
Vol. 21 no. 23 2005, pages 4239–4247

doi:10.1093/bioinformatics/bti687BIOINFORMATICS ORIGINAL PAPER

Structural bioinformatics

Profile-based direct kernels for remote homology detection

and fold recognition
Huzefa Rangwala and George Karypis�
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA

Received on May 12, 2005; revised on June 15, 2005; accepted on September 20, 2005

Advance Access publication September 27, 2005

ABSTRACT

Motivation: Protein remote homology detection is a central problem in

computational biology. Supervised learning algorithms based on sup-

port vector machines are currently one of the most effective methods

for remote homology detection. The performance of these methods

depends on how the protein sequences are modeled and on the

method used to compute the kernel function between them.

Results: We introduce two classes of kernel functions that are

constructed by combining sequence profiles with new and existing

approaches for determining the similarity between pairs of protein

sequences. These kernels are constructed directly from these explicit

protein similarity measures and employ effective profile-to-profile scor-

ing schemes for measuring the similarity between pairs of proteins.

Experimentswith remotehomologydetectionand fold recognition prob-

lems show that these kernels are capable of producing results that are

substantially better than those produced by all of the existing state-

of-the-art SVM-based methods. In addition, the experiments show

that these kernels, even when used in the absence of profiles, produce

results thatarebetter than thoseproducedbyexistingnon-profile-based

schemes.

Availability: The programs for computing the various kernel functions

are available on request from the authors.

Contact: karypis@cs.umn.edu

1 INTRODUCTION

Breakthroughs in large-scale sequencing have led to a surge in the

available protein sequence information that has far out-stripped our

ability to experimentally characterize their functions. As a result,

researchers are increasingly relying on computational techniques

to classify these sequences into functional and structural families

based on sequence homology.

Although satisfactory methods exist to detect homologs with high

levels of similarity, accurately detecting homologs at low levels

of sequence similarity (remote homology detection) still remains

a challenging problem. Some of the most popular approaches for

remote homology prediction compare a protein with a collection of

related proteins using methods such as protein family profiles

(Gribskov et al., 1987), PSI-BLAST (Altschul et al., 1997), and
hidden Markov models (HMMs) (Krogh et al., 1994; Baldi et al.,
1994; Karplus et al., 1998). These schemes produce models that are

generative in the sense that they build a model for a set of related

proteins and then check to see how well this model explains a

candidate protein.

In recent years, the performance of remote homology detection

has been further improved through the use of methods that explicitly

model the differences between the various protein families (classes)

and build discriminative models. In particular, a number of different

methods have been developed that build these discriminative mod-

els using support vector machines (SVM) (Vapnik, 1998) and have

shown, provided there are sufficient data for training, to produce

results that are in general superior to those produced by either

pairwise sequence comparisons or approaches based on generative

models (Jaakkola et al., 2000; Liao and Noble, 2002; Leslie et al.,
2002, 2003; Ben-Hur and Brutlag, 2003; Hou et al., 2003, 2004;
Saigo et al., 2004; Kuang et al., 2005).
A core component of an SVM is the kernel function, which

measures the similarity between any pair of examples. Different

kernels correspond to different notions of similarity and can lead to

discriminative functions with different performance. One approach

for deriving a kernel function is to first choose an appropriate feature

space (potentially derived from the input space directly), represent

each sequence as a vector in that space and then take the inner

product (or a function derived from them) between these vector-

space representations as a kernel for the sequences.

One of the early attempts with such feature-space-based

approaches is the SVM-Fisher method (Jaakkola et al., 2000), in
which a profile HMM model is estimated on a set of proteins

belonging to the positive class and used to extract a vector repres-

entation for each protein. Another approach is the SVM-pairwise

scheme (Liao and Noble, 2002), which represents each sequence as

a vector of pairwise similarities to all sequences in the training set.

A relatively simpler feature space that contains all possible short

subsequences ranging from 3 to 8 amino acids (kmers) is explored in

a series of papers [Spectrum kernel (Leslie et al., 2002), Mismatch

kernel (Leslie et al., 2003), and profile kernel (Kuang et al., 2005)].
All three of these methods represent a sequence X as a vector in this

feature space and differ on the scheme they employ to actually

determine if a particular dimension u (i.e. kmer) is present�To whom correspondence should be addressed.
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(i.e. has a non-zero weight) in X’s vector or not. The Spectrum

kernel considers u to be present if X contains u as a substring,

the Mismatch kernel considers u to be present if X contains a sub-

string that differs with u in at most a predefined number of positions

(i.e. mismatches) and the profile kernel considers u to be present if X
contains a substring whose PSSM-based ungapped alignment score

with u is above a user-supplied threshold. An entirely different

feature space is explored by the SVM-Isites (Hou et al., 2003)
and SVM-HMMSTR (Hou et al., 2004) methods that take advan-

tage of a set of local structural motifs (SVM–Isites) and their rela-

tionships (SVM-HMMSTR).

An alternative to measuring pairwise similarity through a dot-

product of vector representations is to calculate an explicit protein

similarity measure. The recently developed LA-Kernel method

(Saigo et al., 2004) represents one such example of a direct kernel

function. This scheme measures the similarity between a pair of

protein sequences by taking into account all the optimal local align-

ment scores with gaps between all of their possible subsequences.

