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Abstract

Motivation: Remote homology detection between protein se-
quences is a central problem in computational biology. Supervised
learning algorithms based on support vector machines are currently
the most effective method for remote homology detection. The per-
formance of these methods depends on how the protein sequences
are modeled and on the method used to compute the kernel function
between them.

Results: We introduce new classes of kernel functions that

are constructed by directly combining automatically generated se-

quence profiles with new and existing approaches for determining

the similarity between pairs of protein sequences, which employ ef-

fective schemes for scoring the aligned profile positions. Experi-

ments with remote homology detection and fold recognition prob-

lems show that these kernels are capable of producing results that

are substantially better than those produced by all of the existing

state-of-the-art SVM-based methods. In addition, the experiments

show that these kernels, even when used in the absence of profiles,

produce results that are better than those produced by existing non-

profile-based schemes.

1 Introduction

Breakthroughs in large-scale sequencing have led to a surge
in the available protein sequence information that has far
out-stripped our ability to experimentally characterize their
functions. As a result, researchers are increasingly relying
on computational techniques to classify these sequences into
functional and structural families based on sequence homol-
ogy.

While satisfactory methods exist to detect homologs with
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high levels of similarity, accurately detecting homologs at
low levels of sequence similarity (remote homology detec-
tion) still remains a challenging problem. Over the years, a
large number of methods have been developed for homology
detection. Some of the early methods were based on pair-
wise sequence comparisons computed using either optimal
dynamic programming-based algorithms [23, 28] or various
fast approximations [25, 2]. Better remote homology predic-
tion was later obtained by comparing a protein with a collec-
tion of related proteins using methods such as protein family
profiles [5], hidden Markov models (HMMs) [15, 3], PSI-
BLAST [1], and SAM [14]. These schemes produced models
that were generative in the sense that they built a model for
a set of related proteins and then checked to see how well
this model explained a candidate protein. In recent years, the
performance of remote homology detection was greatly im-
proved through the use of methods that explicitly modeled the
differences between the various classes (protein families) and
built discriminative models. These methods by using both
sequences known to belong to a particular class (positive ex-
amples) and sequences known to be outside this class (nega-
tive examples) are better suited for identifying and capturing
the rather weak sequence-level signals of the remote homol-
ogy detection problem. A number of different methods have
been developed that build these discriminative models using
support vector machines (SVM) [29] and have been shown to
produce results that are in general superior to those produced
by either pairwise sequence comparisons or approaches based
on generative models provided that there is sufficient data for
training [12, 19, 17, 18, 10, 11, 26, 16].

A core component of an SVM is the kernel function. For
our purposes, the kernel function measures the similarity be-
tween any pair of examples. Different kernels correspond to
different notions of similarity and can lead to discriminative
functions with different performance. A common approach
for deriving a kernel function is to first choose an appropri-
ate feature space, represent each sequence as a vector in that
space, and then take the inner product (or a function derived
from them) between these vector-space representations as a
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kernel for the sequences. One of the early attempts with such
feature-space-based approaches is the SVM-Fisher method
[12], in which a profile HMM model is estimated on a set
of proteins belonging to the positive class and used to extract
a vector representation for each protein. Another approach
is the SVM-pairwise scheme [19], which represents each
sequence as a vector of pairwise similarity between all se-
quences in the training set. The similarity between each pair
of sequences (i.e., the value along each dimension) is com-
puted as the E-value of the Smith-Waterman alignment score
between them. A relatively simple feature space, containing
all possible short subsequences ranging from 3–8 amino acids
(kmers) is explored in a series of papers (Spectrum kernel
[17], Mismatch kernel [18], and Profile kernel [16]). Despite
the simplicity of the feature space, the resulting methods have
been shown to produce very good results. The difference be-
tween these schemes is on the method used to represent each
sequence. The Spectrum kernel represents each sequence as
a 0/1 vector based on whether or not it contains the kmer
corresponding to each dimension of the feature space. The
Mismatch kernel allows for some degree of tolerance when
determining if a particular dimension is present in the se-
quence or not. For each kmer u in the protein sequence, it
sets to one all the dimensions of the feature space that cor-
respond to kmers that differ in at most a predefined number
of positions. Finally, the Profile kernel extends the ideas of
the Mismatch kernel by generating a position specific scoring
matrix for each protein sequence and utilizing it to determine
whether or not a particular dimension is sufficiently similar
to a protein sequence kmer. Specifically, for each kmer u in
the protein sequence, a set of other kmers is generated whose
profile-based ungapped alignment score with u is above a
user-supplied threshold, and u is “subscribed” to all of the
dimensions in that set. An entirely different feature space is
explored by the SVM-Isites [10] and SVM-HMMSTR [11]
methods that take advantage of a set of local structural motifs
(SVM-Isites) and their relationships (SVM-HMMSTR).

An alternative to measuring pairwise similarity through a
dot-product of vector representations is to calculate an ex-
plicit protein similarity measure. The recently developed LA-
Kernel method [26] represents one such example of a direct
kernel function. This scheme measures the similarity between
a pair of protein sequences by taking into account all the opti-
mal local alignment scores with gaps between all of their pos-
sible subsequences. The experiments presented in [26] show
that this kernel is superior to previously developed schemes
that do not take into account sequence profiles and that the
overall classification performance improves by taking into ac-
count all local alignments.

