We

used the popular TripAdvisor.com data as case in point for

our evaluation. During April 2013, we crawled information

about hotels, restaurants, and all available types of attractions

along with the associated users’ ratings, starting from the Top-

Destinations section of the website1. This resulted in 48, 131
hotels, 19, 802 B&Bs, 159, 716 restaurants, and 21, 661 at-

tractions classified in 133 categories, with a total of 249, 310
items, and 12, 622, 091 ratings made by 4, 004, 926 users over

230, 814 items. However, the very high sparsity of the rating

matrix (above 99%) prompted us to restrict our selection to a

subset of locations in the attempt of reaching a good tradeoff

between salience of the venue in TripAdvisor (in terms of user

popularity), diversity in terms of the attractions a venue usually

offers (i.e., diversity in the set of item types), and suitability

of the locations to perform queries related to different travel

topics (i.e., nature, business, historical sites, etc.). As a result,

we selected 15 locations which are shown in Table II.

To assess the proposed and competing methods, we assigned

a reference ranking score to each package p, which takes into

account the TripAdvisor-supplied rankings and costs of the

constituting items as well as a user-provided budget (b):

rank(p, b) = avgI∈P

(∑
e:Ie=I rank(e)∑
i=1..m(Ie) i

)
1

(cost(p)− b) + 1

where rank(e) is the rank of item e w.r.t. the item-type specific

ranking provided by TripAdvisor, cost(p) is the total cost of

package p calculated over its items’ costs, b equals the budget

1http://www.tripadvisor.com/TravelersChoice-Destinations

specified by the target user (i.e., b = bu), and |p| denotes the

number of item-types (with duplicates) for the package model

of p. Note that the formula penalizes out-of-budget packages.

We used four assessment criteria that are standard in ranking

tasks, namely mean average precision (MAP), Kendall rank
correlation coefficient, normalized discounted cumulative gain
(nDCG), and Fagin’s intersection metric. For each of them,

higher scores correspond to better ranking evaluation.

MAP is the mean value of the average precisions computed

for a set of queries. The average precision for a single query is

calculated as AP =
∑k

n=1 P@n·rel(n)
|R| , where P@n is precision

at step n (i.e., fraction of the top-n retrieved results that are

relevant for the given query) and |R| is the number of relevant

candidates. In our setting, the personalized ranking produced

for a given user is considered as a query, and the number of

relevant and retrieved candidates is obtained by taking into

account the top-k-ranked packages.

Let us denote with L∗ and L the reference ranking and the

ranking produced by an algorithm, respectively, and with L(i)
the ranking value associated to the package ranked in position

i. The Kendall rank correlation coefficient evaluates the simi-

larity between two rankings, expressed as sets of ordered pairs,

based on the number of inversions of package pairs which

would be needed to transform one ranking into the other.

It is computed as: Kendall(L∗,L) = 1 − 2Δ(P(L∗
),P(L))

N(N−1)

where N = |L| = |L∗| and Δ(P(L∗),P(L)) is the number

of unshared package pairs between the two lists.

nDCG [14] measures the usefulness (gain) of a package

based on its relevance and position in a list. Formally, nDCG

is the ratio between the discounted cumulative gain to its

ideal (reference) counterpart taking into account the top-k-

ranked packages in two lists: nDCG(k) = DCG(k)

IDCG(k) , such

that DCG(k) = L∗[argL(1)] + ∑k
i=2

L∗
[argL(i)]

log2(i+1) , where

symbol argL(i) is used to denote the package number of the

package ranked at position i in the algorithm’s ranking (i.e.,

L∗[argL(i)] is the reference ranking value for that package),

and IDCG(k) = L∗(1) +∑k
i=2

L∗
(i)

log2(i+1) .

Fagin’s intersection metric [15] is used to compare partial

862

rankings, where elements in one list may not be present in

the other. It applies to any two top-k lists: F (L∗,L, k) =
1
k

∑k
i=1

|L∗
:i∩L:i|
i , where L∗:i, L:i denote the sets of packages

from the 1st to the ith position in the respective rankings.

