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Abstract. Recommender systems are a nice tool to help �nd items of
interest from an overwhelming number of available items. Collaborative
Filtering (CF), the best known technology for recommender systems, is
based on the idea that a set of like-minded users can help each other �nd
useful information. A new user poses a challenge to CF recommenders,
since the system has no knowledge about the preferences of the new user,
and therefore cannot provide personalized recommendations. A new user
preference elicitation strategy needs to ensure that the user does not a)
abandon a lengthy signup process, and b) lose interest in returning to
the site due to the low quality of initial recommendations. We extend
the work of [23] in this paper by incrementally developing a set of in-
formation theoretic strategies for the new user problem. We propose an
o�ine simulation framework, and evaluate the strategies through exten-
sive o�ine simulations and an online experiment with real users of a live
recommender system.

1 Introduction

Collaborative Filtering (CF)-based recommender systems generate recommen-
dations for a user by utilizing the opinions of other users with similar taste.
These recommender systems are a nice tool bringing mutual bene�ts to both
users and the operators of the sites with too much information. Users bene�t as
they are able to �nd items of interest from an unmanageable number of available
items. On the other hand, e-commerce sites that employ recommender systems
bene�t by potentially increasing sales revenue in at least two ways: a) by drawing
customers' attention to items that they are likely to buy, and b) by cross-selling
items.

Problem statement. When a user �rst enters into a recommender system,
the system knows nothing about her preferences. Consequently, the system is
unable to present any personalized recommendations to her. This problem is
sometimes referred to as the cold-start problem of recommender systems [15,
6, 5, 29, 20]1. There are cold start problems for both new users and new items.
In this paper, we investigate the cold-start problem for new users of recom-
mender systems. We pose our research question as: how can we e�ectively learn

1 Claypool et al. refers to the problem as the early rater problem.



preferences of new users so that they can begin receiving accurate personalized
recommendations from the system? A related problem of recommender systems
is the systemic bootstrapping problem�recommender systems cannot serve any-
body with personalized recommendations when the site has just started, devoid
of any evaluations from anybody. We assume an existing recommender system
with an established member base here.

User pro�le learning techniques. User Modeling researchers have been
investigating �nding ways to elicit user preferences on various domains for years
[26, 30, 14]. For example, researchers examined if it would be a better idea to
unobtrusively learn user-pro�les from the natural interactions of users with the
system. One way to categorize the methods proposed thus far is by grouping
them into explicit and implicit methods [13]. Implicit preference collection works
�by observing the behavior of the user and inferring facts about the user from the
observed behavior� [13]. In the recommender systems domain, implicit techniques
may be more suitable if the items can be consumed directly within the system.
Also, implicit preference elicitations may be the only option where members can
only provide implicit feedback or evaluation, such as by listening to or skipping a
song, by browsing a web page, by downloading some content, and so on. Explicit
techniques, on the other hand, garner �knowledge that is obtained when an
individual provides speci�c facts to the user model� [13]. Examples include users
providing explicit feedback or evaluations on some rating scale. A comparative
analysis between the explicit and implicit techniques can be found in [18].

Another way to classify the techniques of building user pro�les can be based
on the interaction process between the users and the system, particularly by
looking at who is in control of the interaction process. [2] calls the possible inter-
action techniques human controlled, system controlled, and mixed initiative [11].
To explain these in the context of the recommender systems, a preference elicita-
tion technique would be a) human controlled, if it is the user herself who selects
(by typing the titles, for example) the items to evaluate, b) system controlled, if
the system makes the list of items for the user to evaluate, and c) mixed initia-
tive, if there are provisions for both user and system controlled interactions. The
user controlled scheme may cause more work on behalf of the users; however the
users may feel good being in charge [16]. One potential limitation of the user
controlled scheme is that the users may not be able to identify the items to eval-
uate that express their preferences well. Further, they may only remember what
they liked the most, not the opposite. An e�ective system controlled scheme may
be able to draw out users' preference information without causing the user to
put in a lot of e�ort. A mixed initiative scheme may have the positive aspects
of both of its component schemes. Furthermore, a mixed initiative scheme may
be the only option for a large online retail site that contains a wide category of
items. A user, for example, may not care about baby products at all, and may
not have any opinions about them. Therefore, a user may �rst help the system
�lter out the product types she does not care, and then the system can suggest
items to evaluate from the remaining item categories.



Fig. 1. In some systems it is not necessary to be familiar with an item to be able to
evaluate it. Shown is a snapshot of the Pandora music recommender, which incurs a
minimum signup e�ort for its new members. A member can evaluate a song she has
never heard before after she has listened to it on Pandora.

Desirable criteria of new user preference elicitation strategies. [23]
identify a number of aspects a new user preference elicitation strategy should
consider. We discuss two important points here. First, user e�ort : a signup
process should not seem burdensome to the newcomer�the frustrated user may
give up the signup process. Therefore, in some systems, asking users for their
opinion about the items they are familiar with would help alleviate the user e�ort
problem. However, in some systems, where the items can be directly consumed
within the system, familiarity with the items may not matter. An example is
given in �gure 1, which shows that the new users of the Pandora online music
recommender system can be o�ered the songs they have never heard of and still
provide feedback after they listened to the songs from the system. However, in
such cases, user e�ort may be related to the boredom from experiencing a series
of items the user does not like. Second, recommendation accuracy : the initial
quality of recommendations right after the signup process may determine if the
user would come back to the site. Therefore, it is very important to provide items
that would be able to e�ectively draw out user preferences, so that the system
can compute accurate recommendations for her. In this paper, we consider these
points during the selection of the strategies and when we evaluate them.