In this paper we develop new kernel functions that are de-
rived directly from explicit similarity measures and utilize se-
quence profiles. We present two classes of such kernel func-
tions. The first class, referred to as window-based, determines
the similarity between a pair of sequences by using different

schemes to combine ungapped alignment scores of certain
fixed-length subsequences. The second, referred to as local
alignment-based, determines the similarity between a pair of
sequences using Smith-Waterman alignments and a position
independent affine gap model, optimized for the characteris-
tics of the scoring system. Both kernel-classes utilize pro-
files constructed automatically via PSI-BLAST and employ a
profile-to-profile scoring scheme we develop by extending a
recently introduced profile alignment method [21].

Experiments on two benchmarks derived from SCOP, one
designed to detect remote homologs and the other designed
to identify folds, show that these new kernels produce results
that are substantially better than those produced by all other
state-of-the-art SVM-based methods. In addition, the exper-
iments show that these newly proposed kernels, even when
used in the absence of profiles, produce results that are better
than those produced by existing non-profile based schemes.

2 Methods and Algorithms

2.1 SVM and Kernel Functions

Key to our algorithm for protein classification is its learn-
ing methodology, which is based on support vector machines.
Given a set of positive training sequencesS+ and a set of neg-
ative training sequences S−, an SVM learns a classification
function f(X) of the form

f(X) =
X

Xi∈S+

λ+
i K(X, Xi) −

X

Xi∈S−
λ−

i K(X, Xi), (1)

where λ+
i and λ−

i are non-negative weights that are computed
during training by maximizing a quadratic objective func-
tion, and K(., .) is called the kernel function that is computed
over the various training-set and test-set instances. Given this
function, a new sequence X is predicted to be positive or neg-
ative depending on whether f(X) is positive or negative. In
addition, the value of f(X) can be used to obtain a meaning-
ful ranking of a set of instances, as it represents the strength
by which they are members of the positive or negative class.

2.2 Sequence Profiles

The inputs to our classification algorithm are the vari-
ous proteins and their profiles. A protein sequence X of
length n is represented by a sequence of characters X =
〈a1, a2, . . . , an〉 such that each character corresponds to one
of the 20 standard amino acids. The profile of a protein X

is derived by computing a multiple sequence alignment of
X with a set of sequences {Y1, . . . , Ym} that have a statis-
tically significant sequence similarity with X (i.e., they are
sequence homologs). Many schemes have been developed for
identifying the set of homologous sequences and computing
the multiple sequence alignment. In this paper we obtain the
profiles using PSI-BLAST [1] as it combines both steps, is
very fast, and has been shown to produce reasonably good re-
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sults. However, the profile-based kernels developed here can
be used with other methods of constructing sequence profiles
as well.

The profile of a sequence X of length n is represented by
two n × 20 matrices. The first is its position-specific scoring
matrix PSSMX that is computed directly by PSI-BLAST us-
ing the scheme described in [1]. The rows of this matrix cor-
respond to the various positions in X and the columns corre-
spond to the 20 distinct amino acids. The second matrix is its
position-specific frequency matrix PSFMX that contains the
frequencies used by PSI-BLAST to derive PSSMX . These
frequencies (also referred to as target frequencies [21]) con-
tain both the sequence-weighted observed frequencies (also
referred to as effective frequencies [21]) as well as the BLO-
SUM62 [9] derived-pseudocounts [1]. For each row, the fre-
quencies were scaled so that they add up to one. In the cases
in which PSI-BLAST could not produce meaningful align-
ments for certain positions of X , the corresponding rows of
the two matrices were derived from the scores and frequen-
cies of BLOSUM62.

2.3 Profile-based Sequence Similarity

Many different schemes have been developed for determin-
ing the similarity between profiles that combine informa-
tion from the original sequence, position-specific scoring
matrix, or position-specific target and/or effective frequen-
cies [21, 30, 20]. In our work we use a scheme that is derived
from PICASSO [8, 21]. Specifically, the similarity score be-
tween the ith position of protein’s X profile, and the jth po-
sition of protein’s Y profile is given by

SX,Y (i, j) =
20X

k=1

PSFMX(i, k) PSSMY (j, k) +

20X

k=1

PSFMY (j, k) PSSMX(i, k),

(2)

where PSFMX(i, k) and PSSMX(i, k) (PSFMY (j, k) and
PSSMY (j, k)) are the values corresponding to the kth amino
acid at the ith (jth) position of X’s (Y ’s) position-specific
score and frequency matrices.

Equation 2 determines the similarity between two profile
positions by weighting the position-specific scores of one se-
quence according to the frequency at which the corresponding
amino acid occurs in the second sequence’s profile. Note that
by construction, Equation 2 leads to a symmetric similarity
score. The key difference between Equation 2 and the cor-
responding scheme used in [21] (referred to as PICASSO3),
is that our measure uses the target frequencies, whereas the
scheme of [21] was based on effective frequencies. Our ex-
periments (not included here) indicate that target frequencies
lead to better results.

2.4 Window-based Kernels

The first class of profile-based kernel functions that we devel-
oped determines the similarity between a pair of sequences
by combining the ungapped alignment scores of certain fixed
length subsequences (referred to as wmers). Given a se-
quence X of length n and a user-supplied parameter w, the
wmer at position i of X (w < i ≤ n − w) is defined to be
the (2w + 1)-length subsequence of X centered at position i.
That is, the wmer contains xi, the w amino acids before, and
the w amino acids after xi. We will denote this subsequence
as wmerX(i).

