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ABSTRACT
There is a growing need to perform large computations on
small systems, as access to large systems is not widely avail-
able and cannot keep up with the scaling of data. BDMPI
was recently introduced as a way of achieving this for ap-
plications written in MPI. BDMPI allows the efficient exe-
cution of standard MPI programs on systems whose aggre-
gate amount of memory is smaller than that required by
the computations and significantly outperforms other ap-
proaches. In this paper we present a virtual memory sub-
system which we implemented as part of the BDMPI run-
time. Our new virtual memory subsystem, which we call
SBMA, bypasses the operating system virtual memory man-
ager to take advantage of BDMPI’s node-level cooperative
multi-taking. Benchmarking using a synthetic application
shows that for the use cases relevant to BDMPI, the over-
head incurred by the SBMA system is amortized such that
it performs as fast as explicit data movement by the appli-
cation developer. Furthermore, we tested SBMA with three
different classes of applications and our results show that
with no modification to the original MPI program, speedups
from 2×–12× over a standard BDMPI implementation can
be achieved for the included applications.
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core, mpi

1. INTRODUCTION
The continuous growth in the amount of data being collected
and stored has created a need to perform large computations
on small systems, as access to large systems is not widely
available and cannot keep up with the scaling of data. Run-
ning large problems on smalls systems makes it imperative
to have an efficient means to manage the increased mem-
ory pressure, a problem which is solved using a technique
referred to as out-of-core computation. Many frameworks
for out-of-core distributed computing applications (i.e., dis-

tributed computing applications that primarily store their
data on the disk) have been developed to address this prob-
lem [2,4–7,10–12,14,16,20–22]. Recently a new framework
has been developed called BDMPI [9], which is designed
to enable MPI applications to automatically execute in an
out-of-core fashion and thus solve very large problems on
moderate computational resources.

BDMPI uses co-operative multi-tasking to reduce contention
for memory resources and defers the actual management of
the exchange of data to the operating system (OS) virtual
memory manager (VMM). In [9], the authors of BDMPI
showed that even when relying on the OS VMM, BDMPI
outperforms other out-of-core distributed frameworks for a
variety of applications. The authors also showed that BDMPI
can be improved if the application developer explicitly con-
trols the exchange of data between memory and disk before
and after blocking MPI operations.

The objective of this work is to enhance BDMPI’s runtime
with a virtual memory (VM) subsystem that is aware of
BDMPI’s execution and memory model. The key insight to
this approach is that the memory access patterns of most
applications can be broadly classified into a small number
of categories. Coupled with the memory restrictions for con-
currently executing processes imposed by the BDMPI exe-
cution and memory models, a VMM can optimize the way
it transfers data between disk and physical memory.

Towards this objective, we developed a new VM subsys-
tem for the BDMPI runtime, called Storage-Backed Mem-
ory Allocation (SBMA), for its use of file backed memory
mappings. SBMA can be used with any MPI application,
but includes optimizations for specific use cases, such as ap-
plications which only access subsets of their memory be-
tween communication induced blocking points. Addition-
ally, SBMA is completely transparent to the application de-
veloper as its use requires no code modification.

We experimentally evaluated the performance of SBMA on
a synthetic micro-benchmark and three real applications: (i)
PageRank [13], which uses an iterative algorithm to copmute
the pagerank of the vertices in a graph, (ii) ParMetis [15],
which computes a k-way partitioning of a graph, and (iii)
SPLATT [18], which computes a PARCOMP sparse ten-
sor factorization. Our results show that with no modifica-
tion of the original MPI program, speedups of 2–12× over
a standard BDMPI implementation can be achieved for the



included applications.

2. OVERVIEW OF BDMPI
BDMPI is implemented as a layer between an MPI program
and any of the existing implementations of MPI. From the
application’s perspective, BDMPI is just another implemen-
tation of a subset of the MPI 3 specification. Programmers
familiar with MPI can use it right away and any programs
using the subset of MPI functions that have been currently
implemented in BDMPI can be linked against it unmodified.

The execution of a BDMPI program creates two sets of pro-
cesses. The first is the MPI processes associated with the
program being executed, which within BDMPI, are referred
to as the slave processes. The second is a set of processes,
one on each compute node, that are referred to as the master
processes. The master processes are at the heart of BDMPI’s
execution as they spawn the slaves, coordinate their execu-
tion, service communication requests, perform synchroniza-
tion, and manage communicators.