Our Approach. In this paper, we extend the work of [23] and study the
feasibility of a number of item selection measures based on information theory
for the new user problem. This involves using each of the measures to �nd a set
of items, and examining how e�ective the items are in learning pro�les of new
users. Since the necessary computations to select items are done by the system,
and the system prompts the users to provide opinions on a set of items, under
the classi�cations discussed above, our focus can be regarded as explicit and
system initiated approaches. Note that since system controlled approaches are
an important component of the mixed initiative approaches as well, this research
helps both system controlled and mixed initiative approaches.

We propose an o�ine simulation framework to investigate how the measures
perform for the new user problem. The o�ine experiments help us to set expec-
tations about the measures for their online deployment performance. Further,



we can be warned about a measure that performs poorly in the o�ine setting
and refrain from using this strategy online and bothering actual users. After the
o�ine experiments we investigate the measures with real users online.

2 Experimental Platform

We now introduce the components of the experimental platform we use in this
paper. We brie�y discuss the CF algorithms we consider, the dataset, and the
recommender system site for online experiments.

CF algorithms considered. Researchers have proposed quite a few col-
laborative �ltering algorithms [3, 1] to date. We consider two frequently cited
CF algorithms with distinct characteristics for our experiments, namely User-
based knn and Item-based knn. User-based knn [10, 25] follows a two step
process. First the similarities wut,. between the target user ut and all other
users who have rated the target item at are computed�most commonly us-
ing the Pearson correlation coe�cient. Then the prediction for the target item
is computed using at most k closest users found from step one, and by ap-
plying a weighted average of deviations from the selected users' means: Rut +∑k

i=1(Rui,at
− Rui

)wui,ut
/

∑k
i=1 wui,ut

. Note that we follow a number of im-
provements suggested in [10], including signi�cance weighting where an attempt
is made to lower the similarity between two users if they have not co-rated
enough items.

In Item-based knn [28] similarities are computed between items. To com-
pute a recommendation, all the rated items of the target user ut are ordered by
their similarities with the target item at. The recommendation is then a weighted
average of the target user's ratings on k most similar items:

∑k
i=1(wat,ai ∗

Rut,ai
)/

∑k
i=1(|wat,ai

|).
New user signup process in our experimental platform. Our experi-

mental platform is MovieLens
2, an online movie recommender site that uses a

collaborative �ltering algorithm to deliver movie recommendations to its mem-
bers. During the MovieLens new user signup process, a user sees one or more
pages, where each page contains a list of 10/15 movies. The user rates as many
movies as she can from each page and proceeds to the next page until she has
rated 15 movies in total. After that, she enters the actual site with all available
features. Here she can experience what she came to MovieLens for: recommen-
dations on movies she has not seen yet. The more pages she has to go through
to reach the target of the �rst 15 ratings, the more e�ort she has to put to scan
the movies on each page, and the more frustrating the initial barrier may seem
to her.

Data. We extract a dataset from MovieLens. The dataset, let us denote it
by D, has about 11,000 users, 9,000 movies, and 3 million ratings in a scale of 0.5
to 5.0 stars, with an increment of 0.5 star. Therefore, the resulting user×movie
matrix is about 97% sparse, typical of recommender system data. In deriving

2 http://movielens.umn.edu



the data we considered only those users who have rated at least 20 movies and
logged in at least twice. This is to increase the odds that the ratings collected
are from reliable and more active members of MovieLens.

We partition D into two sets Dtrn and Dtst, where Dtrn gets each users' ran-
domly selected 80% of the ratings, and Dtst gets the remaining 20%. Therefore,
Dtrn and Dtst both contain rating information from each user. As explained
further later, Dtrn is used to compute the heuristics and to carry out o�ine
simulations; evaluations are done using Dtst.

3 Strategies to Learn New User Pro�les

In this section we incrementally develop a few measures to select items for the
goal of learning user pro�les e�ectively. Note that we primarily focus on de-
veloping measures based on information theory, since our main goal is to draw
information about true user preferences.

3.1 Popularity

Popularity of an item indicates how frequently users rated the item. Popular
items may be good at connecting people with each other as co-raters, since
many people are likely to rate popular items. However, depending on the rating
distribution, a popular item may or may not be informative. For example, a
popular item that is controversial may have about half of the opinions positive
and the rest of the opinions negative. This item is deemed to be informative,
since the system would at least learn which of the two broad camps of users the
rater belongs to. On the other hand, a generally liked popular item may be less
informative.

The advantage of Popularity is that it is very easy and inexpensive to
compute. A disadvantage of using Popularity measure to elicit preferences,
as pointed out by [23], is the possibility of worsening the pre�x bias�that is,
popular items garnering even more evaluations. Unpopular items, lacking enough
user opinions, may be hard to recommend. This situation would not improve if
the system keeps asking opinions on popular items.