Note that wmers are nothing more than the fixed-length
windows used extensively in secondary structure predic-
tion and in capturing local sequence information around a
particular sequence position. Also, for some of the ker-
nel functions described next, they also correspond to the
kmers used by some of the feature-space derived kernel func-
tions [17, 18, 16].

2.4.1 All Fixed-width wmers (AF-PSSM). The
AF-PSSM kernel computes the similarity between a pair of
sequences X and Y by adding-up the alignment scores of
all possible wmers between X and Y that have a positive
ungapped alignment score. Specifically, if the ungapped
alignment score between two wmers at positions i and j of
X and Y , respectively is denoted by wscoreX,Y (i, j), n and
m are the lengths of X and Y , respectively, and Pw is the
set of all possible wmer-pairs of X and Y with a positive
ungapped alignment score, i.e,

Pw = {(wmerX(i), wmerY (j)) | wscoreX,Y (i, j) > 0}, (3)

for w + 1 ≤ i ≤ n − w and w + 1 ≤ j ≤ m − w, then the
AF-PSSM kernel computes the similarity between X and Y

as
AF-PSSMX,Y (w) =

X

(wmerX (i),wmerY (j))∈Pw

wscoreX,Y (i, j). (4)

The ungapped alignment score between two wmers is
computed using the profile-to-profile scoring method of
Equation 2 as follows:

wscoreX,Y (i, j) =

wX

k=−w

SX,Y (i + k, j + k). (5)

Note that both the AF-PSSM kernel and the Profile ker-
nel [16] determine the similarity between a pair of sequences
by considering how all of their fixed-length subsequences
are related in view of sequence profiles. However, unlike
the feature-space based approach employed by Profile, the
AF-PSSM kernels determine the wmer-based similarity of
two sequences by comparing all of their possible wmers
directly. This allows such kernels to precisely determine
whether two wmers are similar or not. In addition, compared
to the neighborhood intersection-based scheme employed by
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Profile, by utilizing profile-based ungapped alignment scores
the AF-PSSM kernel can provide better quantitative estimates
of the degree to which two wmers are similar.

2.4.2 Best Fixed-width wmer (BF-PSSM). In deter-
mining the similarity between a pair of sequences X and Y ,
the AF-PSSM kernel includes information about all possible
wmer-level local alignments between them. In light of this
observation, it can be thought of as a special case of the LA
kernels proposed by Saigo et al [26], which compute the sim-
ilarity between a pair of sequences as the sum of the optimal
local alignment scores with gaps between all possible subse-
quences of X and Y .1 The results reported in [26] show that
taking into account all possible alignments leads to better re-
sults.

To see whether or not this is true in the context of the
profile-derived wmer-based kernels, we developed a scheme
that attempts to eliminate this multiplicity by computing the
similarity between a pair of sequences based on a subset of
the wmers used in the AF-PSSM kernel. Specifically, the
BF-PSSM kernel selects a subset P ′

w of Pw (as defined in
Equation 3) such that (i) each position of X and each position
of Y is present in at most one wmer-pair and (ii) the sum of
the wscores of the selected pairs is maximized. Given P ′

w,
the similarity between the pair of sequences is then computed
as follows:

BF-PSSMX,Y (w) =
X

(wmer(X,i),wmer(Y,j))∈P′
w

wscoreX,Y (i, j). (6)

The way that BF-PSSM selects the wmers to be included
in P ′

w can be better understood if the possible wmer-pairs
in Pw are viewed as forming an n × m matrix, whose rows
correspond to the positions of X , columns to the positions of
Y , and values correspond to the respective wscores. Within
this context, P ′

w corresponds to a matching of the rows and
columns [24] whose weight is high (bipartite graph match-
ing problem). Since the selection forms a matching, each
position of X (or Y ) contributes a single wmer in Equa-
tion 6, and as such, eliminates the multiplicity present in the
AF-PSSM kernel. At the same time, since we are interested in
a highly weighted matching, we try to select the best wmers
for each position. In our algorithm, we use a greedy algo-
rithm to incrementally construct P ′

w by including the highest
weight wmers that are not in conflict with the wmers already
in P ′

w.
Note that an alternate way of defining P ′

w is to actually
look for the maximum weight matching (i.e., the match-
ing whose weight is the highest among all possible match-
ings). However, the complexity of the underlying bipar-
tite maximum weight matching problem is relatively high
(O(n2m + nm2) [24]), and for this reason we use the greedy

1The major differences are that the AF-PSSM kernel is profile-aware,
only considers fixed-length wmers, and uses ungapped alignments.

approach.

2.4.3 Best Variable-width wmer (BV-PSSM). In
fixed-width wmer-based kernels the width of the wmers is
fixed for all pairs of sequences and throughout the entire se-
quence. As a result, if w is set to a relatively high value,
it may fail to identify positive scoring subsequences whose
length is smaller than 2w + 1, whereas if it is set too low,
it may fail to reward sequence-pairs that have relative long
similar subsequences.