The experiments presented in Saigo et al. (2004) show that this

kernel is superior to previously developed schemes that do not take

into account sequence profiles and that the overall classification

performance improves by taking into account all local alignments.

In this paper we develop new kernel functions that are derived

directly from explicit similarity measures and utilize sequence

profiles. We present two classes of such kernel functions. The

first class, referred to as window based, determines the similarity

between a pair of sequences by using different schemes to combine

ungapped alignment scores of certain fixed-length subsequences.

The second, referred to as local alignment based, determines the

similarity between a pair of sequences using Smith–Waterman

alignments and a position independent affine gap model, optimized

for the characteristics of the scoring system. Both kernel classes

utilize profiles constructed automatically via PSI-BLAST and

employ a profile-to-profile scoring scheme we develop by extending

a recently introduced profile alignment method (Mittelman et al.,
2003).

Experiments on two benchmarks derived from SCOP, one

designed to detect remote homologs and the other designed to

identify folds, show that these new kernels produce results that

are substantially better than those produced by all other state-of-

the-art SVM-based methods. In addition, the experiments show that

these newly proposed kernels, even when used in the absence of

profiles, produce results that are better than those produced by

existing non-profile-based schemes.

2 METHODS AND ALGORITHMS

2.1 SVM and kernel functions

Key to our algorithm for protein classification is its learning methodology,

which is based on support vector machines. Given a set of positive training

sequences Sþ and a set of negative training sequences S�, an SVM learns a

classification function f(X) of the form

f Xð Þ ¼
X

Xi2Sþ

lþi K X‚Xið Þ �
X

Xi2S�
l�i X‚Xið Þ‚ ð1Þ

where lþi and l�i are non-negative weights that are computed during training

by maximizing a quadratic objective function, andK :‚ :ð Þ is called the kernel
function that is computed over the various training set and test set instances.

Given this function, a new sequence X is predicted to be positive or negative

depending on whether f(X) is positive or negative. In addition, the value of

f(X) can be used to obtain a meaningful ranking of a set of instances, as it

represents the strength by which they are members of the positive or negative

class.

2.2 Sequence profiles

The inputs to our classification algorithm are the various proteins and their

profiles. A protein sequence X of length n is represented by a sequence of

characters X ¼ ha1, a2, . . . , ani such that each character corresponds to 1 of

the 20 standard amino acids. The profile of a protein X is derived by

computing a multiple sequence alignment of X with a set of sequences

{Y1, . . . , Ym} that have a statistically significant sequence similarity with

X (i.e. they are sequence homologs). In this paper we obtain the profiles

using PSI-BLAST (Altschul et al., 1997) as it combines the steps of finding

the homologous sequences and computing their multiple alignment, is very

fast, and has been shown to produce reasonably good results. However, the

profile-based kernels developed here can be used with other methods of

constructing sequence profiles as well.

The profile of a sequence X of length n is represented by two n · 20

matrices. The first is its position-specific scoring matrix PSSMX that is com-

puted directly by PSI-BLAST using the scheme described in (Altschul et al.,

1997). The rows of this matrix correspond to the various positions in X and

the columns correspond to the 20 distinct amino acids. The second matrix is

its position-specific frequency matrix PSFMX that contains the frequencies

used by PSI-BLAST to derive PSSMX. These frequencies (also referred to

as target frequencies (Mittelman et al., 2003)) contain both the sequence-

weighted observed frequencies [also referred to as effective frequencies

(Mittelman et al., 2003)] and the BLOSUM62 (Henikoff and Henikoff,

1992) derived-pseudocounts (Altschul et al., 1997). For each row, the fre-

quencies were scaled so that they add up to one. In the cases in which

PSI-BLAST could not produce meaningful alignments for certain positions

of X, the corresponding rows of the two matrices were derived from the

scores and frequencies of BLOSUM62.

2.3 Profile-based sequence similarity

Many different schemes have been developed for determining the similarity

between profiles that combine information from the original sequence,

position-specific scoring matrix, or position-specific target and/or effective

frequencies (Mittelman et al., 2003; Wang and Dunbrack Jr, 2004; Marti-

Renom et al., 2004). In our work we use a scheme that is derived from

PICASSO (Heger and Holm, 2001; Mittelman et al., 2003). Specifically, the

similarity score between the i-th position of protein’s X profile, and the j-th

position of protein’s Y profile is given by

SX‚Y i‚ jð Þ ¼
X20

k¼1

PSFMX i‚ kð Þ PSSMY j‚ kð Þ

þ
X20

k¼1

PSFMY j‚ kð ÞPSSMX i‚ kð Þ‚ ð2Þ

where PSFMX (i, k) and PSSMX (i, k) are the values corresponding to the k-th

amino acid at the i-th position of X’s position-specific score and frequency

matrices. PSFMY ( j, k) and PSSMY ( j, k) are defined in a similar fashion.

Equation (2) determines the similarity between two profile positions by

weighting the position-specific scores of one sequence according to the

frequency at which the corresponding amino acid occurs in the second

sequence’s profile. Note that by construction, Equation (2) leads to a sym-

metric similarity score. The key difference between Equation (2) and

the corresponding scheme used in Mittelman et al. (2003) (referred to as

PICASSO3), is that our measure uses the target frequencies, whereas the

scheme of (Mittelman et al., 2003) was based on effective frequencies.

