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Abstract

Motivation:  Over the last decade several prediction methods
have been developed for determining structural and functional prop-
erties of individual protein residues using sequence and sequence-
derived information. These protein residue annotation problems are
often formulated as either classification or regression problems and
solved using a common set of techniques.

Methods: We developed a generalized protein sequence an-
notation toolkit (PROSAT) for solving classification or regression
problems using support vector machines. The key characteristic
of our method is its effective use of window-based information to
capture the local environment of a protein sequence residue. This
window information is used with several kernel functions available
within our framework. We show the effectiveness of using the pre-
viously developed normalized second order exponential kernel func-
tion and experiment with local window-based information at differ-
ent levels of granularity.

Results:  We report empirical results on a diverse set of classi-
fication and regression problems: prediction of solvent accessibility,
secondary structure, local structure alphabet, transmembrane he-
lices, DNA-protein interaction sites, contact order, and regions of
disorder are all explored. Our methods show either comparable or
superior results to several state-of-the-art application tuned predic-
tion methods for these problems. PROS AT provides practitioners an
efficient and easy-to-use tool for a wide variety of annotation prob-
lems. The results of some of these predictions can be used to assist
in solving the overarching 3D structure prediction problem.

Availibility:  hup://bio.dic.umn.edu/monster

Contact: rangwala@cs.umn.edu

1 Introduction

Protein structure and function prediction are grand challenges
in computational biology [35, 36]. Residue-wise prediction
problems are frequently more tractable than full prediction of
three-dimensional structure and fill a supporting role for full
prediction efforts.

Residue properties mostly take the form of either discrete
label or continuous values and the task of assigning these
properties is called protein sequence annotation. Each type
of property has inspired a variety of computational meth-
ods [22, 33] to annotate protein sequences with the correct
labels or values. Familiar examples include secondary struc-
ture prediction [30, 18, 13] and solvent accessibility predic-
tion [24, 29, 33]. Though specifics vary, the crux of most

methods is to use sequence conservation signals to gener-
ate predictions. From problem to problem, the amount of
sequence information required to generate an accurate and
general model may vary substantially.

Our work develops a generalized protein sequence anno-
tation framework using kernel-based techniques. The frame-
work accepts any sequence information in the form of feature
matrices and is capable of generating either discrete or con-
tinuous valued annotations. Kernels which compare variable-
width windows around a sequence positions are used to de-
termine what level of local information is necessary for ac-
curate predictions. In some cases, only rough information
about distant sequence neighbors may be required for accu-
rate predictions. We explore this issue by examining the per-
formance trade-off between fine-grained near-neighbor and
coarse-grained distant-neighbor information.

As part of this work, we developed a protein sequence an-
notation toolkit, called PROSAT, that is applicable to any
general annotation problem. We report empirical results
on a wide range of prediction problems including annota-
tion for solvent accessibility [29, 33], local structure alpha-
bet [17, 5], transmembrane helices [14], DNA-protein in-
teraction sites [26], contact order [39], and disordered re-
gions [4, 10]. We use previously established datasets and that
have pairwise sequence identity ranging from 25% to 40% for
our evaluation.

Our results show the improvement in classification and
estimation performance on the disordered and residue-wise
contact order prediction problems by allowing the flexible
representation introduced by us to capture the coarse-grained
distant-neighbor information. We also report better than cur-
rent state-of-the-art prediction results on an independently
tested static benchmark for transmembrane helices predic-
tion. Our generalized prediction framework shows an im-
provement compared to the well-established prediction meth-
ods on the residue-wise contact order, solvent accessibility,
transmembrane helices, and local structure alphabet predic-
tion problems. The results reported in this study are also
shown to be statistically significant.

2 Problem Definitions
2.1 Notations

We will refer to protein sequences by X and Y, and an ar-
bitrary residue by z. Given a sequence X of length n, with
it are associated derived features F', a n X d matrix where d
is the dimensionality of the feature space. The features asso-
ciate with the ith residue z; are the ¢th row of the matrix £



denoted as F;. When multiple types of features are consid-
ered, the Ith feature matrix is specified by F'.

Frequently we wish to capture local information around
the ith residue, z; by defining a subsequence from z;_,, to
Zitw- This (2w + 1)-length subsequence is referred to as a
wmer and is denoted by wmer(z;). The features associated
with wmer(x;) are the rows of F, F;_,, to F;;,, and are
denoted as wmer (F;).

2.2 Disorder Prediction

Some proteins contain regions which are intrinsically disor-
dered in that their backbone shape may vary greatly over time
and external conditions. A disordered region of a protein
may have multiple binding partners and hence can take part in
multiple biochemical processes in the cell which make them
critical in performing various functions [7]. Accurate predic-
tion of disordered regions can relieve some of the bottlenecks
caused during high-throughput proteome analysis.

Several studies [32, 41] have shown the differences in se-
quences for ordered and disordered regions. As such, a large
number of computational approaches have been developed
to predict the disordered segments using sequence informa-
tion. Predicting disordered regions forms part of the biennial
protein structure prediction experiment CASP!. Disorder re-
gion prediction methods mainly use physiochemical proper-
ties of the amino acids or evolutionary information. In partic-
ular [UPred [6] uses a pairwise energy function derived from
amino acid composition, Poodle [10] employs a combination
of different physiochemical properties as features for a SVM-
based learning and prediction approach. Another disordered
prediction tool, DISPro [4] utilizes a combination of evolu-
tionary and sequence-derived features within a recurrent neu-
ral network.