To overcome this problem, we developed a kernel, referred
to as BV-PSSM, which is derived from the BF-PSSM kernel
but operates with variable width wmers. In particular, given
a user-supplied width w, it considers the set of all possible
wmer-pairs whose length ranges from one to w, i.e.,

P1...w = P1 ∪ . . . ∪ Pw, (7)

and among them, it uses the greedy scheme employed by
BF-PSSM to select a subset P ′

1...w of wmer-pairs that form
a high weight matching. The similarity between the pair of
sequences is then computed as follows:

BV-PSSMX,Y (w) =
X

(wmer(X,i),wmer(Y,j))∈P′
1...w

wscoreX,Y (i, j). (8)

Since for each position of X (and Y ), P ′
1...w is constructed by

including the highest scoring wmer for i that does not conflict
with the previous selections, this scheme can automatically
select the highest scoring wmer whose length can vary from
one up to w; thus, achieving the desired effect.

2.5 Local Alignment-based Kernels
(SW-PSSM)

The second class of profile-based kernels that we examine
compute the similarity between a pair of sequences X and Y

by finding an optimal alignment between them that optimizes
a particular scoring function. There are three general classes
of optimal alignment-based schemes that are commonly used
to compare protein sequences. These are based on global,
local, and global-local (also known as end-space free) align-
ments [7]. Our experiments with all of these schemes indicate
that those based on optimal local alignments (also referred to
as Smith-Waterman alignments [28]) tend to produce some-
what better results. For this reason we use this method to
derive a profile-based alignment kernel, which is referred to
as SW-PSSM.

Given two sequences X and Y of lengths n and m, re-
spectively, the SW-PSSM kernel computes their similarity as
the score of the optimal local alignment in which the sim-
ilarity between two sequence positions is determined using
the profile-to-profile scoring scheme of Equation 2, and a po-
sition independent affine gap model. The actual alignment is
computed using the O(nm) dynamic programming algorithm
developed by Gotoh [4].
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Within this local alignment framework, the similarity
score between a pair of sequences depends on the partic-
ular values of the affine gap model (i.e., gap-opening (go)
and gap-extension (ge) costs) and the intrinsic characteristics
of the profile-to-profile scoring scheme. In order to obtain
meaningful local alignments, the scoring scheme that is used
should produce alignments whose score must on average be
negative with the maximum score being positive [28]. A scor-
ing system whose average score is positive will tend to pro-
duce very long alignments, potentially covering segments of
low biologically relevant similarity. On the other hand, if the
scoring system cannot easily produce alignments with posi-
tive scores, then it may fail to identify any non-empty similar
subsequences.

To ensure that the SW-PSSM kernel can correctly account
for the characteristics of the scoring system, we modify the
profile-to-profile scores calculated from Equation 2 by adding
a constant value. This scheme, commonly referred to as
zero-shifting [30], ensures that the resulting alignments have
scores that on the average are negative while allowing for
positive maximum scores. In our scheme, the amount of zero-
shifting, denoted by zs, is kept fixed for all pairs of sequences,
as a limited number of experiments with sequence-pair spe-
cific zs values did not produce any better results.

2.6 From Similarity Measures to Mercer Ker-
nels

Any function can be used as a kernel as long as for
any number n and any possible set of distinct sequences
{X1, . . . , Xn}, the n × n Gram matrix defined by Ki,j =
K(Xi, Xj) is symmetric positive semidefinite. These func-
tions are said to satisfy Mercer’s conditions and are called
Mercer kernels, or simply valid kernels.

The similarity based functions described in the previous
sections can be used as kernel functions by setting K(Xi, Xj)
to be equal to one of AF-PSSMXi,Xj , BF-PSSMXi,Xj ,
BV-PSSMXi,Xj , or SW-PSSMXi,Xj . However, the resulting
functions will not necessarily lead to valid Mercer kernels.

To overcome this problem we used the approach described
in [26] to convert a symmetric function defined on the train-
ing set instances into positive definite by adding to the di-
agonal of the training Gram matrix a sufficiently large non-
negative constant. Specifically, for each similarity-based
training Gram matrix, we found its smallest negative eigen-
value and subtracted it from the diagonal. The resulting ker-
nel matrix is identical to the similarity-based Gram matrix at
all positions expect those along the main diagonal. We also
experimented with the empirical kernel map approach pro-
posed in [27], but we find that the eigenvalue-based scheme
produced superior results.

3 Experimental Design

3.1 Dataset Description

We evaluated the classification performance of the profile-
based kernels on a set of protein sequences obtained from the
SCOP (Structural Classification of Proteins) database [22].
We formulated two different classification problems. The first
was designed to evaluate the performance of the algorithms
for the problem of homology detection when the sequences
have low sequence similarities (i.e., the remote homology de-
tection problem), whereas the second was designed to evalu-
ate the extent to which the profile-based kernels can be used
to identify the correct fold when there are no apparent se-
quence similarities (i.e., the fold detection problem).

3.1.1 Remote Homology Detection (Superfamily
Detection). Within the context of the SCOP database, re-
mote homology detection was simulated by formulating it as
a superfamily classification problem. The same dataset and
classification problems 2 have been used in a number of ear-
lier studies [19, 11, 26] allowing us to perform direct compar-
isons on the relative performance of the various schemes. The
data consisted of 4352 sequences from SCOP version 1.53
extracted from the Astral database, grouped into families and
superfamilies. The dataset was processed so that it does not
contain any sequence pairs with an E-value threshold smaller
than 10−25. For each family, the protein domains within the
family were considered positive test examples, and protein
domains within the superfamily but outside the family were
considered positive training examples. This yielded 54 fami-
lies with at least 10 positive training examples and 5 positive
test examples. Negative examples for the family were chosen
from outside of the positive sequences’ fold, and were ran-
domly split into training and test sets in the same ratio as the
positive examples.