Our experiments (not included here) indicate that target frequencies lead

to better results.
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2.4 Window-based kernels

The first class of profile-based kernel functions that we developed deter-

mines the similarity between a pair of sequences by combining the ungapped

alignment scores of certain fixed length subsequences (referred to as wmers).

Given a sequence X of length n and a user-supplied parameter w, the wmer

at position i of X (w < i � n � w) is defined to be the (2w + 1)-length

subsequence of X centered at position i. That is, the wmer contains xi, the w

amino acids before, and the w amino acids after xi. We will denote this

subsequence as wmerX(i).

2.4.1 All fixed-width wmers (AF-PSSM) The AF-PSSM kernel

computes the similarity between a pair of sequences X and Y by adding

up the alignment scores of all possible wmers between X and Y that have a

positive ungapped alignment score. Specifically, if the ungapped alignment

score between two wmers at positions i and j of X and Y, respectively is

denoted by wscoreX,Y(i, j), n and m are the lengths of X and Y, respectively
and Pw is the set of all possible wmer-pairs of X and Y with a positive

ungapped alignment score, i.e.

Pw ¼ f wmerX ið Þ‚wmerY jð Þð Þ jwscoreX‚Y i‚ jð Þ > 0g‚ ð3Þ

for w + 1 � i � n � w and w + 1 � j � m � w, then the AF-PSSM kernel

computes the similarity between X and Y as

AF-PSSMX‚Y wð Þ ¼
X

wmerX ið Þ‚wmerY jð Þð Þ2Pw

wscoreX‚Y i‚ jð Þ: ð4Þ

The ungapped alignment score between two wmers is computed using

the profile-to-profile scoring method of Equation (2) as follows:

wscoreX‚Y i‚ jð Þ ¼
Xw

k¼�w

SX‚Y iþ k‚ jþ kð Þ: ð5Þ

Note that both the AF-PSSM kernel and the profile kernel (Kuang et al.,

2005) determine the similarity between a pair of sequences by considering

how all of their fixed-length subsequences are related in view of sequence

profiles. However, unlike the feature space-based approach employed by

Profile, the AF-PSSM kernels determine the wmer-based similarity of two

sequences by comparing all of their possible wmers directly. This allows

AF-PSSM to precisely determine whether two wmers are similar or not and

provide better quantitative estimates of the degree to which two wmers are

similar.

2.4.2 Best fixed-width wmer (BF-PSSM) In determining the simi-

larity between a pair of sequences X and Y, the AF-PSSM kernel includes

information about all possible wmer-level local alignments between them. In

light of this observation, it can be thought of as a special case of the LA

kernels proposed by Saigo et al. (2004), which compute the similarity

between a pair of sequences as the sum of the optimal local alignment scores

with gaps between all possible subsequences of X and Y. The results reported

in Saigo et al. (2004) show that taking into account all possible alignments

leads to better results.

To see whether or not this is true in the context of the profile-derived

wmer-based kernels, we developed a scheme that attempts to eliminate this

multiplicity by computing the similarity between a pair of sequences based

on a subset of the wmers used in the AF-PSSM kernel. Specifically, the BF-

PSSM kernel selects a subset P0
w of Pw [as defined in Equation (3)] such that

(1) each position of X and each position of Y is present in at most one wmer-

pair and (2) the sum of the wscores of the selected pairs is maximized. Given

P0
w, the similarity between the pair of sequences is then computed as follows:

BF-PSSMX‚Y wð Þ ¼
X

wmer X‚ ið Þ‚wmer Y‚ jð Þð Þ2P0
w

wscoreX‚Y i‚ jð Þ: ð6Þ

The relation between P0
w and Pw can be better understood if the possible

wmer-pairs in Pw are viewed as forming an n · m matrix, whose rows

correspond to the positions of X, columns to the positions of Y, and values

correspond to their respective wscores . Within this context, P0
w corresponds

to a matching of the rows and columns (Papadimitriou and Steiglitz, 1982)

whose weight is high (bipartite graph matching problem). Since the selection

forms a matching, each position of X (or Y) contributes at most one wmer

in Equation (6), and as such, eliminates the multiplicity present in the

AF-PSSM kernel. At the same time, since we are interested in a highly

weighted matching, we try to select the best wmers for each position.

In our algorithm, we use a greedy algorithm to incrementally construct

P0
w by including the highest weight wmers that is not in conflict with the

wmers already in P0
w. This algorithm terminates when we cannot include in

P0
w any additional wmers.

Note that an alternate way of defining P0
w is to actually look for

the maximum weight matching (i.e. the matching whose weight is the

highest among all possible matchings). However, the complexity of the

underlying bipartite maximum weight matching problem is relatively

high [O(n2m + nm2) (Papadimitriou and Steiglitz, 1982)], and for this reason

we use the greedy approach.

2.4.3 Best variable-width wmer (BV-PSSM) In fixed-width wmer-

based kernels the width of the wmers is fixed for all pairs of sequences and

throughout the entire sequence. As a result, if w is set to a relatively high

value, it may fail to identify positive scoring subsequences whose length

is smaller than 2w + 1, whereas if it is set too low, it may fail to reward

sequence pairs that have relative long similar subsequences.

To overcome this problem, we developed a kernel, referred to as

BV-PSSM, which is derived from the BF-PSSM kernel but operates with

variable width wmers. In particular, given a user-supplied width w, it

considers the set of all possible wmer-pairs whose length ranges from

one to w, i.e.