2.3 Protein-DNA Interaction Site Prediction

When it is known that the function of a protein is to bind
to DNA, it is highly desirable from an experimental point
of view to know which parts of the protein are involved in
the binding process. These interaction sites usually involve
protein residues which come into contact with DNA and sta-
bilize the complex due to favorable interactions with DNA.
Sequence-based methods are to identifying the most likely
binding residues as the full structure of the protein is rarely
known. Accurate methods that do so would allow an experi-
mentalist to alter the protein behavior by mutating only a few
residues.

The usual approach for a machine learning approach is
to define a cutoff distance from DNA. If parts of a protein
residue are within this cutoff, it is considered an interacting
residue and is otherwise considered non-interacting, a binary
classification problem. DISIS [26] uses support vector ma-
chines and a radial basis function kernel with PSSMs, pre-
dicted secondary structure, and predicted solvent accessibil-
ity as input features. This is framework is directly comparable
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to our own along with neural network method of Ahmad and
Sarai [2] which employs only PSSMs. Researchers have also
utilized structure information such as the structural neighbors
in DISPLAR [40] and the solvent accessibility using in the
earlier work of Ahmad et al. [1].

2.4 Transmembrane Helix Prediction

Proteins which span the cell membrane have proven to bet
quite difficult to crystallize in most cases and are generally
too large for NMR studies. Computational methods to eluci-
date transmembrane protein structure are a quick means to
obtain approximate topology. Many of these proteins are
composed of a inter-cellular, extra-cellular, and membrane
portions where the membrane portion contains primarily hy-
drophobic residues in helices. Accurately predicting these he-
lix segments allows them to be excluded from function stud-
ies as they are usually not involved in the activity of the pro-
tein.

MEMSAT [14] in its most recent incarnation uses profile
inputs to a neural network to predict whether residues in a
transmembrane protein are part of a transmembrane helix,
interior or exterior loop, or interior or exterior helix caps.
Kernytsky and Rost have benchmarked a number of meth-
ods and maintain a server to compare the performance of new
methods which we employ in our evaluation [19].

2.5 Local Structure Alphabets

The notion of local, recurring substructure in proteins has ex-
isted for many years primarily in the form of the secondary
structure classifications. With the advent of fragment assem-
bly methods for tertiary structure prediction [37], there has
been increased interest in methods for predicting the back-
bone conformation of a fixed length section of protein. This
extended local structure, usually a superset of traditional 3-
state secondary structure, can be a significant first step to-
wards full tertiary structure.

Many local structure alphabets have been generated by
careful manual analysis of structures such as the alphabet of
DSSP [15] while others have been derived through purely
computational means. One such example are the Protein
Blocks of de Brevern et al. [5] which were constructed
through the use of self-organizing maps, a clustering tech-
nique. The method uses residue dihedral angles during clus-
tering and attempts to account for order dependence between
local structure elements which should improve predictability.
Karchin et al. used neural nets to predict local structure for
a variety of alphabets [17]. They found Protein Blocks to be
the best choice according to their ‘bits saved per position,” a
measure of how much prediction improvement there is for the
alphabet over simply predicting the most frequent character.

2.6 Relative Solvent Accessibility Prediction

Solvent accessibility determines the degree to which a residue
in a protein structure can interact with a solvent molecule.
This is important, as it can ascertain the local shape of protein



based on whether the residue is buried/exposed. The residue-
wise notion of solvent accessibility is defined by DSSP [15]
by determining the accessible surface area relative to the max-
imum possible surface area obtainable for the specific amino
acid residue.

Predicting solvent accessibility can be formulated as a
classification problem by defining buried or exposed classes
by thresholding on the relative solvent accessibility value
(normally 16% or 25%), and can also be a regression or den-
sity estimation problem of attempting to determine the per-
centage value using sequence information only. There are
many methods available for solvent accessibility prediction
that deploy a wide range of learning methods including neural
networks [33], bi-recurrent neural networks [29], information
theory statistics [24] and support vector machines [25] using
the set of standard sequence derived features.

2.7 Residue-wise Contact Order Prediction

Pairs of residues are considered to be in contact if their C'g
atoms are within a threshold radius, generally 12 A. Residue-
wise contact order [21] is an average of the distance separa-
tion between contacting residues within a sphere of set thresh-
old. It defines the extent to which a residue makes long-range
contacts in native protein structure, and can be used to set
up constraints in the overarching three-dimensional structure
prediction problem, and explain protein-folding rates [28].

A support vector regression method [39] has used a com-
bination of local sequence-derived information in the form of
PSI-BLAST profiles [3] and predicted secondary structure in-
formation [13], and global information based on amino acid
composition and molecular weight for good quality estimates
of the residue-wise contact order value. Amongst other tech-
niques, critical random networks [22] use PSI-BLAST pro-
files as a global descriptor for this estimation problem.

3 Methods and Algorithms

We approach the protein residue annotation problem by uti-
lizing local sequence information around each residue in a su-
pervised machine learning framework. We use support vector
machines (SVM) [11, 42] in both classification and regression
formulations to address the problem of annotating residues
with discrete labels and continuous values respectively. We
use the publicly available svMmlight program [12] for the dis-
criminatory learning.

3.1 Support Vector Classification and Regres-
sion

The task of assigning a label to the residue = from one of the
K possible annotation labels is a typical multiclass classifica-
tion problem. The general strategy is to build K one-versus-
rest binary SVM classification models that assign a residue to
be in a particular class or not.