3.1.2 Fold Detection. Employing the same dataset and
overall methodology as in remote homology detection, we
simulated fold detection by formulating as a fold classifica-
tion within the context of SCOP’s hierarchical classification
scheme. In this setting, protein domains within the same su-
perfamily were considered to be as positive test examples,
and protein domains within the same fold but outside the
superfamily were considered as positive training examples.
This yielded 23 superfamilies with at least 10 positive train-
ing and 5 positive test examples. Negative examples for
the superfamily were chosen from outside of the positive se-
quences’ fold and split equally into test and training sets3.
Since the positive test and training instances were members
of different superfamilies within the same fold, this new prob-

2The dataset and classification problem definitions are available at
http://www.cs.columbia.edu/compbio/svm-pairwise.

3The classification problem definitions are available at
http://bioinfo.cs.umn.edu/supplements/remote-homology/.
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lem is significantly harder than remote homology detection,
as the sequences in the different superfamilies did not have
any apparent sequence similarity [22].

3.2 Profile Generation

The position specific score and frequency matrices used by
the profile-based scoring method of Equation 2 were gen-
erated using the latest version of the PSI-BLAST algorithm
(available in NCBI’s blast release 2.2.10), and were de-
rived from the multiple sequence alignment constructed af-
ter five iterations using an e value of 10−3 (i.e., we used
blastpgp -j 5 -e 0.001). The PSI-BLAST was per-
formed against NCBI’s nr database that was downloaded in
November of 2004 and contained 2,171,938 sequences.

3.3 SVM Learning

We use the publicly available support vector machine tool
SVMlight [13] that implements an efficient soft margin op-
timization algorithm. Following the approach used by the
LA-Kernel [26], for any given positive semi-definite kernel
Gram matrix K(., .) to be tested, we first normalize the points
to unit norm in the feature space and separate them from the
origin by adding a constant, that is, we construct the kernel

K′(X, Y ) =
K(X, Y )p

K(X, X)K(Y, Y )
+ 1, (9)

which is then provided as input to SVMlight. Note that unlike
previous work [12, 19, 26], we do not perform any additional
class-dependent kernel regularization to account for classes
of different size. Thus, the results reported for the kernels
that we developed can potentially be further improved after
such regularizations.

3.4 Evaluation Methodology

We measured the quality of the methods by using the receiver
operating characteristic (ROC) scores, the ROC50 scores, and
the median rate of false positives (mRFP). The ROC score is
the normalized area under a curve that plots true positives
against false positives for different possible thresholds for
classification [6]. The ROC50 score is the area under the ROC
curve up to the first 50 false positives. Finally, the mRFP is
the number of false positives scoring as high or better than
the median-scoring true positives.

Among these evaluation metrics, due to the fact that the
positive class is substantially smaller than the negative class,
the ROC50 is considered to be the most useful measure of
performance for real-world applications [6]. For this reason,
our discussions in the rest of this section will primary focus
on ROC50-based comparisons.

Table 1: Comparative performance of the window-based ker-
nel functions that rely on sequence profiles.

Superfamily-level Fold-level

Kernel ROC ROC50 mRFP ROC ROC50 mRFP

AF-PSSM (1) 0.965 0.692 0.022 0.851 0.275 0.143
AF-PSSM (2) 0.978 0.816 0.013 0.909 0.338 0.075
AF-PSSM (3) 0.976 0.833 0.014 0.904 0.340 0.080
AF-PSSM (4) 0.956 0.816 0.019 0.911 0.374 0.067

BF-PSSM (1) 0.967 0.794 0.025 0.906 0.359 0.082
BF-PSSM (2) 0.980 0.854 0.015 0.928 0.419 0.059
BF-PSSM (3) 0.977 0.853 0.016 0.918 0.408 0.069
BF-PSSM (4) 0.965 0.830 0.031 0.918 0.414 0.060

BV-PSSM (1) 0.965 0.808 0.027 0.900 0.423 0.088
BV-PSSM (2) 0.973 0.855 0.018 0.927 0.475 0.052
BV-PSSM (3) 0.966 0.851 0.022 0.936 0.480 0.046
BV-PSSM (4) 0.963 0.850 0.026 0.941 0.481 0.043

The parameter associated with each kernel corresponds to the width of the wmer used
to define the kernel. The ROC50 of the best performing value of w for each kernel is
shown in bold, and the overall best ROC50 is also underlined.

4 Results

4.1 Performance of the Window-based Ker-
nels

Table 1 summarizes the performance achieved by the
window-based kernels for the superfamily- and fold-level
classification problems across a range of w values.

These results show that for both the superfamily- and fold-
level classification problems, the BV-PSSM kernel achieves
the best results, the AF-PSSM kernel tends to perform the
worst, whereas the BF-PSSM kernel’s performance is be-
tween these two. In the case of superfamily classification, the
performance advantage of BV-PSSM over that of BF-PSSM
is relatively small, whereas in the case of fold classification,
the former has a clear advantage. It achieves an ROC50 value
that is on average 16.3% better accross the different window
lengths.