P1...w ¼ P1 [ � � � [ Pw‚ ð7Þ

and among them, it uses the greedy scheme employed by BF-PSSM to select

a subset P0
1...w of wmer-pairs that form a high weight matching. The simi-

larity between the pair of sequences is then computed as follows:

BV-PSSMX‚Y wð Þ ¼
X

wmer X‚ ið Þ‚wmer Y‚ jð Þð Þ2P0
1...w

wscoreX‚Y i‚ jð Þ: ð8Þ

Since for each position of X (and Y), P0
1...w is constructed by including the

highest scoring wmer for i that does not conflict with the previous selections,

this scheme can automatically select the highest scoring wmer whose length

can vary from one up to w; thus, achieving the desired effect.

2.5 Local alignment-based kernels (SW-PSSM)

The second class of profile-based kernels that we examine compute the

similarity between a pair of sequences X and Y by finding an optimal align-

ment between them that optimizes a particular scoring function. There are

three general classes of optimal alignment-based schemes that are commonly

used to compare protein sequences. These are based on global, local and

global–local (also known as end-space free) alignments (Gusfield, 1997).

Our experiments with all of these schemes indicate that those based on

optimal local alignments [also referred to as Smith–Waterman alignments

(Smith and Waterman, 1981)] tend to produce somewhat better results. For

this reason we use this method to derive a profile-based alignment kernel,

which is referred to as SW-PSSM.

Given two sequences X and Y of lengths n and m, respectively, the

SW-PSSM kernel computes their similarity as the score of the optimal

local alignment in which the similarity between two sequence positions

is determined using the profile-to-profile scoring scheme of Equation (2),

and a position-independent affine gap model. The actual alignment is

computed using the O(nm) dynamic programming algorithm developed

by Gotoh (1982).

Within this local alignment framework, the similarity score between a

pair of sequences depends on the particular values of the affine gap model

[i.e. gap-opening (go) and gap-extension (ge) costs] and the intrinsic

Profile-based direct kernels for remote homology
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characteristics of the profile-to-profile scoring scheme. In order to obtain

meaningful local alignments, the scoring scheme that is used should produce

alignments whose score must on average be negative with the maximum

score being positive (Smith and Waterman, 1981). A scoring system whose

average score is positive will tend to produce very long alignments, poten-

tially covering segments of low biologically relevant similarity. However,

if the scoring system cannot easily produce alignments with positive scores,

it may fail to identify any non-empty similar subsequences.

To ensure that the SW-PSSM kernel can correctly account for the char-

acteristics of the scoring system, we modify the profile-to-profile scores

calculated from Equation (2) by adding a constant value. This scheme,

commonly referred to as zero-shifting (Wang and Dunbrack Jr, 2004),

ensures that the resulting alignments have scores that on the average are

negative while allowing for positive maximum scores. In our scheme, the

amount of zero-shifting, denoted by zs, is kept fixed for all pairs of

sequences, as a limited number of experiments with sequence pair-

specific zs values did not produce any better results.

2.6 From similarity measures to Mercer kernels

Any function K ·‚ ·ð Þ can be used as a kernel as long as for any number n

and any possible set of distinct sequences {X1, . . . ,Xn}, the n · n Gram

matrix defined byGi‚ j ¼ K Xi‚Xj

� �
is symmetric positive semidefinite. These

functions are said to satisfy Mercer’s conditions and are called Mercer

kernels, or simply valid kernels.

The similarity based functions described in the previous sections can

be used as kernel functions by setting K Xi‚Xj

� �
to be equal to one of

AF-PSSMXi,Xj
, BF-PSSMXi,Xj

BV-PSSMXi,Xj or SW-PSSMXi,Xj. However,

the resulting functions will not necessarily lead to valid Mercer kernels,

because G may not be positive semidefinite.

To overcome this problem we used the approach described in Saigo et al.

(2004) to convert a symmetric matrix defined on the training set instances

into positive definite by subtracting from the diagonal of the training Gram

matrix its smallest negative eigenvalue. The resulting matrix is identical to

the similarity based Gram matrix at all positions expect those along the main

diagonal. We also experimented with the empirical kernel map approach

proposed in Scholkopf and Smola (2002), but we find that the eigenvalue-

based scheme produced superior results.

3 EXPERIMENTAL DESIGN

3.1 Dataset description

We evaluated the classification performance of the profile-based

kernels on a set of protein sequences obtained from the SCOP

database (Murzin et al., 1995). We formulated two different clas-

sification problems. The first was designed to evaluate the perfor-

mance of the algorithms for the problem of homology detection

when the sequences have low sequence similarities (i.e. the remote

homology detection problem), whereas the second was designed to

evaluate the extent to which the profile-based kernels can be used to

identify the correct fold when there are no apparent sequence simi-

larities (i.e. the fold detection problem).

3.1.1 Remote homology detection (superfamily detection) Within

the context of the SCOP database, remote homology detection was

simulated by formulating it as a superfamily classification problem.