For a particular class, positive residues A™ are defined as
members of that class while the negative residues A~ are
members of other classes. The task of support vector clas-

sification is to learn a function f(z) of the form

f(z) = Z MKz, ;) — Z A Kz, x), (1)

z; EAT z, €A™

where /\i+ and )\, are non-negative weights that are computed
during training by maximizing a quadratic objective function,
and (., .) is the kernel function designed to capture the sim-
ilarity between pairs of residues. Having learned the function
f(zx), a new residue x is predicted to be positive or negative
depending on whether f(z) is positive or negative. The value
of f(x) also signifies the tendency of x to be a member of the
positive or negative class and can be used to obtain a mean-
ingful ranking of a set of the residues.

We use the error insensitive support vector regression e-
SVR [42, 38] for learning a function f(x) for estimation in
case of determining a quantity, as in the case of solvent acces-
sibility prediction problem. Given a set of training instances
(x;,y:), where y; is the continuous value to be estimated for
residue x;, the e-SVR aims to learns a function of the form

flx)= Z af Kz, x;) — Z a; K(z,z;), ()

T, EAT T, EA~

where A contains the residues for which y; — f(z;) > e,
A~ contains the residues for which y; — f(z;) < —¢, and ;"
and «;; are non-negative weights that are computed during
training by maximizing a quadratic objective function. The
objective of the maximization is to determine the flattest f(x)
in the feature space and minimize the estimation errors for in-
stances in AT UA ™. Hence, instances that have an estimation
error satisfying | f (z;) —y;| < € are neglected. The parameter
€ controls the width of the regression deviation or tube.

In this work we focus on several key aspects related to
the formulation and solution of the classification and regres-
sion problems. In particular we explore different types of se-
quence information associated with the residues, develop ef-
ficient ways to encode this information to form fixed length
feature vectors, and design sensitive kernel functions to cap-
ture the similarity between residues in the feature spaces.

3.2 Sequence-based Information

PROSAT can use any general user-supplied features. In our
empirical evaluation for a given protein X of length n we
encode the sequence information using PSI-BLAST posi-
tion specific scoring matrices, predicted secondary structure,
and position independent scoring matrices like BLOSUMG62.
These feature matrices are referred to as P, S, and J3, respec-
tively and are described below.

3.2.1 Position Specific Scoring Matrices The pro-
file of a protein is derived by computing a multiple sequence
alignment of it with a set of sequences that have a statisti-
cally significant sequence similarity, i.e., they are sequence
homologs as ascertained by PSI-BLAST [3]. For a sequence
of length n, PSI-BLAST generates a position-specific scor-
ing matrix P of dimensions n x 20, where the 20 columns



of the matrix correspond to the twenty amino acids. The pro-
files in this study were generated using the latest version of
the PSI-BLAST [3] (available in NCBI’s blast release 2.2.10
using blastpgp -3 5 -e 0.01 -h 0.01) searched
against NCBI’s NR database that was downloaded in Novem-
ber of 2004 and contains 2,171,938 sequences.

3.2.2 Predicted Secondary Structure Information
We use YASSPP [18] to predict secondary structure and gen-
erate a position-specific secondary structure matrices. For a
length n sequence, the result is S, a n x 3 feature matrix.
The (4, j)th entry of this matrix represents the propensity for
residue 7 to be in state j, where j € {1,2,3} corresponds
to the three secondary structure elements: alpha helices, beta
sheets, and coil regions.

Predicted secondary structure is an example of a local
structure alphabet and plays a critical role in protein struc-
ture prediction. YASSPP [18] has an identical framework to
PROSAT and is one of the best performing secondary struc-
ture prediction methods with a reported Q3 accuracy of 80%.

3.2.3 Position Independent Scoring Matrices A
less computationally expensive feature of protein sequences
may be obtained from a position independent scoring matrix
such as the BLOSUMS62 substitution matrix. The primary
motivation for using BLOSUMG62-derived feature vectors is
to improve the classification accuracy in cases where a se-
quence does not have a sufficiently large number of homol-
ogous sequences in NR. In these cases PSI-BLAST fails to
compute a correct alignment for some segments of the se-
quence giving a misleading PSSM [10, 18]. To make effec-
tive use of PROSAT’s capabilities we create a n x 20 feature
matrix where each row of the matrix is a copy of the BLO-
SUMG62 row corresponding to the amino acid at that position
in the sequence. This feature matrix is referred to as 3.

By using both PSSM- and BLOSUMG62-based informa-
tion, the SVM learner can construct a model that is partially
based on non-position specific information. Such a model
will remain valid in cases where PSI-BLAST could not gen-
erate correct alignments.

3.3 Kernel Functions

For a pair of sequences X and Y/, let a specific set of derived
features for the sequences be matrices F' and G, respectively.
To simplify notation we use Fj to indicate the ith row of ma-
trix F', which corresponds to the features associated with the
ith residue of X. A kernel function computes a similarity
between two objects and selection of an appropriate kernel
function for a problem is key to the effectiveness of support
vector machine learning. We consider several individual ker-
nels of interest and then proceed to describe combinations of
kernels used in this study.

Our first contribution is a two-parameter linear window-
kernel, denoted by W,, y which computes the similarity be-
tween two wmers, wmer(z;) and wmer(y;) according to
their features wmer(F;) and wmer(G;), respectively. The

kernel function is defined as

f
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The parameter w governs the size of the wmer considered
in computing the kernel while f offers control over the fine-
grained versus coarse-grained sections of the window. Rows
within 4+ f contribute an individual dot product to the total
similarity while rows outside this range are first summed and
then their dot product is taken. In all cases f < w and as
f approaches w, the window kernel becomes simply a sum
of the dot products, the most fine-grained similarity measure
considered.