B. Experimental settings

PackRec parameters were setup using the default values

as declared in their definitions; moreover, cosine similarity

and Usim set to 0.6 were used for the user neighborhood

computations (cf. Sect. III-D). We however undertook a pre-

liminary investigation on how the PackRec performance was

influenced by λps (cf. Sect. III-C) and by Usim: in summary,

we observed that a value for λps close to zero (e.g., the default

0.1) was enough to alleviate the sparsity issue but also to

avoid a loss of discrimination between the individual users’

ratings in scoring the packages; similar neighborhood sizes

were observed when setting Usim to 0.6÷0.8, and even down

to 0.5 in a few locations, while lower (resp. higher) values

would lead to a nearly total (resp. null) coverage of the users.

We devised two evaluation stages, the first focused on

the assessment of our PackRec performance under different

settings, and the second devoted to a comparative evaluation

with the instance-optimal algorithm in [5], hereinafter referred

to as CompositeRec, as anticipated at the end of Sect. IV.

In the first stage, the selected locations were grouped into

four categories according to their attractions. As shown in

Table II, we defined a set of four package models based on

the attraction types available in the corresponding locations

and with the attempt of configuring four types of trip, namely

cultural, family, business, and fun trip. We specified the input

budgets for each location trying to simulate different price

ranges, according to the following strategy: we calculated the

total cost of each package learned contextually to a given

location, then we analyzed the package costs in increasing

order, fixing a budget threshold when the next cost was a

certain percentage (set to 20%) higher than the lower cost

in the current range. Note that the setting corresponding to

the highest budget (i.e., budget set equal to the maximum

package cost for the location) will correspond to no budget-

driven personalization of the ranking.

In the second stage, since CompositeRec requires a number

of recommender systems in input, we exploited a state-of-

the-art method, called ItemRank [11], to generate personal-

ized item rankings for the five most active users for each

location. Since the package models of the packages returned

by CompositeRec cannot be known in advance, we carried

out CompositeRec to recommend the top-10 packages for

each of the selected users per location, by setting the budget

per location as equal to the corresponding highest budget

used by our PackRec in the first stage. Then, the models of

the packages produced by CompositeRec were used to drive

the package learning step of PackRec. For the comparative

evaluation of the recommendations, we needed to generate

a different reference ranking for each user, containing both

the packages returned by CompositeRec and by PackRec,

constrained to the same budget per location.

TABLE III
AVERAGE PERFORMANCES OF PACKREC.

Location Fagin Kendall nDCG MAP
avg max avg max avg max

upper-quartile users
Amsterdam .228 .393 .432 .557 .503 .625 .193
BuenosAires .024 .218 .165 .641 .173 .945 .038
Istanbul .175 .503 .417 .574 .440 .783 .143

group avg .129 .342 .315 .597 .348 .796 .116

Barcelona .112 .246 .271 .435 .317 .473 .123
Chicago .153 .602 .223 .689 .416 .871 .152
Honolulu .125 .398 .296 .422 .385 .707 .113
SanFrancisco .115 .609 .172 .617 .464 .822 .123
Sydney .184 .646 .156 .419 .479 .836 .160
WashingtonDC .128 .402 .210 .447 .437 .779 .112

group avg .135 .462 .225 .485 .411 .727 .129

Edinburgh .170 .552 .349 .608 .422 .924 .205
Rome .165 .497 .426 .646 .308 .628 .120
Venice .096 .302 .262 .399 .304 .509 .071

group avg .142 .441 .350 .550 .334 .655 .123

NiagaraFalls .117 .231 .182 .327 .361 .518 .099
PlayadelCarmen .185 .455 .192 .549 .428 .768 .182
SharmElSheikh .103 .366 .219 .440 .379 .748 .102

group avg .139 .363 .198 .451 .393 .692 .132

lower-quartile users
Amsterdam .191 .252 .443 .525 .474 .609 .161
BuenosAires .099 .389 .324 .555 .221 .595 .069
Istanbul .148 .336 .466 .604 .383 .571 .122

group avg .142 .329 .397 .555 .346 .595 .114

Barcelona .102 .120 .272 .411 .267 .318 .123
Chicago .079 .261 .155 .531 .356 .656 .108
Honolulu .147 .351 .377 .532 .448 .796 .162
SanFrancisco .146 .649 .253 .487 .545 .784 .130
Sydney .053 .098 .305 .522 .341 .496 .058
WashingtonDC .154 .373 .274 .533 .444 .741 .125