The same dataset and classification problems (The dataset and

classification problem definitions are available at http://www.cs.

columbia.edu/compbio/svm-pairwise) have been used in a number

of earlier studies (Liao and Noble, 2002; Hou et al., 2004; Saigo
et al., 2004) allowing us to perform direct comparisons on the

relative performance of the various schemes. The data consisted

of 4352 sequences from SCOP version 1.53 extracted from the

Astral database, grouped into families and superfamilies. The data-

set was processed so that it does not contain any sequence pairs with

an E-value threshold <10�25. For each family, the protein domains

within the family were considered positive test examples, and pro-

tein domains within the superfamily but outside the family were

considered positive training examples. This yielded 54 families with

at least 10 positive training examples and 5 positive test examples.

Negative examples for the family were chosen from outside of the

positive sequences’ fold, and were randomly split into training and

test sets in the same ratio as the positive examples.

3.1.2 Fold detection Employing the same dataset and overall

methodology as in remote homology detection, we simulated fold

detection by formulating as a fold classification within the context

of SCOP’s hierarchical classification scheme. In this setting, protein

domains within the same superfamily were considered to be as

positive test examples, and protein domains within the same fold

but outside the superfamily were considered as positive training

examples. This yielded 23 superfamilies with at least 10 positive

training and 5 positive test examples. Negative examples for the

superfamily were chosen from outside of the positive sequences’

fold and split equally into test and training sets (The classification

problem definitions are available at http://bioinfo.cs.umn.edu/

supplements/remote-homology/). Since the positive test and

training instances were members of different superfamilies within

the same fold, this new problem is significantly harder than

remote homology detection, as the sequences in the different super-

families did not have any apparent sequence similarity (Murzin

et al., 1995).

3.2 Profile generation

The position-specific score and frequency matrices used by the

profile-based scoring method of Equation (2) were generated

using the latest version of the PSI-BLAST algorithm (available

in NCBI’s blast release 2.2.10), and were derived from the multi-

ple sequence alignment constructed after five iterations using an

e value of 10�3 (i.e. we used blastpgp �j 5 �e 0.001). The

PSI-BLAST was performed against NCBI’s nr database that was

downloaded in November of 2004 and contained 2 171 938

sequences.

3.3 SVM learning

We use the publicly available support vector machine tool SVMlight

(Joachims, 1999) that implements an efficient soft margin optim-

ization algorithm. Following the approach used by the LA-Kernel

(Saigo et al., 2004), for any given positive semi-definite kernel

Gram matrix K :‚ :ð Þ to be tested, we first normalize the points to

unit norm in the feature space and separate them from the origin by

adding a constant value of one.

3.4 Evaluation methodology

We measured the quality of the methods by using the receiver

operating characteristic (ROC) scores, the ROC50 scores, and

the median rate of false positives (mRFP). The ROC score is the

normalized area under a curve that plots true positives against

false positives for different possible thresholds for classification

(Gribskov and Robinson, 1996). The ROC50 score is the area

under the ROC curve up to the first 50 false positives. Finally,
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the mRFP is the number of false positives scoring as high or better

than the median-scoring true positives.

Among these evaluation metrics, owing to the fact that the posi-

tive class is substantially smaller than the negative class, the ROC50

is considered to be the most useful measure of performance for

real-world applications (Gribskov and Robinson, 1996). For this

reason, our discussions in the rest of this section will primary

focus on ROC50-based comparisons. Also, the ROC50 values

that are being reported for the superfamily- and fold-level evalua-

tions correspond to the average ROC50 values over the 54 families

and 23 superfamilies, respectively.

4 RESULTS

4.1 Performance of the window-based kernels

Table 1 summarizes the performance achieved by the window-

based kernels for the superfamily- and fold-level classification

problems across a range of w values.

These results show that for both the superfamily and fold level

classification problems, the BV-PSSM kernel achieves the best

results, the AF-PSSM kernel tends to perform the worst, whereas

the BF-PSSM kernel’s performance is between these two. In the

case of superfamily classification, the performance advantage of

BV-PSSM over that of BF-PSSM is relatively small, whereas in

the case of fold classification, the former has a clear advantage. It

achieves an ROC50 value that is on average 16.3% better across the

different window lengths.

Comparing the sensitivity of the three schemes based on the value

of w, we see that, as expected, their performance is worse for w¼ 1,

as they only consider wmers of length 3, and their performance

improves as the value of w increases. In general, the BV-PSSM

kernel performs better for larger windows, whereas the performance

of the other kernels tends to degrade more rapidly as the length of

the window increases beyond a point. Again, this result is consistent

with the design motivation behind the BV-PSSM kernel. Also, the

results show that the best value of w is also dependent on the

particular classification problem. For most kernels, the best results

for fold classification were obtained with longer windows compared

with the superfamily classification.

To see the effect of using sequence profiles, we performed a

sequence of classification experiments in which we used the same

set of window-based kernel functions, but instead of scoring the

similarity between two amino acids using the profile-based scheme

[Equation (2)], we used the BLOSUM62 position-independent scor-

ing matrix. The results obtained from these experiments, which are

summarized in Table 2, illustrate the advantage of using sequence

profiles in designing kernel functions for both remote homology

detection and fold recognition. The profile-based kernel functions

achieve significant improvements over their non-profile counter-

parts across all different kernel functions, classification problems

and metrics.