The rationale behind this kernel design is that some prob-
lems may require only approximate information for sequence
neighbors which are far away from the central residue while
nearby sequence neighbors are more important. Specifying
f < w merges these distant neighbors into only a coarse con-
tribution to the overall similarity, as it only accounts for com-
positional information and not the specific positions where
these features occur. The window kernel is defined as a dot-
product, which makes it equivalent to linear kernel with a fea-
ture encoding scheme that takes into account the two variable
parameters, w and f. Hence, we can embed the dot-product
based WV within other complex kernel functions.

Another individual kernel we use extensively is the sec-
ond order exponential kernel, X *°¢, developed in our earlier
works for secondary structure and local structure information
prediction [18, 31]. Given any base kernel function C, we
define K2 as

K (x,y) = K(z,y) + (K(z,y))*. )

which is a second-order kernel in that it computes pairwise
interactions between the elements x and y. We then define
ICSOE as

K*(z,y) s
VI (z, x) I3 (y, y)) ®

which normalizes C? and embeds it into an exponential
space.

We also use the standard radial basis kernel function (rbf),
defined for some parameter y by X"f (x, ) = exp(—v||z —
y|[?). In our studies we notice that the classification and re-
gression performance generally improves using unit length
normalized vectors. By setting the v parameter and using nor-
malized unit length vectors it can be shown that the standard
rbf kernel is equivalent (up to a scaling factor) to a first order
exponential kernel which is obtained by replacing i?(x,y)
with only the first-order term as /C(x,y) in Equation 4, and
plugging this modified 2 (x,y) in the normalization frame-
work of Equation 5.

K (2, ) = exp (1 +



In this paper, we mainly investigate the performance of
K3°¢ and K/ kernels with W, ¢ as the base kernel. From
here forward, we denote the soe to be the kernel X*°¢ using
the W, ¢ as the base, rbf to be the kernel Kb using the
normalized form with W,, ; as the base, and [in to be the
base linear kernel W, .

We also investigate the use of fusion kernels which are
generated via a linear combination of other kernels. In our
case, we use a fusion of second-order exponential kernels on
different features of a protein sequence. Considering two se-
quences with features F! and G' for [ = 1,. .., k, our fusion
kernel is defined

k
’Cfusion (xi’ yj) — Z wy KC50° (1.7717 Gé) ©6)

=1

where the weights w; are supplied by the user. In most cases,
these weights are equal but they may be altered according to
domain-specific information.

4 Experimental Design
4.1 Datasets

Our empirical evaluations are performed for different se-
quence annotation problems on previously defined datasets.
Table 1 presents information regarding the source and key
features of different datasets used in our cross validation and
comparative studies. The datasets were used in previous stud-
ies, and we ensured that the pairwise sequence identities for
the different datasets was less than 40%. Even though, the av-
erage sequence identity for the transmembrane-helix dataset
was 80%, the dataset was only used to train a model for a
blind independent evaluation on the statict benchmark [19].

The general protocol we used for evaluating the different
parameters, and features, as well as comparing to previously
established studies remained fairly consistent across the dif-
ferent problems. In particular we used a n-fold cross valida-
tion methodology, where 1/nth of the database in considera-
tion was used for testing and the remaining dataset was used
for training, with the experiment being repeated n times. The
number of cross validation was set based on the method that
had used the same dataset previously for comparative pur-
poses. In our experimental results we report results from pre-
vious studies.

4.2 Evaluation Metrics

We measure the quality of the methods using the standard
receiver operating characteristic (ROC') scores. The ROC
score is the normalized area under the curve that plots the true
positives against the false positives for different thresholds
for classification [9]. The ROC score reported is averaged
across the different classes and folds. We also compute other
standard statistics, including precision as TP/(TP + FP),
and recall as TP/(TP + FN). We also evaluate the ac-
curacy of K-way multiclass classification by as Qg =
(K, TP)/(Total Residues). Here, TP, FP, TN, FN de-
note the standard true positives, false positives, true negatives,

and false negatives, respectively. We also compute the F}
score given as 2 Precisionx Recall /( Precision+ Recall)

The ROC' score serves as a good quality measure in
case of unbalanced classes, where measuring the accuracy
or g, especially in case of binary classification model may
be skewed by predicting a particular class with larger num-
ber of instances. In such cases, it is essential to observe the
precision and recall values, which penalize the classifiers for
under-prediction as well as over-prediction. The F} score is
a weighted average of precision and recall lying between 0
and 1, and also is a good measure for different classification
problems.

The regression performance is assessed by computing the
standard Pearson correlation coefficient (C'C') between the
predicted and observed true values for every protein in the
datasets. We also compute the root mean square error rmse
between the predicted and observed values for every proteins.
The results reported are averaged across the different proteins
and cross validation steps. For the rmse metric, a lower score
implies a better quality prediction.

For the best performing models, we also report the errsig
rate as the significant difference margin for Qx and CC
scores (to distinguish between two methods). errsig is de-
fined as the standard deviation divided by the square root of
the number of proteins (o/ \/N ), and can help us assess how
significant the differences between the best performing mod-
els and the other models, as well as serves a reference for
future studies.