Comparing the sensitivity of the three schemes based on
the value of w, we see that, as expected, their performance is
worse for w = 1, as they only consider wmers of length 3,
and their performance improves as the value of w increases.
In general, the BV-PSSM kernel performs better for larger
windows, whereas the performance of the other kernels tends
to degrade more rapidly as the length of the window increases
beyond a point. Again, this result is consistent with the de-
sign motivation behind the BF-PSSM kernel. Also, the re-
sults show that the best value of w is also dependent on the
particular classification problem. For most kernels, the best
results for fold classification were obtained with longer win-
dows compared to the superfamily classification.

To see the effect of using sequence profiles, we per-
formed a sequence of classification experiments in which
we used the same set of window-based kernel functions, but
instead of scoring the similarity between two amino acids
using the profile-based scheme (Equation 2), we used the
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Table 2: Comparative performance of the window-based ker-
nel functions that rely on BLOSUM62.

Superfamily-level Fold-level

Kernel ROC ROC50 mRFP ROC ROC50 mRFP

AF-GSM (1) 0.906 0.403 0.068 0.720 0.093 0.288
AF-GSM (2) 0.921 0.461 0.055 0.739 0.118 0.255
AF-GSM (6) 0.926 0.549 0.048 0.770 0.197 0.217
AF-GSM (7) 0.923 0.557 0.056 0.777 0.192 0.210

BF-GSM (1) 0.904 0.488 0.071 0.803 0.166 0.177
BF-GSM (2) 0.923 0.584 0.064 0.808 0.189 0.162
BF-GSM (6) 0.934 0.669 0.053 0.822 0.240 0.157
BF-GSM (7) 0.933 0.665 0.056 0.812 0.236 0.178

BV-GSM (1) 0.906 0.486 0.070 0.808 0.167 0.176
BV-GSM (2) 0.919 0.571 0.064 0.808 0.182 0.166
BV-GSM (6) 0.930 0.666 0.052 0.840 0.242 0.140
BV-GSM (7) 0.929 0.658 0.054 0.845 0.244 0.133

The parameter associated with each kernel corresponds to the width of the wmer used
to define the kernel. The ROC50 of the best performing value of w for each kernel is
shown in bold, and the overall best ROC50 is also underlined.

BLOSUM62 position-independent scoring matrix. The re-
sults obtained from these experiments are summarized in Ta-
ble 2. In this table, AF-GSM, BF-GSM, and BV-GSM refer
to the BLOSUM62-variants of the corresponding window-
based kernels (GSM stands for global scoring matrix).

These results clearly illustrate the advantage of using se-
quence profiles in designing kernel functions for both remote
homology detection and fold recognition. The profile-based
kernel functions achieve significant improvements over their
non-profile counterparts across all different kernel functions,
classification problems, and metrics.

Comparing the performance of the profile-based kernel
functions across the two classification problems, we see
that their overall effectiveness in remote homology detection
(superfamily-level classification) is much higher than that of
fold recognition. This result is in line with the underlying
complexity of the classification problem, as the sequence-
based signals for fold recognition are extremely weak. This
is also manifested by the relative improvement achieved by
the profile-based kernel functions over their BLOSUM62-
based counterparts (Tables 1 and 2). For fold recognition,
the ROC50 values of the profile-based kernels are higher than
those based on BLOSUM62 by a factor of two, whereas for
remote homology prediction, the relative ROC50 values are
higher by 25%–30%.

In light of the previously published results on LA-
Kernels [26], the better results achieved by the BF-PSSM and
BV-PSSM kernels over those achieved by the AF-PSSM ker-
nel (which also hold for their corresponding BLOSUM62-
based instances of these kernels) were surprising. One expla-
nation for this discrepancy may be the fact that our window-
based kernels consider only short-length ungapped align-
ments, and the results may be different when longer align-
ments with gaps are considered as well.

Table 3: Comparative performance of the local alignment-
based kernel functions that rely on sequence profiles.

Superfamily-level Fold-level

Kernel ROC ROC50 mRFP ROC ROC50 mRFP

2.0, 0.125, 0.0 0.972 0.784 0.014 0.867 0.377 0.111
2.0, 0.250, 0.0 0.972 0.791 0.014 0.873 0.334 0.114
3.0, 0.125, 0.0 0.971 0.796 0.013 0.860 0.382 0.133
3.0, 0.250, 0.0 0.960 0.771 0.027 0.852 0.395 0.138
3.0, 0.750, 1.5 0.982 0.904 0.015 0.933 0.530 0.052
3.0, 0.750, 2.0 0.979 0.901 0.017 0.936 0.571 0.054

The three parameters for each kernel correspond to the values for the gap opening, gap
extension, and zero-shift parameters, respectively. The ROC50 of the best performing
scheme is underlined.

4.2 Performance of the Local Alignment-
based Kernels

Table 3 summarizes the performance achieved by the opti-
mal local alignment-based kernel for the superfamily- and
fold-level classification problems across a representative set
of values for the gap-opening, gap-extension, and zero-shift
parameters. These parameter values were selected after per-
forming a study in which the impact of a large number of
value combinations was experimentally studied, and repre-
sent some of the best performing combinations. Due to space
constraints, this parameter study is not included in this paper.