3.2 Entropy

Entropy of an item represents the dispersion of opinions of users on the item.
Considering a discrete rating category, entropy of an item at, H(at) = −

∑
i pilg(pi),

where pi denotes the fraction of at's ratings that equals to i.
A limitation of entropy is that it often selects very obscure items. For exam-

ple, an item ai that has been rated by a moderate number of people (say, 2000
out of the total 6000 members in the system), a rating distribution of (400/2000,
400/2000, 400/2000, 400/2000, 400/2000) corresponding to a rating scale of (1,
2, 3, 4, 5) leads the item to have the maximum entropy score. However, a second
item af that was rated only 5 times with a rating distribution (1/5, 1/5, 1/5,



Table 1. Showing a limitation of entropy. While entropy is able to identify the more
informative of the two popular �lms Dumb & Dumber, and Shawshank Redemption,
it picks the rarely rated movie Wirey Spindell as the most informative. However, few
people will be able to express an opinion about Wirey Spindell.

Film Title Rating Distrib # ratings Entropy

Wirey Spindell
Film Title #of ratingsEntropy
Wirey Spindell (2000) 5 2.32

Dumb & Dumber (1994) 3918 2.18
Shawshank Redemption, The (1994) 6318 1.22

#of ratingsEntropy
Film Title 1 2 3 4 5
Wirey Spindell (2000) 1 1 1 1 1 5 2.32

Dumb & Dumber (1994) 451 608 1073 1315 471 3918 2.18
Shawshank Redemption, The (1994) 23 55 272 1973 3995 6318 1.22

Number of ratings

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

5 2.32

Dumb & Dumber

Film Title #of ratingsEntropy
Wirey Spindell (2000) 5 2.32

Dumb & Dumber (1994) 3918 2.18
Shawshank Redemption, The (1994) 6318 1.22

#of ratingsEntropy
Film Title 1 2 3 4 5
Wirey Spindell (2000) 1 1 1 1 1 5 2.32

Dumb & Dumber (1994) 451 608 1073 1315 471 3918 2.18
Shawshank Redemption, The (1994) 23 55 272 1973 3995 6318 1.22

Number of ratings

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

3,918 2.18

Shawshank Redemption
Film Title #of ratingsEntropy
Wirey Spindell (2000) 5 2.32

Dumb & Dumber (1994) 3918 2.18
Shawshank Redemption, The (1994) 6318 1.22

#of ratingsEntropy
Film Title 1 2 3 4 5
Wirey Spindell (2000) 1 1 1 1 1 5 2.32

Dumb & Dumber (1994) 451 608 1073 1315 471 3918 2.18
Shawshank Redemption, The (1994) 23 55 272 1973 3995 6318 1.22

Number of ratings

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

6,318 1.22

1/5, 1/5) possesses the same entropy score. Note that many members may �nd
the former item familiar, and very few members may �nd the latter item familiar.
In general, we cannot infer the rating frequencies or popularities of items from
their entropy scores. In fact, �gure 2(c), which is a scatter-plot between entropy
and popularity (rating frequency, to be exact) of items, shows that entropy and
popularity are only slightly correlated (correlation coe�cient is only 0.13). A
real example demonstrating this limitation of entropy is provided in table 1.

A few other researchers who employed entropy as a measure for informative-
ness on other domains also report its mixed results. For example, in their work
on using information theoretic measures such as entropy to �nd informative pat-
terns in data, [8] notice that in addition to picking informative patterns, entropy
suggests �garbage� (meaningless or not useful) patterns to be useful as well.

In order to modify the behavior of entropy so that in addition to emphasizing
the dispersion of user opinions the resulting measure also considers the frequency
of user opinions on the item, we next examine two variations of the entropy
measure we have discussed so far.

3.3 Entropy0: Entropy Considering Missing Values

In a typical recommender system, most of the items do not receive evaluations
from all of the members.
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Fig. 2. Distribution of items' (a) rating frequencies and (b) entropy scores. (c): a
scatter-plot delineating the relationship between items' normalized (to have ranges of
values between 0 and 1) rating frequencies and entropy scores.



This is either because the members have not experienced many of the items,
or because the members have not gotten a chance to evaluate them. Therefore,
computing entropy might involve a varying number of users' opinions for di�erent
items. In order to handle the missing evaluations of an item, we treat the missing
evaluations as a separate category of evaluation, for example, a rating value of
0 in the datasets we use, since 1-5 is the usual scale; and �ll all the missing
evaluations with this new rating category. After this modi�cation, every item
has an equal number of user votes, which amounts to the total number

of members in the system, and the typical rating scale gets augmented by
the new value (0). Furthermore, the frequency of the new rating category (0) of
an item indicates how (un)popular the item is�the smaller this value, the more
popular this item is.

Note that the new scheme introduces a limitation which can be thought as
the reversal of the old limitation. The new scheme might bias frequently-rated
items too much. For an example, if the dataset has 6,000 users and an item a
that has been rated 200 times, uniformly across the rating category; that is, the
rating frequencies are (5800, 50, 50, 50, 50, 50) corresponding to the rating values
(0, 1, 2, 3, 4, 5), the new scheme yields a score of 0.335. On the other hand, let
us consider another item b, which has been rated frequently, say 3,000 times;
however, everyone has rated the same way (say 5.0), and the rating frequencies
are (3000, 0, 0, 0, 0, 3000). Since everybody agrees on their evaluations, the item
b carries no information intuitively. However, the new scheme yields a score of
1.0, even greater than that of the former item, a!