5 Discussion and Results

For all the problems, we perform a comprehensive set of ex-
periments encompassing a range of parameters, to determine
the kernel type, features, and WV parameters (i.e., w and f).

5.1 Disorder Prediction Performance

Table 2 shows the binary classification performance mea-
sured using the ROC and F} scores achieved on the disorder
dataset after a ten fold cross validation experiment.

Comparing the ROC performance of the PS¢, p” bf ,and
Pl’” models across different values of w and f used for pa-
rameterization of the base kernel (), we observe that the
soe kernel shows superior performance to the /in kernel and
slightly better performance compared to the normalized rbf
kernel used in this study.

Comparing the characteristics of the different features
keeping the kernel fixed to soe, we can notice that use of
P gives better classification performance compared to the S
and B features. However, integrating features i.e., use of fu-
sion kernels with P B, P S, and P S B tends to improve the
disorder prediction over the kernels that use only one set of
features, with the best results achieved by a combination of
all three features.

An interesting trend can be observed for the B5%¢ and
S%9€ results. As we increase the w parameter, keeping the f
parameter fixed to a low value of one or three, the percentage



Table 1: Problem-specific Datasets.

Problem Source #C | #Seq #Res #CV %
Disorder Prediction DisPro [4] 2 723 215612 10 30
Protein-DNA Site DISIS [26] 2 693 127240 3 20
Residue-wise Contact SVM [39] 00 680 120421 15 40
Solvent Accessibility RS126 [34] 00 126 23356 7 25
Solvent Accessibility RS126 [34] 2 126 23356 7 25
Local Structure Profnet [27] 16 1600 | 286238 3 40
Transmembrane Helix | Phobius [16] 4 247 95025 3 80*
Transmembrane Helix | Static Test [19] 2 2247 | 238084 - -

#C, #Seq, #Res, #CV, and % denote the number of classes, sequences, residues, number
of cross validation folds, and the maximum pairwise sequence identity between the se-
quences, respectively. oo represents the regression problem. *Even though the percent
identity between sequence-pairs is high, the dataset is used only for training and an in-
dependent evaluation is performed on the static benchmark [19].

increase in the ROC value for the ;3 features is higher, which
suggests that the 3 features are more suited to be adopted in
a coarse setting.

The best performing fusion kernel shows comparable per-
formance to DisPro [4] that uses a bi-recurrent neural net-
work to encapsulate profile, secondary structure and relative
solvent accessibility information.

5.2 Contact Order Performance

In Table 3 we present the regression performance for estimat-
ing the residue wise contact order. These results are evaluated
by computing the correlation coefficient and rmse values av-
eraged across the different proteins in the dataset.

Analyzing the effect of the w and f parameters for esti-
mating the residue-wise contact order values, we observe that
a model trained with f < w generally shows better CC and
rmse values. The best models as measured by the C'C' scores
after 15-fold cross-validation are highlighted in Table 3. A
model with equivalent C'C' values but having a lower f value
is considered better because of the reduced dimensionality
achieved by such models.

The best estimation performance achieved by our e-SVR
based learner uses a fusion of the PP and S feature matrices
and improves CC by 21%, and rmse value by 17% over the
e-SVR technique of Song and Barrage [39]. Their method
uses the standard rbf kernel with similar local sequence-
derived amino acid and predicted secondary structure fea-
tures. The major improvement of our method can be at-
tributed to our fusion-based kernel setting with efficient en-
coding, and the normalization introduced in Equation 5. In
our setting, using the default parameters for the -, regression
tube, and regularization parameters always lead to over-fitting
of the data with the original rbf kernel. This trend has been
noted in our previous studies [31].

We also tested the methods using only the P features, and
addition of B features but did not see a significant improve-
ment in the contact order estimation results and hence, do not
report these results here.

5.3 Transmembrane Helix Performance

To predict transmembrane proteins helices with PROSAT, we
set up a multi-class classification problem to differentiate be-

tween the helical and non-helical regions of transmembrane
proteins. In particular, to determine the orientation and topo-
logical structure of the helices we used a dataset that an-
notated the intermediate helical regions as cytoplasmic/non-
cytoplasmic resulting in four classes.

We performed a three-fold cross validation study for the
four-way multi-class classification problem on a dataset con-
sisting of only transmembrane proteins [16]. Note that our
training set makes it difficult to develop models for dif-
ferentiating between globular and transmembrane proteins,
as well as signal-peptide proteins as highlighted by Pho-
bius [16], which uses a combination of hidden Markov mod-
els and neural networks for discriminating between the dif-
ferent residues.

Table 4 (a) shows the classification performance evaluated
using the (4 accuracy and ROC scores for the PS9¢ kernel.
Based on the classification performance metrics, we see that
the better models have a finer representation of the wmers,
i.e., where w = f.

To obtain the predictions for sequences in the static bench-
mark [19]? we used the P5?¢ kernel with w and f parame-
ters set to 7. We used all the 247 transmembrane proteins
available in the Phobius dataset to build a four-way classi-
fication model, and annotated the 2247 sequences present
in the static benchmark (which provides independent eval-
uation). For evaluation, we used a mapping from four to
two classes rather than building a binary classification model.
Residues marked as helices were mapped to helices while all
others, including intermediate residues, were mapped to non-
helices. One of the best membrane-helix prediction program,
MEMSAT3 [14], was also evaluated for comparison purposes
as these results were not reported in the static benchmark.
MEMSAT3 also annotates residues into multiple classes: out-
side/inside loop, outside/inside helix cap, and internal helix.
Loops were mapped to non-helices while other were mapped
to helices.