group avg .114 .293 .281 .498 .393 .613 .118

Edinburgh .180 .520 .439 .664 .501 .869 .204
Rome .220 .522 .495 .651 .400 .646 .192
Venice .065 .233 .241 .391 .256 .543 .051

group avg .155 .419 .393 .562 .373 .662 .149

NiagaraFalls .156 .787 .481 .592 .766 .925 .161
PlayadelCarmen .123 .239 .321 .594 .348 .512 .102
SharmElSheikh .166 .454 .341 .574 .489 .778 .180

group avg .148 .463 .372 .587 .511 .715 .148

C. Results

Table III reports on performance results obtained by Pack-

Rec over the various locations; parameter k in Fagin, nDCG

and MAP was set to cover 10% of the package set. For

each location and assessment criterion, results correspond to

averages over the different budgets selected for the location.

Moreover, for each location, we selected two different sets

of users, corresponding to the upper-quartile and the lower-

quartile, respectively, based on the users’ activity in terms

of total ratings on items belonging to the location. Note

that no distinction was made between positive (high) and

negative (low) ratings of the users, which clearly affected

the overall quality of the average performance results: these

were indeed generally low due to a partial agreement with

the TripAdvisor-driven reference ranking generated for each

location (cf. Sect. V-A), which by definition tends to rank

higher positively rated items, and hence packages.

Looking at the results per location in each group, lower

scores corresponded to average Fagin and MAP, which how-

863

TABLE IV
BEST PERFORMANCES (FAGIN AND MAP SCORES) OF PACKREC AND

COMPOSITEREC OVER DIFFERENT LOCATIONS.

Location PackRec CompositeRec Location PackRec CompositeRec
Fagin MAP Fagin MAP Fagin MAP Fagin MAP

Amsterdam .530 .659 .089 .090 PlayadelCarmen .219 .254 .022 .028
Barcelona .589 .841 .184 .307 Rome .487 .735 .099 .089
BuenosAires .528 .828 .112 .111 SanFrancisco .486 .314 .193 .184
Chicago .496 .839 .135 .124 SharmElSheikh .466 .793 .092 .085
Edinburgh .514 .586 .086 .069 Sydney .493 .913 .119 .106
Honolulu .520 .682 .072 .061 Venice .607 .931 .229 .524
Istanbul .589 .887 .101 .112 WashingtonDC .296 .494 .057 .032
NiagaraFalls .623 .954 .071 .072 avg .496 .714 .111 .133

ever behaved quite closely. Generally higher scores were

achieved in terms of Kendall, which would indicate a higher

overall alignment w.r.t. the reference ranking than in the cases

where the head of lists was taken into account, and in terms

of nDCG, which means that the shared packages between the

top-k list of PackRec and the top-k list of the reference ranking

obtained similar ranks and relevance scores. By comparing the

corresponding group average performances in the two cases of

user activity, improved results could also be obtained in the

lower-quartile case (i.e., for groups 3 and 4), where the sparsity

in the user’s ratings is generally higher.

PackRec also appeared to be moderately robust w.r.t. the

various queries (i.e., package models) and location group

settings, since the differences among the group averages were

relatively low in terms of average Fagin and MAP. By ana-

lyzing the personalization of the recommendations obtained

for different budgets (results not shown), we observed that

in several cases smaller budgets corresponded to better top-

rankings (i.e., higher Fagin scores, nDCG and MAP), which

might be explained by the fact that smaller budgets led to filter

out a larger number of packages, facilitating the ranking task.

Comparison with CompositeRec: Table IV shows the

results obtained by PackRec and CompositeRec. Comparison

was limited to the Fagin and MAP criteria for two main

reasons: both the PackRec and the CompositeRec outputs

are incomplete rankings w.r.t. the merged reference ranking

described above (which prevents the use of Kendall), and

the CompositeRec output ranking is produced without scores

(which prevents the use of nDCG). Parameter k for Fagin was

set to 10, since we let CompositeRec to recommend the top-10

packages for each of the selected users per location.

As we expected, CompositeRec produced packages sig-

nificantly different from those involved in our first stage of

evaluation: over the various locations, the number of distinct

models varied from 5 to 10, and the size (i.e., number of item

types) from 2 to 35 (average of 13.9). Moreover, packages

with multiple items of the same type were also taken into

account—while the average multiplicity was always close to

1, in each location there was however at least one item type

with more than 10 occurrences in a package model.