In an attempt to limit the in�uence of the missing-value category on En-

tropy0, we use a weighted entropy [7] formulation as follows:

Entropy0(at) = − 1∑
i wi

5∑
i=0

piwilg(pi) (1)

Using this updated formulation, we can set a smaller weight on w0 compared
to the rest of the weights to lower the e�ect of the missing-value category of
evaluations or the item's rating frequency on Entropy0. Note that if we set
w0 = 0 and rest of the weights equal to 1.0, Entropy0 turns into the basic
entropy.

3.4 Helf: Harmonic mean of Entropy and Logarithm of
Frequency

We can multiply entropy scores of items with their rating frequencies expecting
that an item with a high score of this combined metric would indicate that
a) there is a good chance that members would be familiar with it, and b) the
user opinions on the item have a high variability. However, the distribution of
items' rating frequencies and entropies are very di�erent. As �gure 2(a) shows,
the distribution of items' rating frequencies is approximately exponential, and
the distribution of entropy scores is approximately normal (slightly skewed to
the left). Further, �gure 2(c) shows that entropy and rating frequency are not



correlated at all. Therefore, a straightforward multiplication of the two produces
a measure that is heavily related to one of the component measures (as shown
in table 2, it is the popularity).

By further examining �gure 2(a) and 2(b), we �nd that the scales, as shown
in the x-axes, are vastly di�erent. Therefore, it might seem that normalizing
both rating frequency and entropy scores so that they remain between 0 and 1
would solve the problem of dominance of rating frequency on the multiplicative
measure of the two. However, the shape of the rating frequency distribution
remains the same after we normalize the values. We then note that the rating-
frequency values have a very wide range�the largest value (about 3,000) is many
orders of magnitude larger than the smallest value (0). On the other hand, the
entropy scores do not vary that much. As a result, a multiplication between the
two varies heavily with the rating frequency scores.

A property of the logarithm function is that it can transform an exponential-
like curve into a linear-like curve by compressing large values together. The range
of the transformed values, therefore, becomes much smaller. For example, in our
dataset, the range of the transformed values becomes: 0-11.5�much smaller
than the original. Note that we use a base 2 logarithm (denoted as lg), and treat
0lg0 = 0.

In [23], the logarithm of rating-frequency is multiplied with the entropy.
However, we take a harmonic mean of the two. A widely used evaluation metric
in information retrieval utilizing the harmonic mean is the F1 metric, which
combines precision and recall scores [33, 27]. A nice property of the harmonic
mean is that it strongly increases or decreases when both of the components
increase or decrease [19].

Therefore, the �nal measureHelf:Harmonic mean ofEntropy and Logarithm
of rating Frequency, can be expressed as below.

HELFai =
2 ∗ LF ′

ai
∗H ′(ai)

LF ′
ai

+ H ′(ai)
(2)

where, LF ′
ai
is the normalized logarithm of the rating frequency of ai: lg(|ai|)/lg(|U |),

and H ′(ai) is the normalized entropy of ai: H(ai)/lg(5).

Combination Corr coe� of the combined measure
approach with Entropy with rating frequency

Multiplication 0.17 0.99
Helf 0.77 0.55

(0.96 with log(rating frequency))

Table 2. As shown in the case of Helf, applying a log transformation to items' rating
frequency helps the combined measure to be related to both of the component measures:
entropy and rating frequency. Whereas, in the �rst approach, the combined measure is
only weakly correlated with entropy.
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Fig. 3. Nearest neighbor CF approaches such as User-based knn use opinions of up
to k closest neighbors to calculate predictions. Should we then �nd a set of l users
(l ≥ k) whose tastes are most similar to the target user and always use this �xed set of
neighbors for all predictions? Perils of applying this idea are shown by means of %of
non-recommendable items and recommendation error. Further, it gets worse if we do
not utilize a signi�cance weighting [10] to adjust user-user similarities. Note that the
results indicated by All also represent the results we get if we use k (=20) dynamic
neighbors for each recommendation.

3.5 Igcn: Information Gain through Clustered Neighbors

One issue with information theoretic measures such as entropy and its variants
discussed so far is that they are not adaptive to a user's rating history. Depending
on the opinions expressed on the items so far, the informativeness of the rest of
the items may not be the same for two users, who might have rated a di�erent
set of items, or rated the same items in a di�erent manner. In the following, we
try to develop an information theoretic measure that takes the items rated so
far by a user into account.

In short, our proposed approach Igcn works by repeatedly computing infor-
mation gain [17] of items, where the necessary ratings data is considered only
from those users who match best with the target user's pro�le so far. Users are
considered to have labels corresponding to the clusters they belong to; and the
role of the most informative item is treated as helping the target user most in
reaching her representative cluster(s). Next we explain how we develop Igcn by
taking a few assumptions.