Comparing the performance of the profile-based kernel functions

across the two classification problems, we see that their overall

effectiveness in remote homology detection (superfamily level clas-

sification) is much higher than that of fold recognition. This result is

in line with the underlying complexity of the classification problem,

as the sequence-based signals for fold recognition are extremely

weak. This is also manifested by the relative improvement achieved

by the profile-based kernel functions over their BLOSUM62-based

counterparts (Tables 1 and 2). For fold recognition, the ROC50

values of the profile-based kernels are higher than those based

on BLOSUM62 by a factor of two, whereas for remote homology

prediction, the relative ROC50 values are higher by 25–30%.

In light of the previously published results on LA-Kernels (Saigo

et al., 2004), the better results achieved by the BF-PSSM and BV-

PSSM kernels over those achieved by the AF-PSSM kernel (which

also hold for their corresponding BLOSUM62-based instances of

these kernels) were surprising. One explanation for this discrepancy

Table 1. Comparative performance of the window-based kernel functions

that rely on sequence profiles

Kernel Superfamily level Fold level

ROC ROC50 mRFP ROC ROC50 mRFP

AF-PSSM (1) 0.965 0.692 0.022 0.851 0.275 0.143

AF-PSSM (2) 0.978 0.816 0.013 0.909 0.338 0.075

AF-PSSM (3) 0.976 0.833 0.014 0.904 0.340 0.080

AF-PSSM (4) 0.956 0.816 0.019 0.911 0.374 0.067

BF-PSSM (1) 0.967 0.794 0.025 0.906 0.359 0.082

BF-PSSM (2) 0.980 0.854 0.015 0.928 0.419 0.059

BF-PSSM (3) 0.977 0.853 0.016 0.918 0.408 0.069

BF-PSSM (4) 0.965 0.830 0.031 0.918 0.414 0.060

BV-PSSM (1) 0.965 0.808 0.027 0.900 0.423 0.088

BV-PSSM (2) 0.973 0.855 0.018 0.927 0.475 0.052

BV-PSSM (3) 0.966 0.851 0.022 0.936 0.480 0.046

BV-PSSM (4) 0.963 0.850 0.026 0.941 0.481 0.043

The parameter associated with each kernel corresponds to the width of the wmer used to

define the kernel. The ROC50 of the best performing value ofw for each kernel is shown

in bold, and the overall best ROC50 is also underlined.

Table 2. Comparative performance of the window-based kernel functions

that rely on BLOSUM62

Kernel Superfamily level Fold level

ROC ROC50 mRFP ROC ROC50 mRFP

AF-GSM (1) 0.906 0.403 0.068 0.720 0.093 0.288

AF-GSM (2) 0.921 0.461 0.055 0.739 0.118 0.255

AF-GSM (6) 0.926 0.549 0.048 0.770 0.197 0.217

AF-GSM (7) 0.923 0.557 0.056 0.777 0.192 0.210

BF-GSM (1) 0.904 0.488 0.071 0.803 0.166 0.177

BF-GSM (2) 0.923 0.584 0.064 0.808 0.189 0.162

BF-GSM (6) 0.934 0.669 0.053 0.822 0.240 0.157

BF-GSM (7) 0.933 0.665 0.056 0.812 0.236 0.178

BV-GSM (1) 0.906 0.486 0.070 0.808 0.167 0.176

BV-GSM (2) 0.919 0.571 0.064 0.808 0.182 0.166

BV-GSM (6) 0.930 0.666 0.052 0.840 0.242 0.140

BV-GSM (7) 0.929 0.658 0.054 0.845 0.244 0.133

AF-GSM, BF-GSM and BV-GSM refer to the BLOSUM62-variants of the correspond-

ing window-based kernels (GSM stands for global scoring matrix). The parameter

associated with each kernel corresponds to the width of the wmer used to define the

kernel. TheROC50of the best performingvalue ofw for each kernel is shown inbold, and

the overall best ROC50 is also underlined.

Profile-based direct kernels for remote homology

4243



may be the fact that our window-based kernels consider only short-

length ungapped alignments, and the results may be different when

longer alignments with gaps are considered as well.

4.2 Performance of the local alignment-based kernels

Table 3 summarizes the performance achieved by the optimal local

alignment-based kernel for the superfamily- and fold-level classi-

fication problems across a representative set of values for the gap-

opening, gap-extension and zero-shift parameters. These parameter

values were selected after performing a study in which the impact of

a large number of value combinations was experimentally studied,

and represent some of the best performing combinations. Owing to

space constraints, this parameter study is not included in this paper.

The most striking observation from these results is the major

impact that the zero-shift parameter has to the overall classification

performance. For both the superfamily- and fold-level classification

problems, the best results are obtained by the SW-PSSM kernel for

which the zero shift parameter has been optimized (i.e. the results

corresponding to the last two rows of Table 3).

Comparing the classification performance of the SW-PSSM

kernel against the window-based kernels (Table 1) we see that the

zero-shift optimized SW-PSSM kernel leads to better results than

those obtained by the window-based kernels. Moreover, the relative

performance advantage of SW-PSSM is higher for fold recognition

over the superfamily classification problem. However, if the

SW-PSSM kernel does not optimize the zero-shift parameter (i.e.

zs ¼ 0.0), the window-based kernels consistently outperform

the SW-PSSM kernel. We also performed a limited number of

experiments to see the extent to which the performance of the

window-based kernels can be improved by explicitly optimizing

the zero-shift parameter for them as well. Our results show that

these kernels are not significantly affected by such optimizations.