BDMPI’s execution model is based on node-level coopera-
tive multi-tasking. BDMPI allows only a subset of the slave
processes to be executing concurrently with the rest of the
slaves blocking. When a slave process reaches an MPI block-
ing operation (e.g., point-to-point communication, collective
operation, barrier, etc.), BDMPI blocks it and selects a pre-
viously blocked and runnable process (i.e., whose blocking
condition has been satisfied) to resume execution.

BDMPI’s memory model is based on constrained memory
over-subscription. It allows the aggregate amount of mem-
ory required by all the slave processes spawned on a node
to be greater than the amount of physical memory on that
node. However, it requires that the amount of memory used
by any running slave processes be smaller than the amount
of physical memory on that node. Within this model, an
unmodified MPI program will rely on the OS VMM mech-
anisms to map in memory the data that each process needs
during its execution.

The coupling of constrained memory over-subscription with
node-level cooperative multi-tasking is the key that allows
BDMPI to efficiently execute an unmodified MPI program
whose aggregate memory requirements far exceeds the ag-
gregate amount of physical memory in the system. This is
due to the following two reasons. First, it allows the MPI
processes to amortize the cost of loading their data from
the disk over the longest possible uninterrupted execution
that they can perform until they need to block due to MPI’s
semantics. Second, it prevents memory thrashing (i.e., re-
peated and frequent page faults), because each node has a
sufficient amount of physical memory to accommodate all
the processes that are allowed to run. For a more detailed
description of BDMPI, please refer to [9].

3. STORAGE BACKED MEMORY
ALLOCATION (SBMA)

Even though BDMPI’s execution model is designed to max-
imize the amount of work that can be done with the data
that was fetched from disk, the experiments in [9] showed
that further performance improvements can be obtained by

explicitly controlling how resident memory is transferred to
and from disk. These optimizations require an in-depth
understanding of the execution and memory models of the
BDMPI runtime. Thus, it would be desirable to have a run-
time system that can leverage the cooperative multi-tasking
execution model of BDMPI to perform many of these opti-
mizations automatically.

Motivated by the observation that optimized resident mem-
ory exchange can be implemented without any burden to
application developers, we created a new virtual memory
(VM) subsystem for the BDMPI runtime which incorporates
knowledge of the system’s execution and memory models.
We call the new VM subsystem Storage-Backed Memory Al-
location (SBMA), for its use of file backed memory mappings
to persist data between exchanges of resident memory.

To provide these functionalities, SBMA operates in the fol-
lowing way. Each time that a slave process allocates mem-
ory, the request is handled by SBMA, which obtains the
memory from the OS on behalf of the slave process. Inter-
nally, SBMA keeps track of which parts of the allocation
are currently resident in physical memory and which have
been modified by the application. This way, just before the
physical memory becomes over-subscribed, SBMA exploits
the cooperative multi-tasking nature of the BDMPI runtime
and evicts the memory of blocked slave processes at an al-
location granularity. Like a traditional VMM, SBMA uses
a file on disk to persist the contents of evicted memory. In
addition, by tracking the parts of each allocation that have
been modified by the application, only those parts which
have been modified since last being written to disk need to
be written upon eviction. Likewise, when an allocation is
re-admitted into physical memory, only those parts which
exist in the file on disk need to be read. To ensure that
memory mappings remain valid from acquisition to release,
despite being evicted and re-admitted into physical memory,
SBMA relies on a core set of memory-related functionalities
provided by the Linux OS, discussed in detail in Section 4.

To reduce unnecessary data transfer between physical mem-
ory and disk, SBMA exploits the semantics of certain MPI
functions. When a slave process blocks on a MPI opera-
tion that requires it to transfer data (e.g., point-to-point
communication or collective operations), it is within the se-
mantics of such an operation to discard the contents of any
output buffers before receiving data. This means that the
BDMPI runtime may forgo writing to file any memory re-
gions marked as modified which are present in the output
buffers of such MPI routines.

Within this framework, we developed three different strate-
gies for managing the exchange of resident memory, the de-
tails of which are provided in the rest of this section.