Design decision: Goal of building pro�les is to �nd right neighbor-

hoods. Collaborative �ltering-based recommender system algorithms compute
recommendations for a user by utilizing the opinions of other users with similar
taste, who are also referred to as neighbors. Therefore, we can expect that a
user will receive the best recommendations if her true like-minded neighbors are
found. As a result, the goal of building a good preference-pro�le of a member
can be interpreted as �nding the best set of neighbors for her. A key question
is: should the set of neighbors of each user be �xed? That is, for the target user,
whether we should �rst �nd a set of k best neighbors, and use only these neigh-
bors for computations of all her recommendations. Figure 3 demonstrates the
limitations of this approach. The best k neighbors might not have an opinion



about all the items the target user needs recommendations about. Therefore,
dynamically selecting top neighbors from among the users who rated the target
item is a better idea for practical reasons. Taking all these dynamic neighbors of
the target user together, we may �nd that the number of neighbors considered
is at least a couple of times greater than the value of k.

Design decision: Neighborhoods correspond to user clusters. The
objective of clustering is to group entities so that intra-cluster similarities of the
entities are maximized, and the inter-cluster similarities are minimized. There-
fore, if the same similarity function is used both to �nd neighbors and to compute
clusters, a user cluster can be roughly regarded as a cohesive user neighborhood.
However, following the discussion above, the necessary neighbors of a user may
come from multiple clusters (proxy for neighborhoods).

Use a decision tree? If we regard user clusters as classes of users, and the
goal of pro�le building as �nding the right cluster (class) for the target user,
a decision tree algorithm such as ID3 [22] can be employed for learning user
pro�les. The decision tree would have cluster-numbers (class labels) in the leaf
nodes; and each internal node would represent a test on an item indicating the
possible ways the item can be evaluated by a user. The item on the root node
would have the highest information gain, where the information gain of an item
at can be computed in this context as:

IG(at) = H(C)−
∑

r

|Cr
at
|

|C|
H(Cr

at
) (3)

where H(X) denotes the entropy of a discrete random variable X. C denotes
the distribution of users into classes (clusters), that is, how many users belong
to each cluster. Cr

at
represents the distribution of those users into classes who

evaluated the item at with the value r. For example, if r = 4, Cr
at

indicates how
many of the users who voted at a 4-star belong to each cluster. Note that H(C)
tells us about the expected information that is required to know which class

(cluster) a given user belongs to; and
∑

r

|Cr
at

|
|C| H(Cr

at
) is essentially the weighted

average of the entropies of various partitions of the original class distribution (C)
caused by users' ratings of at. Thus, the latter term indicates how much expected
information is still required to �nd the class of a given person after rating at.
Therefore, IG(at) essentially expresses the reduction in required information
toward the goal of �nding the right class by rating at.

The goal of the target user would then be to follow a route through the de-
cision tree�starting from the root node and ending at a leaf node. The cluster
or class representing the leaf node would imply the user's true class or neighbor-
hood. Unfortunately, this ideal decision tree scenario may not be feasible with
most members of a recommender system. The reasons include the following two.

� Missing value. Members may not be familiar with some of the items along a
path of the tree. Some members may not even know the item on the root of
the tree.



� Inadequate goal.As explained during the discussion of the assumptions above,
depending on the granularity of the user clusters, the goal of �nding one best
cluster may be insu�cient.

The missing value problem is important in practice for the following two
reasons. First, even the most popular items are only rated by a fraction of the
users. For example the most popular item in our dataset is rated by only 50% of
the users. Second, dealing with the missing values algorithmically is a challenge.

We approach this missing value problem by treating the missing evaluations
of an item as a separate category (0 in our datasets). As a result, the values of
r in our dataset become 0,1,. . . ,5. As in the case of Entropy0, however, this
introduces a problem in that frequently rated items dominate over infrequently
rated ones. Therefore, we incorporate additional weight terms into equation 3
the following way:

IG(at;W) = H(C)−
∑

r

wr|Cr
at
|

E(C;W)
H(Cr

at
) (4)

where E(C;W) =
∑

r wr
|Cr

at
|

|C| . This updated equation gives us an opportunity

to lower the e�ect of rating category corresponding to the missing ratings. We
can do so by setting a lower weight on w0 compared to the rest of the weights
wi, for i = 1 . . . 5.

Since a direct application of the decision tree algorithm is not practically fea-
sible in our problem domain, we use an algorithm Igcn, presented in algorithm
3.1 that approximates it. Igcn assumes the following. First, the goal of pro�le-
building is to �nd a set of best clusters, or a number (typically greater than k of
knn) of best neighbors. Second, we assume a system or interface that presents
items for evaluation in batches (instead of one item at a time); for example, a
web site may list 15 items on a page for a user to evaluate. Third, a user may
not know any of the items provided in a step.

Note that Igcn works in two steps. The �rst step is non-personalized in
that the information gain of the items are computed considering all users in the
system. Once the target user has rated at least some threshold number of items,
the personalized step begins. In this step only the best neighbors of the target
user are used to compute the information gain of the items.

4 O�ine Experiments

In this section we examine the e�cacy of the heuristics presented in section 3
through an o�ine simulation which mimics the user activity during the Movie-

Lens new user signup process. Table 3 lists the explanations of the notations we
use.