The most striking observation from these results is the ma-
jor impact that the zero-shift parameter has to the overall clas-
sification performance. For both the superfamily- and fold-
level classification problems, the best results are obtained by
the SW-PSSM kernel for which the zero shift parameter has
been considered and optimized (i.e., the results correspond-
ing to the last two rows of Table 3).

Comparing the classification performance of the
SW-PSSM kernel against the window-based kernels
(Table 1) we see that the zero-shift optimized SW-PSSM
kernel leads to better results than those obtained by the
window-based kernels. Moreover, the relative performance
advantage of SW-PSSM is higher for fold recognition over
the superfamily classification problem. However, if the
SW-PSSM kernel does not optimize the zero-shift parameter
(i.e., zs = 0.0), the window-based kernels consistently
outperform the SW-PSSM kernel. We also performed a
limited number of experiments to see the extent to which the
performance of the window-based kernels can be improved
by explicitly optimizing the zero-shift parameter for them as
well. Our preliminary results show that these kernels are not
significantly affected by such optimizations. However, we
are in the process of further investigating its impact.

To also see the impact of sequence profiles in the context
of kernels derived from optimal local alignments, we evalu-
ated the classification performance of a set of kernel functions
that compute the optimal local sequence alignment using the
BLOSUM45 and BLOSUM62 amino acid scoring matrices.
Table 4 shows some of the results obtained with these kernel
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Table 4: Comparative performance of the local alignment-
based kernel functions that rely on BLOSUM45 and BLO-
SUM62.

Superfamily-level Fold-level

Kernel ROC ROC50 mRFP ROC ROC50 mRFP

B45, 3.0, 0.0 0.944 0.686 0.037 0.809 0.165 0.169
B45, 10.0, 0.0 0.940 0.687 0.042 0.789 0.200 0.185
B62, 3.0, 0.0 0.947 0.686 0.038 0.781 0.188 0.217
B62, 10.0, 0.0 0.912 0.599 0.060 0.781 0.182 0.185
B62, 5.0, 0.5 0.948 0.711 0.039 0.826 0.223 0.176
B62, 5.0, 1.0 0.946 0.711 0.038 0.808 0.214 0.155

The three parameters for each kernel correspond to the particular global scoring matrix
(B45 for BLOSUM45 and B62 for BLOSUM62) and the values for the gap opening and
zero-shift parameters, respectively. In all cases, the gap extension cost was set to 1.0.
The ROC50 of the best performing scheme is underlined.

functions for a representative set of values for the gap open-
ing, gap extension, and zero-shift parameters.

Comparing the results of Table 4 with those of Table 3 we
see that, as was the case with the window-based kernels, in-
corporating profile information leads to significant improve-
ments in the overall classification performance. In addition,
these results show that (i) the widely used value for the gap-
opening cost (go = 10) is not necessarily the best for either
remote homology detection or fold recognition, and (ii) the
classification performance achieved by local alignment ker-
nels derived from the BLOSUM matrices can be further im-
proved by explicitly optimizing the zero-shift parameter as
well.

4.3 Comparisons with Other Schemes

Tables 5 and 6 compare the performance of the various kernel
functions developed in this paper against that achieved by a
number of previously developed schemes for the superfamily-
and fold-level classification problems, respectively. In the
case of the superfamily-level classification problem, the
performance is compared against SVM-Fisher [12], SVM-
Pairwise [19], and different instances of the LA-Kernel [26],
SVM-HMMSTR [11], Mismatch [18], and Profile [16]. In
the case of the fold-level classification problem, we only in-
clude results for the LA-Kernel and Profile schemes, as these
results could be easily obtained from the publicly available
data and programs for these schemes. (Obtaining compar-
ative performance numbers for the other kernel functions is
currently under way.)

The results in these tables show that both the window- and
local alignment-based kernels derived from sequence pro-
files (i.e., AF-PSSM, BF-PSSM, BV-PSSM, and SW-PSSM)
lead to results that are in general better than those obtained
by existing schemes. Comparing the ROC50 values ob-
tained by our schemes, we see that each one of them out-
performs all existing schemes. The performance advantage
of these kernels is greater over existing schemes that rely
on sequence information alone (e.g., SVM-Pairwise, LA-
Kernels), but still remains significant when compared against

Table 5: Comparison against different schemes for the
superfamily-level classification problem.

Kernel ROC ROC50 mRFP

SVM-Fisher 0.773 0.250 0.204
SVM-Pairwise 0.896 0.464 0.084
LA-eig(β = 0.2) 0.923 0.661 0.064
LA-eig(β = 0.5) 0.925 0.649 0.054
SVM-HMMSTR-Ave – 0.640 0.038
Mismatch 0.872 0.400 0.084
Profile(4,6) 0.974 0.756 0.013
Profile(5,7.5) 0.980 0.794 0.010

AF-PSSM(2) 0.978 0.816 0.013
BF-PSSM(2) 0.980 0.854 0.015
BV-PSSM(2) 0.973 0.855 0.018
SW-PSSM(3.0,0.750,1.50) 0.982 0.904 0.015
AF-GSM(6) 0.926 0.549 0.048
BF-GSM(6) 0.934 0.669 0.053
BV-GSM(6) 0.930 0.666 0.052
SW-GSM(B62,5.0,1,0.5) 0.948 0.711 0.039