3.1 Aggressive Read / Aggressive Write
(ARAW)

This strategy is designed for applications where the slave
processes have a core set of memory allocations which are
accessed in their entirety during each execution phase, see
Figure 1a. In this approach, when a process enters a block-
ing state, it writes any modified parts of its allocations to
the appropriate file on disk and then releases the associated
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Figure 1: Four common memory access patterns. Each subfigure shows a selection of a single slave process’
execution phases (communication followed by computation). Within a computation phase, memory allo-
cations are represented by separate blocks and accesses to an allocation are indicated by a filled block or
section.

physical memory resources, a procedure which we call un-
loading. Upon exit of the blocking state, the first access to
each allocation causes physical memory to be acquired for it
and any parts of the allocation which exist in its associated
file to be read, a procedure that we refer to as loading. Note
that only those allocations that a slave process accesses dur-
ing an execution phase are actually loaded, see Figure 1b.
Furthermore, ARAW requires no communication between
the master process and the slave processes in order to coor-
dinate the exchange of resident memory.

3.2 Aggressive Read / Lazy Write (ARLW)
A drawback of the ARAW approach is that it assumes that
in each execution phase, the physical memory will be over-
subscribed. However, there are many applications for which
this will not be the case. In general, this is applications
in which the aggregate set of accessed memory of the slave
processes between synchronization points can fit in mem-
ory during successive execution phases. Two such examples
are (i) applications which access different memory alloca-
tions during successive execution phases (Figure 1b) and (ii)
applications which use data structures that change size as
execution progresses (Figure 1c). The figures assume that
the size of physical memory is roughly equal to the aggre-
gate amount of memory allocations from the first execution
phase shown. You can see then that in either figure, mem-
ory from other slaves, in addition to the one shown, will fit
into the physical memory.

Motivated by this, in the Aggressive Read / Lazy Write
(ARLW) approach, memory is allowed to remain resident
until memory pressure becomes sufficiently high. By un-
loading allocations only when required, interaction with disk
during these types of execution phases can be significantly
reduced and in some cases, completely avoided. To accom-
plish this, the master process must coordinate the loading
and unloading of slave memory. Thus, whenever a slave
process loads memory, it first notifies the master process.
The master checks to make sure that the pending load can
complete safely, meaning that it will not over-subscribe the
physical memory. If it cannot, the master directs blocked
slaves to unload memory until the pending load will com-
plete safely or no blocked slaves have any loaded allocations.

3.3 Lazy Read / Lazy Write (LRLW)
A drawback of both ARAW and ARLW is that upon the
first access after being unloaded, all of the previously written
parts of the allocation are read from disk. For applications
which have execution phases that require access to only parts
of each allocation, this behavior is not ideal. Consider as an
example, an application which has a brief exchange of point-
to-point communications which update only a small part of
some number of allocations, an access pattern which might
look like that shown in Figure 1d. Under either ARAW
or ARLW, each update will cause an entire allocation to
be loaded, even if only a small fraction of the allocation is
being updated. Instead, only those parts of each allocation
actually accessed should be considered for reading.

The lazy read / lazy write (LRLW) strategy addresses this
limitation by unloading allocations using the same proce-
dure as ARLW, but loading them at a chunk granularity
rather than whole allocations. Here chunk is implementa-
tion defined, the details of which are discussed in Section 4.
An ancillary advantage of a lazy read approach is that it
facilitates asynchronous data transfer from disk. In aggres-
sive reading, loading a memory allocation requires the slave
process to block until all relevant parts of the allocation
have been read from disk. In contrast, lazy reading per-
forms loads at smaller granularity. This means after loading
a chunk, a fast operation compared with loading an alloca-
tion, the slave process can resume execution. Meanwhile,
instructed by readahead policies, the OS will continue to
fetch data from the relevant file in the background. When
an allocation is accessed in roughly sequential order, this
translates to reduced time spent blocked on data transfer,
since most of the data will be prefetched by the OS before
it is accessed by the application.