4.1 O�ine Simulation Framework

In order to simulate the MovieLens signup process described in section 2, we
select one of the heuristics, such as Helf and sort movies in descending order



Algorithm 3.1: Igcn algorithm

- Create c user clusters
- Compute information gain (IG) of the items
- Non-personalized step:

/* The �rst few ratings to build an initial pro�le */
Repeat

- Present next top n items ordered by their IG scores
- Add items the user is able to rate into her pro�le
Until the user has rated at least i items

- Personalized step:

/* Toward creating a richer pro�le */
Repeat

- Find best l neighbors based on the pro�le so far
- Re-compute IG based on the l users' ratings only
- Present next top n items ordered by their IG scores
- Add items the user is able to rate into her pro�le
Until best l neighbors do not change

by the measure, and then �present� the top 15, 30, . . . , or 75 movies to a new
user ut corresponding to 1, 2, . . . , or 5 �pages�.

Table 3. Table of notations.

Notation Description

ut Target user
Dtrn Training dataset
Dtst Test dataset

Duttrn
Target user's rating data in the training dataset

Duttst
Target user's rating data in the test dataset

Dutseen
Subset of Duttrn

corresponding to the
movies �seen� by ut from the �presented� movies

We treat ut's rated movies in the training set as all the movies ut has watched.
We determine which of �presented� movies ut has seen by taking an intersection
between the �presented� movies and movies in Duttrn

. ut's rating information
on these matched movies constitute ut's initial pro�le. We then evaluate the
e�cacy of this pro�le by computing predictions for ut corresponding to her rating
information Duttst

found in the test set Dtst. Predictions are computed using
the entire training data and the new pro�le, after ut's old rating information is
discarded; that is, using Dtrn − Duttrn

+ Dutseen
. Figure 4 shows the steps we

discussed for the o�ine simulation.
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Fig. 4. New user signup simulation procedure.

4.2 Procedure

For computations of the heuristics, we used the entire Dtrn; however, for the
simulation, we only used users who have at least 80 ratings in Dtrn. There are
two reasons for this decision. First, from the historical ratings data, it may be
hard to infer what users have seen. For an example, a user who has 20 ratings
might have seen more than she has reported. However, many of the movies we
�present� may appear unfamiliar to her because of her limited reporting. Second,
since we �present� up to 75 movies, we need 75 or more ratings of a user to know
how many of the presented movies they have �seen�. Selecting users with 80 or
more ratings may create a bias in that our �ndings may apply only to users with
many ratings. Note that about 71.5% of the users in Dtrn had ≥80 ratings.

All of the heuristics except the Igcn can be computed prior to the simula-
tion. Igcn requires clustering users in Dtrn. We use the Bisecting k-means, a
variant of k-means clustering algorithm for its simplicity and accuracy [31, 12].
Parameters of the Igcn algorithm are c: number of users clusters, n: number
of movies presented at a time, i: number of ratings for the initial pro�le, and
l: number of closest neighbors to re-compute IG. We set values of (c, n, i, l) as
(300, 15, 5, 150). Values of c and l are chosen since they yield the best results.
The value of n is what is used in MovieLens new user signup. For Entropy0
we use w0 = 1/2, and wi = 1 for i = 1 . . . 5 since this combination of weights
produces the best results.

Note that we do not experiment with basic Entropy here, rather directly
apply the learning from [23].

4.3 Evaluation Metrics

The �rst metric we are interested in measures how much users are able to rate
movies selected by a strategy. MAE or mean absolute error is another metric
we use that indicates recommendation quality. MAE, a widely used metric in



the CF domain, is the average of deviations between the recommendations and
the corresponding actual ratings. However, a limitation of MAE is that it only
considers absolute di�erences. MAE sees no di�erence between two pairs of (ac-
tual rating, recommendation) for a movie that are (1, 5) and (5, 1). Although
users may be unhappy more about the former pair. We, therefore, use another
accuracy metric, Expected Utility [24] that tries to penalize false positives more
than false negatives.

4.4 Results
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Fig. 5. Showing how familiar the movies are to the users as the movies are �presented�
in batches according to each of the item selection measures we study here.

In this section we present the results from the o�ine simulations. Figure 4
shows how well the users are able to rate movies presented by various approaches.
We see that the Popularity scheme selects items that users �nd most familiar,
and Helf produces the least familiar movies. However, users are able to rate at
least one third of the presented movies by each approach, probably reasonable
in terms of user e�ort.

Next we present recommendation accuracy results to compare the e�ective-
ness of the users' new pro�les by various measures. Figures 6(a) and 6(b) show
the recommendation accuracy results for the User-based knn CF algorithm.
We �nd that both Igcn and Entropy0 perform well by both metrics. We
�nd similar results in �gures 6(c) and 6(d) where the CF algorithm used is the
Item-based knn, although Igcn performs slightly better. The confusing results,
however, are from Popularity and Helf. According to MAE, Helf and Pop-
ularity are the bottom performers; however according to EU, Helf is the best
measure. We next drill down into the results to better understand the confusing
performance of Helf and Popularity.