To also see the impact of sequence profiles in the context of

kernels derived from optimal local alignments, we evaluated the

classification performance of a set of kernel functions that compute

the optimal local sequence alignment using the BLOSUM45 and

BLOSUM62 amino acid scoring matrices. Table 4 shows some of

the results obtained with these kernel functions for a representative

set of values for the gap opening, gap extension and zero-shift

parameters.

Comparing the results of Table 4 with those of Table 3 we see

that, as was the case with the window-based kernels, incorporating

profile information leads to significant improvements in the overall

classification performance. In addition, these results show that (1)

the widely used value for the gap-opening cost (go ¼ 10) is not

necessarily the best for either remote homology detection or fold

recognition and (2) the classification performance achieved by local

alignment kernels derived from the BLOSUM matrices can be

further improved by explicitly optimizing the zero-shift parameter

as well.

4.3 Comparisons with other schemes

Tables 5 and 6 compare the performance of the various kernel

functions developed in this paper against that achieved by a number

Table 3. Comparative performance of the local alignment-based kernel

functions that rely on sequence profiles

Kernel Superfamily level Fold level

ROC ROC50 mRFP ROC ROC50 mRFP

2.0, 0.125, 0.0 0.972 0.784 0.014 0.867 0.377 0.111

2.0, 0.250, 0.0 0.972 0.791 0.014 0.873 0.334 0.114

3.0, 0.125, 0.0 0.971 0.796 0.013 0.860 0.382 0.133

3.0, 0.250, 0.0 0.960 0.771 0.027 0.852 0.395 0.138

3.0, 0.750, 1.5 0.982 0.904 0.015 0.933 0.530 0.052

3.0, 0.750, 2.0 0.979 0.901 0.017 0.936 0.571 0.054

The three parameters for each kernel correspond to the values for the gap opening, gap

extension and zero-shift parameters, respectively. The ROC50 of the best performing

scheme is underlined.

Table 4. Comparative performance of the local alignment-based kernel

functions that rely on BLOSUM45 and BLOSUM62

Kernel Superfamily level Fold level

ROC ROC50 mRFP ROC ROC50 mRFP

B45, 3.0, 0.0 0.944 0.686 0.037 0.809 0.165 0.169

B45, 10.0, 0.0 0.940 0.687 0.042 0.789 0.200 0.185

B62, 3.0, 0.0 0.947 0.686 0.038 0.781 0.188 0.217

B62, 10.0, 0.0 0.912 0.599 0.060 0.781 0.182 0.185

B62, 5.0, 0.5 0.948 0.711 0.039 0.826 0.223 0.176

B62, 5.0, 1.0 0.946 0.711 0.038 0.808 0.214 0.155

The three parameters for each kernel correspond to the particular global scoring matrix

(B45 for BLOSUM45 and B62 for BLOSUM62) and the values for the gap opening and

zero-shift parameters, respectively. In all cases, the gap extension costwas set to 1.0. The

ROC50 of the best performing scheme is underlined.

Table 5. Comparison against different schemes for the superfamily-level

classification problem

Kernel ROC ROC50 mRFP

SVM-Fisher 0.773 0.250 0.204

SVM-Pairwise 0.896 0.464 0.084

LA-eig (b ¼ 0.2) 0.923 0.661 0.064

LA-eig (b ¼ 0.5) 0.925 0.649 0.054

SVM-HMMSTR-Ave — 0.640 0.038

Mismatch 0.872 0.400 0.084

Profile(4,6) 0.974 0.756 0.013

Profile(5,7.5) 0.980 0.794 0.010

AF-PSSM(2) 0.978 0.816 0.013

BF-PSSM(2) 0.980 0.854 0.015

BV-PSSM(2) 0.973 0.855 0.018

SW-PSSM(3.0,0.750,1.50) 0.982 0.904 0.015

AF-GSM(6) 0.926 0.549 0.048

BF-GSM(6) 0.934 0.669 0.053

BV-GSM(6) 0.930 0.666 0.052

SW-GSM(B62,5.0,1,0.5) 0.948 0.711 0.039

The SVM-Fisher, SVM-Pairwise, LA-Kernel and Mismatch results were obtained from

Saigo et al. (2004). The SVM-HMMSTR results were obtained from Hou et al. (2004)

and correspond to the best-performing scheme (the authors did not report ROC values).

The Profile results were obtained locally by running the publicly available implementa-

tion of the scheme obtained from the authors. The ROC50 value of the best performing

scheme has been underlined.
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of previously developed schemes for the superfamily and fold level

classification problems, respectively. In the case of the superfamily

level classification problem, the performance is compared against

SVM-Fisher (Jaakkola et al., 2000), SVM-Pairwise (Liao and

Noble, 2002) and different instances of the LA-Kernel (Saigo

et al., 2004), SVM-HMMSTR (Hou et al., 2004), Mismatch

(Leslie et al., 2003) and Profile (Kuang et al., 2005). In the case

of the fold level classification problem, we only include results for

the LA-Kernel and Profile schemes, as these results could be easily

obtained from the publicly available data and programs for these

schemes.

The results in these tables show that both the window- and local

alignment-based kernels derived from sequence profiles (i.e.

AF-PSSM, BF-PSSM, BV-PSSM and SW-PSSM) lead to results

that are in general better than those obtained by existing schemes.