4. SBMA IMPLEMENTATION
4.1 Memory Acquisition and Representation
SBMA uses interposition to intercept calls to libc’s standard
malloc library. That is, a call to malloc() in a BDMPI
program will be performed by SBMA. Our implementation
of SBMA includes a parameter called the SBMA threshold
which controls the minimum sized allocation to be managed
by SBMA. Any allocation less than the SBMA threshold
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Figure 2: The state transition graph for sbpages.
+ONDISK indicates that the ONDISK flag will be given
to the sbpage, −ONDISK that it will be removed, and
±ONDISK it will continue to be present or absent,
whichever it currently is.

will be passed directly to the appropriate libc function, by-
passing SBMA management. SBMA uses the mmap() and
munmap() functions to acquire/release memory to/from the
OS. When an application requests memory, SBMA is in-
voked and calls mmap() to obtain a virtual address from
the OS pointing to a region of memory that contains the
requested amount of memory. Then, a file is created on
disk where the memory region will be persisted whenever
it is unloaded. The memory region returned by mmap() is
segmented conceptually into consecutive equal sized blocks,
each containing a fixed number of system memory pages,
referred to as sbpages. Each sbpage is associated with an
sbpage state. Valid sbpage states are unmodified (INSYNC),
modified (DIRTY), and not accessible (NONE). Furthermore,
the INSYNC and NONE states can be modified with a stored
on-disk (ONDISK) flag. The precise meanings of these states
are described in subsequent sections and Figure 2 provides a
summary of the valid state transitions and their effect on the
ONDISK flag of an sbpage. SBMA also provides the function-
ality to discard an allocation. This operation removes any
ONDISK flags from the associated sbpages and transitions all
sbpages to the NONE state. During this, no sbpages which
are in the DIRTY state are written to the associated file, the
allocation is simply treated as if it were newly allocated.

4.2 Access Control and Data Persistence
In order for SBMA to perform the various read/write opti-
mizations, it needs to know which parts of the allocations
are being accessed by the application and if these accesses
are read and/or write. To achieve that, SBMA uses the
functionalities provided by memory protection via the Linux
kernel. Each of the three states, INSYNC, DIRTY, and NONE,
imply a specific set of access permissions, set using the sys-
tem call mprotect(). Based on these access permissions
the OS will generate the signal SIGSEGV whenever the appli-
cation attempts an access that is not permitted according
to the state of the corresponding sbpage. Trapping these
SIGSEGV signals is one of the means by which the SBMA
system transitions sbpages from one state to another; the
other being an explicit discard of an allocation. To trap the
SIGSEGV signal, SBMA installs its own SIGSEGV handler at
the time that MPI_Init is called.

When an sbpage is in the INSYNC state, it means that its cor-
responding file is synchronized with its contents and implies
that the application has read access to the memory corre-
sponding to the sbpage. An sbpage in the DIRTY state indi-
cates that the application has modified the sbpage since the
last time that its file was loaded and implies read and write
access permissions for the application. Both the INSYNC and
DIRTY signify that the sbpage is resident in physical memory.
On the other hand, the NONE state means that the sbpage
is not resident in physical memory and as such, implies that
there are no access permissions for the sbpage.

Initially every sbpage of a new allocation is put in the INSYNC
state. When the application attempts a write access to
any of these sbpages, a SIGSEGV is generated by the OS
and trapped by SBMA, which transitions the sbpage to the
DIRTY state and changes the access permissions to read/write.
When a slave process unloads an allocation, it scans the
states of its sbpages and writes to the allocation’s associ-
ated file only those sbpages which are in the DIRTY state. All
sbpages in the allocation are then transitioned to the NONE
state and any sbpages written to disk are given the ONDISK
flag. Once an sbpage is given the ONDISK flag, it retains the
flag until it is either freed or discarded. As part of unload-
ing an allocation, the slave releases any associated physical
memory resources, via the system call madvise(), invoked
with the flag MADV_DONTNEED, which notifies the operating
system that the specified memory resources are no longer
needed. In addition, SBMA sets the permissions of the al-
location to NONE, so any future access will be intercepted by
SBMA and handled appropriately.

4.3 Aggressive Read / Aggressive Write
Details

In the ARAW approach, when a slave process reaches an
MPI synchronization point, but before entering the blocked
state, it unloads all of its memory allocations. This means
that for each of its allocations, it scans for sbpages in the
DIRTY state, writes them to their appropriate location in
the allocation’s corresponding file and updates their state
to include the ONDISK flag. Afterwards, all of the alloca-
tion’s sbpages are transitioned to the NONE state and the ac-
cess permissions for the allocation memory are set to none.
Lastly, the physical memory resources are released by the
process with a call to madvise().