Table 4 shows recommendation accuracy results when the number of �pre-
sented� movies is 45 and the CF algorithm used is the Item-based knn. Note
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Fig. 6. How e�ective are the learned user pro�les? Recommendation accuracy results
from the o�ine simulations. (a)-(b) on the User-based knn, and (c)-(d) on the Item-
based knn CF algorithm. The evaluation metrics used are mean absolute error or
MAE (the lower, the better) and expected utility or EU (the higher, the better).

that identical results found on the User-based knn CF algorithm are not pre-
sented here. For brevity, we treat recommendations and actual ratings to be of
two values: positive (≥ 3.0) and negative (< 3.0).

In order to understand the puzzling results of Popularity and Helf, we
present data about the following: a) of all the true negative ratings (< 3.0) found
in the test dataset, what percentage of the recommendations are positive, b) of
all the true positive ratings (≥ 3.0) found in the test dataset, what percentage

Table 4. Showing the strengths and weaknesses of each of the approaches in generating
di�erent types of recommendations. Recommendations (and actual ratings) are treated
to be of two categories: positive (≥ 3.0) and negative (< 3.0). The table is produced
for the Item-based knn CF algorithm and considering the case when the number of
�presented� movies is 45. The best result in each row is shown in bold-face.

Popularity Helf Igcn Entropy0

%of true negatives as false positives 66.25 32.27 51.08 53.48
%of true positives as false negatives 7.34 28.92 12.09 11.27

MAE for positive actual ratings 0.54 0.72 0.52 0.53
MAE for negative actual ratings 1.37 0.91 1.14 1.18



of the recommendations are negative, c) MAE of the recommendations corre-
sponding to the positive actual ratings, and d) MAE of the recommendations
corresponding to the negative actual ratings. We �nd from the table that Helf
does the best job and Popularity does the worst job in avoiding false positive
recommendations. On the other hand, user pro�les built by evaluating popular
movies help avoid false negative recommendations. Similarly, MAE due to Pop-
ularity is much better than that of Helf when actual ratings are positive.
The performance of this duo reverses when ratings are negative. Since the ratio
of actual positive to negative ratings is about 3.6:1, the good MAE of Popu-
larity on positive actual ratings helps Popularity to be better than Helf.
On the other hand, in the expected utility (EU) measure for the movie domain
we penalize false positives more than the false negatives; therefore, Helf beats
Popularity when EU is used as the performance metric.

Note also from table 4 that Igcn performance balances between not doing
too bad in recommending either false positives or false negatives. As a result, it
consistently performs well on both metrics.

5 Online Experiments

Online studies are essential to examine if the o�ine �ndings hold true in real
world settings. In this section we describe the online experiments we performed
for the new user problem.

5.1 Design

We perform our online experiments on MovieLens recommender system. We
de�ne four experimental groups corresponding to the item selection measures we
investigate. After a new user is done with the basic registration process, such as
providing the user name and password, he or she is randomly assigned to one of
the four groups. They see pages full of movies to rate. These movies are selected
by the item selection measure corresponding to the subject's group. After she
has �nished rating a �xed number of movies she is taken to a brief optional
survey and that concludes the experiment.

The goal of the survey was to collect user opinions about the signup process.
To make it short, we asked their opinions on only the following areas. We asked
if they thought that the movies they rated represented their general movie pref-
erences, if they found it easy to rate during the signup, if they thought that the
signup process was a barrier to entry for the site, and if they prefer to search
for the movies they wanted to rate. There was also an area in the survey where
they could express any additional thoughts they had about the signup.

After the signup process the new user enters into the full-�edgedMovieLens

system. There she can do various activities as she prefers to, including receiving
personalized recommendations, participating in discussion forums, and so on.
The important activity for this experiment is rating movies. In MovieLens, a
user can rate a movie anytime she sees it either because she searched for it, or



Table 5. Group-wise participations of the subjects

Approach #of #of valid #of pages
registrants subjects to �nish

Igcn 118 95 (81%) 5.5
Popularity 123 95 (77%) 3.6
Entropy0 115 95 (83%) 3.0

Helf 112 92 (82%) 4.6

she used the �rate more movies� option, a feature available in MovieLens that
currently lists random movies to rate. These additional ratings after the signup
process are important because we check how accurate the recommendations of
the movies she rated are. That is, we treat the ratings of a user during the signup
process as her pro�le, and the ratings after the signup process as the test data
to evaluate the e�cacy of the pro�le.

MovieLens requires each new member to rate at least 15 movies during the
signup process to �nish registration. In this experiment, however, we raised the
threshold to 20, so that initial pro�les of the subjects are more mature. However,
one may worry that users may �nd it burdensome to rate 20 movies before they
can enter into the system. We asked the users about this in the short survey after
the signup, and users reported that they did not �nd it burdensome. Rather they
understood the bene�t of more ratings as the only way to teach the system about
their preferences. One user wrote about the signup process: �I understand why

it is needed. I know it will make your recommendations more accurate.�

5.2 Results and Discussion

We ran the experiment for 20 days. 468 users tried to join MovieLens during
that period, who became the subjects of our experiment. 381 subjects �nished
the signup process�we call them the valid subjects. Among these valid sub-
jects, 305 users at least partially participated in the survey. Table 5 shows how
the participants and the valid subjects are distributed across the experimental
conditions. We perform all our data analysis using the valid subjects.