The SVM-Fisher, SVM-Pairwise, LA-Kernel, and Mismatch results were obtained from
[26]. The SVM-HMMSTR results were obtained from [11] and correspond to the best-
performing scheme (the authors did not report ROC values). The Profile results were
obtained locally by running the publicly available implementation of the scheme ob-
tained from the authors. The ROC50 value of the best performing scheme has been
underlined.

schemes that either directly take into account profile infor-
mation (e.g., SVM-Fisher, Profile) or utilize higher-level fea-
tures derived by analyzing sequence-structure information
(e.g., SVM-HMMSTR). Also, the relative advantage of our
profile-based methods over existing schemes is greater for
the much harder fold-level classification problem over the
superfamily-level classification problem. For example, the
SW-PSSM scheme achieves ROC50 values that are 13.8%
and 81.8% better than the best values achieved by exist-
ing schemes for the superfamily- and fold-level classification
problems, respectively.

To get a better understanding of the relative performance
of the various schemes across the different classes, Figures 1
and 2 plot the number of classes whose ROC50 was greater
than a given threshold that ranges from 0 to 1. Specifically,
Figure 1 shows the results for the remote homology detec-
tion problem, whereas Figure 2 shows the results for the fold
detection problem. (Note that these figures contain only re-
sults for the schemes that we were able to run locally). These
results show that our profile-based methods lead to higher
ROC50 values for a greater number of classes than either
the Profile or LA-kernels, especially for larger ROC50 val-
ues (e.g. in the range of 0.6 to 0.95). Also, the SW-PSSM
tends to consistently outperform the rest of the profile-based
direct kernel methods.

In addition, the results for the BF-GSM, BV-GSM, and
SW-GSM kernels that rely on the BLOSUM scoring matrices
show that these kernel functions are capable of producing re-
sults that are superior to all of the existing non-profile-based
schemes. In particular, the properly optimized SW-GSM
scheme is able to achieve significant improvements over the
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Figure 1: Comparison of the different SVM-based methods
for remote homology detection on the SCOP 1.53 benchmark
dataset. The graph plots the total number of families for
which a given method exceeds an ROC-50 score threshold.

Table 6: Comparison against different schemes for the fold-
level classification problem.

Kernel ROC ROC50 mRFP

LA-eig(β = 0.2) 0.847 0.212 0.129
LA-eig(β = 0.5) 0.771 0.172 0.193
Profile(4,6) 0.912 0.305 0.071
Profile(5,7.5) 0.924 0.314 0.069

AF-PSSM(4) 0.911 0.374 0.067
BF-PSSM(4) 0.918 0.414 0.060
BV-PSSM(4) 0.941 0.481 0.043
SW-PSSM(3.0,0.750,2.0) 0.936 0.571 0.054
AF-GSM(6) 0.770 0.197 0.217
BF-GSM(6) 0.822 0.240 0.157
BV-GSM(7) 0.845 0.244 0.133
SW-GSM(B62,5,1.0,0.5) 0.826 0.223 0.176

The results for the LA-Kernel were obtained using the publicly available kernel matrices
that are available at the author’s website. The Profile results were obtained locally by
running the publicly available implementation of the scheme obtained from the authors.
The ROC50 value of the best performing scheme has been underlined.

best LA-Kernel-based scheme (7.6% higher ROC50 value)
and the best SVM-HMMSTR-based scheme (15.1% higher
ROC50 value).

5 Discussion and Conclusion

This paper presented and experimentally evaluated a num-
ber of kernel functions for protein sequence classification that
were derived by considering explicit measures of profile-to-
profile sequence similarity. The experimental evaluation in
the context of a remote homology prediction problem and a
fold recognition problem show that these kernels are capa-
ble of producing superior classification performance over that
produced by earlier schemes.

Three major observations can be made by analyzing the
performance achieved by the various kernel functions pre-
sented in this paper. First, as was the case with a num-
ber of studies on the accuracy of protein sequence alignment
[21, 30, 20], the proper use of sequence profiles lead to dra-
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Figure 2: Comparison of the different SVM-based methods
for fold detection on the SCOP 1.53 benchmark dataset. The
graph plots the total number of superfamilies for which a
given method exceeds an ROC-50 score threshold.

matic improvements in the overall ability to detect remote
homologs and identify proteins that share the same structural
fold. Second, kernel functions that are constructed by directly
taking into account the similarity between the various pro-
tein sequences tend to outperform schemes that are based on
a feature-space representation (where each dimension of the
space is constructed as one of k-possibilities in a k-residue
long subsequence or using structural motifs (Isites) in the case
of SVM-HMMSTR). This is especially evident by compar-
ing the relative advantage of the window-based kernels over
the Profile kernel. Third, time-tested methods for compar-
ing protein sequences based on optimal local alignments (as
well as global and local-global alignments), when properly
optimized for the classification problem at hand, lead to ker-
nel functions that are in general superior to those based on
either short subsequences (e.g., Spectrum, Mismatch, Pro-
file, or window-based kernel functions) or local structural
motifs (e.g., SVM-HMMSTR). The fact that these widely
used methods produce good results in the context of SVM-
based classification is reassuring as to the validity of these
approaches and their ability to capture biologically relevant
information.
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