Table 4 (b) shows some of the best performing schemes in
comparison to our prediction method, denoted PS¢ evalu-
ated by an independent server on the static benchmark (We do
not have the true predictions available for these sequences).

2Static Benchmark for testing Transmembrane helix prediction at
http://cubic.bioc.columbia.edu/services/tmh_benchmark/index.html



Table 2: Classification Performance on the Disorder Dataset.

w f=1 f=3 f=5 F=1 f=9 f=11

ROC  Fl | ROC _ FI ROC FI ROC Fl ROC Fl ROC Fl

3 0775 0312 | 0.800 0.350 - - - - - - - -

lin 0815 0366 | 0.817 0380 | 0816 0384 | 0816 0383 - - - -
P 0821 0378 | 0.826 0391 | 0.828 0396 | 0826 0400 | 0824 0404 | 0823  0.403
0823 0384 | 0.829 0398 | 0.832* 0405 | 0830 0404 | 0828 0407 | 0826  0.409

0811 0370 | 0.811  0.369 - - - - - - - -

prbf 0845 0442 | 0.849 0450 | 0.848 0445 | 0845 0442 - - - -
11| 0848 0464 | 0.855 0478 | 0.858 0482 | 0.858 0480 | 0855 0470 | 0853  0.468
13 | 0848 0473 | 0.855 0484 | 0859 0490 | 0.861* 0492 | 0860 0487 | 0857 0478

3 0815 0377 | 0.816 0379 - - - - - - - -

soe 7 0.847 0446 | 0.852 0461 | 0852 0454 | 0851 0454 - - - -
P 0.848 0469 | 0.856 0482 | 0.860 0491 | 0.862 0491 | 0861 0485 | 0862  0.485
0.847 0473 | 0856 0485 | 0.861 0491 | 0864 0495 | 0.865* 0494 | 0864 0492

0753 0314 | 0.752 0312 - - - - - - - -

soe 0810 0427 | 0815 0434 | 0816 0435 | 0815  0.429 - - - -
B 0820 0459 | 0.827 0465 | 0.831 0468 | 0.832 0472 | 0832 0472 | 0831 0471
13 | 0821 0465 | 0.829 0469 | 0.833 0473 | 0835 0473 | 0836 0476 | 0.836* 0478

3 0786 0332 | 0.791 0342 - - - - - - - -

soe 7 0806 0387 | 0.812 0397 | 0.814 0395 | 0814 0389 - - - -
S 0811 0417 | 0818 0424 | 0821 0426 | 0.823 0427 | 0822 0420 | 0821 0415
0812 0434 | 0821 0438 | 0825 0436 | 0.827* 0437 | 0827 0434 | 0826 0428

3 0.825 0399 | 0824 0395 - - - - - - - -

soe 7 0862 0487 | 0.865 0491 | 0.865 0487 | 0863 0481 - - - -
PB 0864 0502 | 0.869 0509 | 0.872 0513 | 0.873 0514 | 0873 0513 | 0873 0510
13 | 0863 0509 | 0869 0514 | 0873 0517 | 0875 0518 | 0.876* 0518 | 0876  0.519

0836 0413 | 0.838 0423 - - - - - - - -

soe 0860 0472 | 0.862 0476 | 0860 0473 | 0859 0468 - - - -
P& 0861 0490 | 0.867 0496 | 0.868 0498 | 0868 0495 | 0866 0483 | 0865  0.485
0860 0497 | 0.867 0503 | 0.870 0503 | 0.871* 0503 | 0870 0498 | 0868  0.492

0.842 0428 | 0.841 0428 - - - - - - - -

soe 7 0869 0497 | 0.870 0499 | 0.869 0494 | 0867  0.489 - - - -
PsSB 11 | 0871 0516 | 0875 0518 | 0.877 0517 | 0877 0512 | 0874 0508 | 0873  0.507
13 | 0869 0519 | 0875 0522 | 0878 0521 | 0.879** 0519 | 0879 0518 | 0876  0.514

DISPro [4] reports a ROC score of 0.878. The numbers in bold show the best models for a fixed w parameter, as measured by ROC'. P, BB, and S rep-
resent the PSI-BLAST profile, BLOSUMG62, and YASSPP scoring matrices, respectively. soe, rbf, and lin represent the three different kernels studied
using the Wu“ 1 as the base kernel. * denotes the best classification results in the sub-tables, and ** denotes the best classification results achieved on
this dataset. For the best model we report a Q2 accuracy of 84.60% with an errsig rate of 0.33.

We obtain the best ()2 accuracy evaluated on a per-residue
basis, and have good precision and recall scores as well.

5.4 Solvent Accessibility Performance

We approached solvent accessibility as both a labelling prob-
lem and a regression problem. For labelling, we chose vary-
ing cutoff thresholds to define each residue as either buried
if at or below the threshold or exposed if above the thresh-
old. For regression, PROSAT was used to generate continu-
ous valued estimates of each residues relative accessible sur-
face area. We explored Prbf and also P%°¢ but restricted the
study to models where w = f. In each case, 7-fold cross-
validation was performed on the full RS126 dataset.

The results for both classification and regression are
shown in Table 5 along with a leading method for solvent
accessibility prediction [20]. The general trend appears to be
that prediction performance by P"*/ is slightly exceeded by
P#°¢. The best window size appears to be w = 7 for both our
kernels for prediction. Both kernels exceed the performance
of the previously published SVM method which uses an rbf
kernel with window length of 15 and profiles with some pre-
dicted local structure as inputs. For regression, the "%/ out-
performs P%°¢ and increasing window size improves the per-

formance.