Results in Table IV show that PackRec achieved significant

correlation with the combined reference ranking in all loca-

tions. It came to our surprise that, despite PackRec was trained

under a setting driven by CompositeRec recommendations,

PackRec clearly outperformed CompositeRec in all cases and

for both criteria, with average gains of 0.385 Fagin and 0.581

MAP. Qualitatively, worse performance by CompositeRec was

indeed explained by the fact that most of the 10 packages

returned by CompositeRec per location have poor match with

the top-10 packages in the reference ranking. This would give

evidence that PackRec can effectively deal with packages of

varying structure and that its combination of expert finding,

collaborative filtering and graph-based ranking allows for

better performance than a cost/value knapsack strategy.

VI. CONCLUSION

We presented an application-independent framework for

the recommendation of packages of items. While being fully

unsupervised, the framework relies on a-priori (user-provided)

knowledge on the structure and types of the packages to be

learned and recommended in a personalized fashion. Testing

on datasets of other domains is certainly needed to fully

support our claim of application-domain independence and

versatility. Moreover, besides deepening the evaluation of the

PackRec sensitivity to the various parameters, we have identi-

fied a number of points to be studied, including the definition

of a regularization framework to address a possible item

correlation issue in the package learning step, and alternative

graph models for the package ranking step.

REFERENCES

[1] T. Deng, W. Fan, and F. Geerts, “On the complexity of package
recommendation problems,” in Proc. ACM PODS, 2012, pp. 261–272.

[2] Q. Liu, E. Chen, H. Xiong, Y. Ge, Z. Li, and X. Wu, “A Cocktail
Approach for Travel Package Recommendation,” IEEE TKDE, PrePrints,
doi.ieeecomputersociety.org/10.1109/TKDE.2012.233, 2012.

[3] R. Baraglia, C. Frattari, C. I. Muntean, F. M. Nardini, and F. Silvestri,
“A Trajectory-Based Recommender System for Tourism,” in Proc. Conf
on Active Media Technology (AMT), 2012, pp. 196–205.

[4] M. D. Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi, R. Lempel,
and C. Yu, “Automatic construction of travel itineraries using social
breadcrumbs,” in Proc. ACM HT, 2010, pp. 35–44.

[5] M. Xie, L. V. S. Lakshmanan, and P. T. Wood, “Composite recommen-
dations: from items to packages,” Frontiers of Computer Science, vol. 6,
no. 3, pp. 264–277, 2012.

[6] A. Angel, S. Chaudhuri, G. Das, and N. Koudas, “Ranking objects based
on relationships and fixed associations,” in Proc. EDBT, 2009, pp. 910–
921.

[7] G. Koutrika, B. Bercovitz, and H. Garcia-Molina, “FlexRecs: expressing
and combining flexible recommendations,” in Proc. ACM SIGMOD,
2009, pp. 745–758.

[8] S. Lee, S. Song, M. Kahng, D. Lee, and S. Lee, “Random walk based
entity ranking on graph for multidimensional recommendation,” in Proc.
ACM RecSys, 2011, pp. 93–100.

[9] S. E. Helou, C. Salzmann, S. Sire, and D. Gillet, “The 3A contextual
ranking system: simultaneously recommending actors, assets, and group
activities,” in Proc. ACM RecSys, 2009, pp. 373–376.

[10] N. N. Liu and Q. Yang, “EigenRank: a ranking-oriented approach to
collaborative filtering,” in Proc. ACM SIGIR, 2008, pp. 83–90.

[11] M. Gori and A. Pucci, “ItemRank: A Random-Walk Based Scoring
Algorithm for Recommender Engines,” in Proc. IJCAI, 2007, pp. 2766–
2771.

[12] A. Brodsky, S. M. Henshaw, and J. Whittle, “CARD: a decision-
guidance framework and application for recommending composite al-
ternatives,” in Proc. ACM RecSys, 2008, pp. 171–178.

[13] Q. T. Tran, C. Y. Chan, and G. Wang, “Evaluation of set-based queries
with aggregation constraints,” in Proc. ACM CIKM, 2011, pp. 1495–
1504.

[14] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of IR
techniques,” ACM TOIS, vol. 20, no. 4, pp. 422–446, 2002.

[15] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing Top k Lists,” SIAM
Journal on Discrete Mathematics, vol. 17, no. 1, pp. 134–160, 2003.

864