Comparing the ROC50 values obtained by our schemes, we see that

each one of them outperforms all existing schemes. The perfor-

mance advantage of these kernels is greater over existing schemes

that rely on sequence information alone (e.g. SVM-Pairwise,

LA-Kernels), but still remains significant when compared against

schemes that either directly take into account profile information

(e.g. SVM-Fisher, Profile) or utilize higher-level features derived by

analyzing sequence-structure information (e.g. SVM-HMMSTR).

Also, the relative advantage of our profile-based methods over

existing schemes is greater for the much harder fold level classi-

fication problem over the superfamily-level classification problem.

For example, the SW-PSSM scheme achieves ROC50 values that

are 13.8 and 81.8% better than the best values achieved by existing

schemes for the superfamily- and fold-level classification problems,

respectively.

To get a better understanding of the relative performance of the

various schemes across the different classes, Figures 1 and 2 plot the

number of classes whose ROC50 was greater than a given threshold

that ranges from 0 to 1. Specifically, Figure 1 shows the results for

the remote homology detection problem, whereas Figure 2 shows

the results for the fold detection problem. (Note that these figures

contain only results for the schemes that we were able to run

locally.) These results show that our profile-based methods lead

to higher ROC50 values for a greater number of classes than either

the Profile or LA-kernels, especially for larger ROC50 values

(e.g. in the range of 0.6–0.95). Also, the SW-PSSM tends to
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Fig. 1. Comparison of the different SVM-basedmethods for remote homology detection on the SCOP 1.53 benchmark dataset. The graph plots the total number

of families for which a given method exceeds an ROC-50 score threshold.

Table 6. Comparison against different schemes for the fold-level

classification problem

Kernel ROC ROC50 mRFP

LA-eig(b ¼ 0.2) 0.847 0.212 0.129

LA-eig(b ¼ 0.5) 0.771 0.172 0.193

Profile(4,6) 0.912 0.305 0.071

Profile(5,7.5) 0.924 0.314 0.069

AF-PSSM(4) 0.911 0.374 0.067

BF-PSSM(4) 0.918 0.414 0.060

BV-PSSM(4) 0.941 0.481 0.043

SW-PSSM(3.0,0.750,2.0) 0.936 0.571 0.054

AF-GSM(6) 0.770 0.197 0.217

BF-GSM(6) 0.822 0.240 0.157

BV-GSM(7) 0.845 0.244 0.133

SW-GSM(B62,5,1.0,0.5) 0.826 0.223 0.176

The results for the LA-Kernel were obtained using the publicly available kernel matrices

that are available at the author’s website. The Profile results were obtained locally by

running the publicly available implementation of the scheme obtained from the authors.

The ROC50 value of the best performing scheme has been underlined.
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consistently outperform the rest of the profile-based direct kernel

methods.

In addition, the results for the BF-GSM, BV-GSM and SW-GSM

kernels that rely on the BLOSUM scoring matrices show that these

kernel functions are capable of producing results that are superior

to all of the existing non-profile-based schemes. In particular, the

properly optimized SW-GSM scheme is able to achieve significant

improvements over the best LA-Kernel-based scheme (7.6% higher

ROC50 value) and the best SVM-HMMSTR-based scheme (15.1%

higher ROC50 value). This relative performance of BF-GSM,
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Fig. 2. Comparison of the different SVM-based methods for fold detection on the SCOP 1.53 benchmark dataset. The graph plots the total number of

superfamilies for which a given method exceeds an ROC-50 score threshold.
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BV-GSM and SW-GSM kernels over existing non-profile-based

schemes is further illustrated in Figure 3, which plots the number

of classes whose ROC50 was greater than a given threshold.

For almost all threshold values, these three new kernels outperform

all previous schemes. Note that this plot does not include results for

the SVM-HMMSTR scheme as this information was not reported.

5 DISCUSSION AND CONCLUSION

This paper presented and experimentally evaluated a number of

kernel functions for protein sequence classification that were

derived by considering explicit measures of profile-to-profile

sequence similarity. The experimental evaluation in the context of

a remote homology prediction problem and a fold recognition prob-

lem show that these kernels are capable of producing superior

classification performance over that produced by earlier schemes.

Three major observations can be made by analyzing the perfor-

mance achieved by the various kernel functions presented in this

paper. First, as was the case with a number of studies on the accu-

racy of protein sequence alignment (Mittelman et al., 2003; Wang

and Dunbrack Jr, 2004; Marti-Renom et al., 2004), the proper use

of sequence profiles lead to dramatic improvements in the overall

ability to detect remote homologs and identify proteins that share

the same structural fold. Second, kernel functions that are con-

structed by directly taking into account the similarity between

the various protein sequences tend to outperform schemes that

are based on a feature-space representation [where each dimension

of the space is constructed as one of k-possibilities in a k-residue
long subsequence or using structural motifs (Isites) in the case of

SVM-HMMSTR]. This is especially evident by comparing the rel-

ative advantage of the window-based kernels over the Profile kernel.

Third, time-tested methods for comparing protein sequences based

on optimal local alignments (as well as global and local-global

alignments), when properly optimized for the classification problem

at hand, lead to kernel functions that are in general superior to those

based on either short subsequences (e.g. spectrum, mismatch, pro-

file or window-based kernel functions) or local structural motifs

(e.g. SVM-HMMSTR). The fact that these widely used methods

produce good results in the context of SVM-based classification is

reassuring as to the validity of these approaches and their ability to

capture biologically relevant information.
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