5.5 Protein-DNA
mance

Interaction Sites Perfor-

Analyzing the ROC' and F} scores obtained on the protein-
DNA interaction site prediction problem in Table 6, we ob-
serve that for the /in kernels the classification accuracy de-
creases with increasing w sizes but fixed f parameters. This
suggests that for predicting protein-DNA interaction sites,
finer order-specific information holds more value compared
to the coarser information. This trend was reversed in the case
of disorder prediction where coarser information did have
some benefit over entirely using the fine information. This
is likely due to the inherent nature of these properties.

Further, the /in kernel for a small w = 3 value shows bet-
ter results than the soe and rbf kernel. The linear kernel with
the coarse information can extract some of the pairwise infor-
mation that is extracted by the rbf and soe kernels. The value
of w plays an important part in reducing the size of feature
vectors and hence, the computational complexity. As such,
models with lower w values may be preferred over models
with higher w values when the classification accuracy gap is
not large.



Table 3: Residue-wise Contact Order Estimation Performance

w f=1 f=3 f=5 f=7 f=9 f=11
CC rmse CC rmse CC rmse CC rmse cC rmse CC rmse

3 0.683 0.720 | 0.686 0.718 - - - - - - - -

lin 0.685 0.714 | 0.694 0.707 0.702 0.698 | 0.703 0.697 -2 - - -
PS 0.683 0.713 | 0.695 0.703 0.704 0.694 | 0.705 0.692 | 0.704 0.691 | 0.704 0.692
0.680 0.714 | 0.694 0.703 0.703 0.693 | 0.704 0.691 | 0.704 0.690 | 0.704 0.690

3 0.703 0.699 | 0.707 0.696 - - - - - - - -

rbf 7 0.709 0.687 | 0.716 0.680 0.721 0.677 | 0.720 0.677 - - - -
PSS 11 0.707 0.686 | 0.718 0.676 0.723* 0.671 | 0.722 0.671 | 0.720 0.672 | 0.718 0.673
15 0.704 0.686 | 0.716 0.675 0.723 0.669 | 0.723 0.669 | 0.721 0.669 | 0.719 0.670

3 0.704 0.696 | 0.708 0.692 - - - - - - - -

P gsoe 7 0.712 0.683 | 0.719 0.677 0.723 0.672 122 0.672 - - - -
11 0.711 0.681 | 0.720 0.673 0.725 0.667 | 0.725 0.666 | 0.724 0.666 | 0.722 0.667
15 0.709 0.680 | 0.719 0.672 | 0.726** 0.665 | 0.726 0.664 | 0.725 0.664 | 0.723 0.664

CC and rmse denotes the average correlation coefficient and rmse values. The numbers in bold show the best models as measured by C'C' for a fixed w param-
eter. ‘P, and S represent the PSI-BLAST profile and YASSPP scoring matrices, respectively. soe, rbf, and lin represent the three different kernels studied using
the W, ¢ as the base kernel. * denotes the best regression results in the sub-tables, and ** denotes the best regression results achieved on this dataset. For the
best results the errsig rate for the C'C values is 0.003. The published results [39] uses the default rbf kernel to give CC' = 0.600 and rmse = 0.78.

Table 4: Classification Performance on the Transmembrane Helix Dataset.

(@ (b)
Method Q2 Recall Precision
w f=1 f=3 f=5 =7 f=9 psoe 84 81 87
Q4 ROC Q4 ROC Q4 ROC ®Q4 ROC Q4 ROC MEMSAT?3 83 78 88
5 | 69.2 0.867 | 69.7 0.872 | 70.4 0.878 - - - - TMHMMI 80 68 81
pso¢ | 7 | 70.50.876 | 71.1 0.882 | 71.7 0.887 | 71.8 0.888 - - PHDpsihtm08 | 80 76 83
9 | 71.40.884 | 71.8 0.888 | 72.4 0.892 | 72.7 0.894 | 72.8** 0.895 HMMTOP2 80 69 89
PHDhOtmO08 78 76 82

The numbers in bold show the best models for a fixed w parameter, as measured by Q4 accuracy score, and ** denotes the best classification results
achieved on this dataset. Results for MEMSAT3 [14] and PS¢ were obtained by evaluating it on the TMH static benchmark [19] and submitting the
results of prediction to the server. We use the P®°¢ kernel with w = f = 7. All the other results were obtained from the TMH static benchmark

evaluation web-site.

The best model is obtained by combining the P and S fea-
tures which gives a raw ()2 accuracy of 83%. The protein-
DNA interaction site program DISIS uses a two-level ap-
proach to solve this problem [26]. The first level, which uses
SVM learning with profile, predicted secondary structure,
and predicted solvent accessibility as inputs, gives Q2 = 83%
to which our performance compares favorably. DISIS goes on
to smooth this initial prediction using a rule-based approach
which improves accuracy. We have not yet explored this type
of multi-level approach.

Table 7: Classification Performance on the Lo-
cal Structure Alphabet Dataset.

w = f gave the best results on testing on few sample points,
and hence due to the expensive nature of this problem, we
did not test it on a wide set of parameters. ** denotes the
best scoring model based on the Q16 scores. For this best
model the errsig rate of 0.21.

5.6

We chose to use the Protein Blocks [5] as our target alpha-
bet for local structure prediction. There are sixteen members

Local Structure Alphabet Performance

in this alphabet which significantly increases prediction diffi-
culty over traditional three-letter secondary structure predic-
tion.