The last column of table 5 indicates the varying degrees of e�ort required by
the subjects to �nish the signup process. Parallel to our �ndings from the o�ine
simulation, the Popularity and Entropy0 approaches required users to scan
fewer pages than that of the

Igcn and Helf approaches. Interestingly, users seemed not to notice this
extra e�ort. Figure 7 supports this fact. Users' self reports indicate that in
all experimental conditions they agreed that rating movies was easy, and they
disagreed that the signup process was a barrier to entry. Since users either do
not notice or do not get bothered with the variations of e�ort caused by the item
selection measures, the initial recommendation quality can be considered as the
deciding factor to judge the approaches.

Table 6 shows the initial recommendation quality from the new user pro�les
by the four approaches. As described before, we considered the ratings of a



Table 6. E�ectiveness of the learned user pro�les according to the accuracy of the
initial recommendations on two CF algorithms. Recommendations are evaluated using
test data collected the following way: (a) all ratings of the users after the signup, and
(b) the �rst 20 ratings of the users after the signup. The best and worst results in each
column are shown in bold-face.

(a) User-based knn CF algorithm

Test data: #of ratings after signup
All ratings First 20 ratings

Approach MAE EU MAE EU

Igcn 0.67 4.72 0.70 5.67

Popularity 0.73 3.63 0.72 3.27

Entropy0 0.73 6.20 0.71 5.03
Helf 0.84 5.63 0.88 5.36

(b) Item-based knn CF algorithm

Test data: #of ratings after signup
All ratings First 20 ratings

Approach MAE EU MAE EU

Igcn 0.69 3.78 0.75 5.00
Popularity 0.73 3.33 0.76 3.75

Entropy0 0.77 5.55 0.75 5.23
Helf 0.85 5.29 0.92 5.78

subject during the signup process as her pro�le and her ratings afterwards as
the test data. We made two variations of the test data in that one test dataset
contains all her ratings after the signup step, and another test dataset contains
at most her �rst 20 ratings after the signup step. Therefore, the latter dataset
is a subset of the former dataset. The subject's initial pro�le is used to generate

Prefer typing the movies 
I want to rate

Rating movies was easy

HELF Entropy0 Popularity IGCN

1.0 2.0 3.0 4.0 5.0

Ratings expressed 
general movie-

preferences
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entry to MovieLens

Strongly 
Agree

Strongly 
Disagree Neutral

Fig. 7. Average survey responses.



Table 7. Summary of various strategies along two important dimensions of the new
user problem. (FFFFF: best, F: worst, considering both o�ine and online perfor-
mance.)

Strategy User e�ort Recommentation accuracy

Igcn FFFF FFFFF
Entropy0 FFFFF FFFF
Helf FFF FFFF
Popularity FFFFF FFF
ItemItem [23] FFFFF FF
Random [23] F FF
Entropy [23] F FF

recommendations for each of the test datasets by using two CF algorithms:
User-based knn and Item-based knn.

Igcn performs the best and Helf performs the worst by the MAE metric
on both CF algorithms. However, Helf performs well by the expected utility
metric. Overall, user pro�les due to the Popularity measure resulted in the
least accurate recommendations.

Note that we get similar results (similar performance ordering of the ap-
proaches) by considering the �rst 15 ratings of each subject as their initial pro-
�les instead of all of the 20 ratings they made during the signup step.

6 Conclusion

In this paper we have approached the new user cold start problem of recom-
mender systems with a set of item selection measures. The set of measures we
considered here has a root in information theory, and belongs to the category of
system-controlled techniques for learning user pro�les. We believe that research
on developing e�ective system-controlled techniques is important, since system-
controlled techniques demand less cognitive and manual e�ort of the users. Be-
sides, in retail sites deploying recommender systems, where a mixed initiative
technique is necessary because of the multitude of categories of items it carries,
an e�ective system-controlled technique can do its part the best possible way.

Through an o�ine simulation and an online study, we have found that all of
the approaches worked well, both in terms of the user e�ort and the initial rec-
ommendation quality. Overall, the Popularity measure performed the worst,
and the Igcn measure performed the best. Table 7 juxtaposes the performance
summary of the measures we presented in this paper with the measures dis-
cussed in [23]. We notice from the table that Igcn and Entropy0 are two top
performers.

The closeness between the results from the online study and the o�ine sim-
ulation suggests that the simulation framework we proposed is e�ective for the
type of new user signup process it mimicked. This simulation framework, there-
fore, can be used to evaluate future novel approaches before trying with real
systems, or where studying with real users is not feasible at all.



Much remains to be done. Given a recommender system, a formal analysis
able to express the minimum independent information that is still required to
understand a given user's pro�le is an intriguing direction. [21] sketched some
ideas by means of value of information analysis, and [4] implemented some of
those ideas. However, more work is needed, due to the limitation of the approach
of [4] on sparse datasets, a common scenario for e-commerce recommenders.

Learning a user's pro�le may be a continuous activity, and preferences of
a user may change over time. The possibility of the ephemeral nature of user
preferences may require some type of longitudinal adaptive pro�ling. That is,
either old preferences must be discarded, or more weight must be given to recent
preferences. The problem of updating pro�les by the age of evaluations is another
interesting direction for future work.
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