We used a dataset consisting of 1600 proteins derived from
the SCOP [23] version 1.57 database, classes a to e, and
where no two protein domains have more than 75% sequence
identity. This dataset was previously used for predicting of
profile-profile scoring functions using neural networks [27].
We computed the local structure alphabets, Protein Blocks [5]
using the 3D structure for the proteins.

Due to the high computational requirements associated
with such a large training set, we evaluated our soe kernels on
a wide set of parameters for w and f, but only on a small sub-

;UOZC fQ:1 5 EO:C fQ:1 67 RU(SC: fQ:1 (? set of the 1600 proteins present in the dataset. From this ex-
prof 082 649 | 081 647 | 081 642 periment, we observed that prediction was best when w = f
psoe 0.83 67.3 | 082 67.7 | 0.82 67.7 and used this to limit the choice of parameters for larger-scale
PSU | 084 664 | 084 669 | 083 672 evaluation. Once these promising models were determined,
PS¢ | 085 680 | 084 685 | 083 68.9% we carried out a 3-way cross validation experiment using all

1600 protein for each parameter set. Table 7 reports the clas-
sification accuracy in terms of the Q1 accuracy and aver-
age of the ROC scores for different members of the Protein
Blocks.

From Table 7 we can draw the well-established conclu-
sion of this paper that the soe kernel performs marginally bet-
ter than the rbf kernel. The addition of predicted secondary
structure information, S features does improve the 14 per-
formance marginally as was expected for local structure pre-
diction. Our Q¢ results are very encouraging, since they



Table 5: Relative Solvent Accessibility Class Prediction and Regression Performance.

Cutoff % 0% 5% 16% Regression
Method Q2 ROC F1 Q2 ROC F1 Q2 ROC F1 CC rmse
P w, f=3 870 0.845 0486 | 799 0855 0.664 | 780 0.855 0.755 | 0.648  0.211
profw, f=5 871 0845 0491 | 804 0857 0.670 | 783  0.857 0.758 | 0.654  0.209
Pprvfw, f=7 87.1 0.844 0491 | 802 0856 0.668 | 784 0856 0.758 | 0.653  0.209
Profw, f=9 869 0.843 0487 | 803 0.855 0.667 | 783  0.855 0.756 | 0.654*  0.208
P w, f =11 872 0.843 0486 | 802 0.855 0.666 | 783 0.854 0.756 | 0.654  0.208
P w, f =3 875 0.845 0491 | 802 0857 0.669 | 785 0.858 0.758 | 0.641  0.211
P, w, f=5 87.6 0.847 0494 | 808 0860 0.671 | 78.7* 0.861 0.762 | 0.647  0.209
P w, f =7 87.7%* 0.846 0491 | 81.0% 0.859 0.670 | 78.6 0.861 0.760 | 0.646  0.210
P w, f =9 877 0.846 0493 | 809 0859 0.670 | 785 0860 0.760 | 0.648  0.209
P w, f =11 877 0.846 0494 | 809 0859 0.670 | 785 0.859 0.760 | 0.650  0.209

1-stage SVM 86.2 - - 79.8 - - 77.8 - - - -

The cutoff % is in terms of relative accessible solvent area and determines which residues are exposed (above the cutoff) and
buried (at or below the cutoff). The one-stage SVM is that of Kim and Park [20]. Q2 measures are reported by these two methods
but not ROC or F1 measures. C'C' and rmse denotes the average correlation coefficient and rmse values. We observed the best
classification and regression performance by setting w = f. The numbers in bold show the best models for a w, f parameter.

are above 67%, whereas the prediction accuracy for a ran-
dom predictor would be only 6.25%. Competitive methods
for local structure alphabet prediction have reported a Q16
accuracy of 40.7% [8]. However, these results cannot be di-
rectly compared with our method, as they were obtained on
a different train/test dataset. We are in the process of com-
paring PROSAT’s performance to other datasets and meth-
ods [17, 5, 8].

6 Conclusions

In this work we have developed a generic support vector ma-
chine based framework for producing predictive models to
annotate protein sequences. We have tested our framework,
PROSAT, with different sets of features on several annota-
tion problems. We have evaluated multiclass classification
and binary classification models for predicting local structure,
solvent accessibility, transmembrane helical regions, disorder
prediction, and protein-DNA interaction site prediction. We
have also tested regression models for residue-wise contact
order estimation and solvent accessibility prediction.

Our experimental evaluation showed that, in general, the
soe kernel achieves better performance than the standard rbf
kernels across a wide range of problems and datasets, even
though for some problems, these improvements are rather
small. In addition, our results showed that for some prob-
lems, by incorporating local information at different levels
of granularity, we were able to achieve better performance
when compared to the traditional fine-grain approach. Over-
all, PROSAT outperformed state-of-the-art, tuned prediction
methods for residue-wise contact order, solvent accessibility,
transmembrane helices, and local structure alphabet predic-
tion problems. We also show comparable performance on the
protein-DNA interaction and disordered prediction problems.

We believe that PROSAT provides to the practitioners an
efficient and easy-to-use tool for a wide variety of annotation
problems. The results of some of these predictions can be
used to assist in solving the overarching 3D structure predic-
tion problem. In the future, we intend to use this annotation
framework to predict various 1D features of a protein and ef-
fectively integrate them to provide valuable supplementary

information for determining the 3D structure of proteins.
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