In an aggressive read approach, when a slave process receives
a SIGSEGV, the allocation to which the offending memory
location belongs is identified. Once found, the slave initiates
an allocation load by reading into memory the sbpages that
have the ONDISK flag, transitioning all of the sbpages to the
INSYNC state and setting the access permissions to read.

4.4 Lazy Read Details
In a lazy read approach, when a slave process receives a
SIGSEGV associated with a read access, the allocation to
which the offending memory location belongs is identified.
Once found, the slave initiates an sbpage load on the appro-
priate sbpage by reading it into memory only if it has the
ONDISK flag, transitioning it to the INSYNC state and setting
its access permissions to read.



4.5 Lazy Write Memory Tracking Protocol
The lazy write approach requires that the master process
maintains an accurate count of the amount occupied phys-
ical memory, so that writes can be delayed. To accomplish
this, messages are exchanged between the master process
and relevant slave processes each time memory is loaded or
unloaded. Four different message types are relied on to pro-
vide this functionality: load, unload, release, and proceed.

When a slave process wants to load memory, it sends a load
message to the master containing the size of the memory
region to be loaded and then waits to receive a proceed mes-
sage in response. Upon receiving a load message, the master
process verifies that the requested amount of memory can
be safely loaded. If not, then the master process repeat-
edly chooses a blocked slave process and commands it to
unload all of its memory allocations via a release message.
This is repeated until no slaves have any loaded allocations
or the requested amount of memory can be loaded safely,
at which point the master sends a proceed message to the
slave who initiated the request. Whenever a slave success-
fully unloads its memory allocations due to the reception
of a release message, it notifies the master with an unload
message containing the aggregate amount of memory un-
loaded. It is not sufficient to exchange load messages and
unload messages only when memory is loaded and unloaded.
It is also necessary to send unload / load messages whenever
memory is freed / allocated, since these have the same effect
on the total occupied memory as unloading / loading.

When lazy writing is coupled with lazy reading, an extra
consideration must be made. Rather than sending a load
message each time that an sbpage is loaded, which would
be prohibitively expensive for applications with large alloca-
tions, the LRLW approach sends exactly one load message
for each allocation. The message is sent when the first access
is made to any of the allocation’s sbpages.

4.6 Multi-threaded Environements
The previous discussion addresses the needs of many dis-
tributed out-of-core applications which rely solely on MPI.
However, there are do exist applications which embrace the
MPI+X paradigm. This is especially true of MPI+openmp
and MPI+pthreads. To thoroughly address the issues of
SBMA in a multi-threaded environment is outside the scope
of this work. However, the major challenge involved in do-
ing so, is the race condition that occurs when one thread is
loading an sbpage at the same time that another thread is
writing to an sbpage. This problem, known as the atomic
page update problem, has been studied in other contexts,
most notably with relation to distributed shared memory
systems [19]. Some of the techniques described in [19] can
be directly implemented within the context of SBMA and
thus allow it to work for applications which rely on multi-
threading within a computation node. The performance im-
plications of such a solution with respect to SBMA is left as
future research.

5. RELATED WORK
There are a variety of research efforts in the literature related
to efficient memory management strategies for data intensive
out-of-core applications. Most of the previous work can be
broadly categorized as follows: (1) OS memory management

policies, (2) problem specific out-of-core solutions, or (3)
efficient general purpose virtual memory managers.

Many page replacement policy studies have been performed
under various conditions and for various workloads. Some
examples are Lee et al. [10], Park et al. [14], and Qureshi
et al. [16]. In each of their respective papers, the authors
demonstrated different circumstances that application per-
formance can be improved using page replacement policies
designed for the characteristics of the application. Other
works, like that of Engler et al. [5], focus on the design
and implementation of a general purpose virtual memory
subsystem at the application level. The authors argue the
efficacy of an application level VMM and included micro-
benchmarks to show its feasibility. SBMA falls into this
broad category of application level VMM.

More recently, there has been an emergence of interest in
memory management systems catered toward out-of-core
applications. A large amount of this work has been fo-
cused on problem specific out-of-core solutions. Typically,
this means that a memory management strategy is tailored
for the specific characteristics of the problem. While this
level of customization generally yields the best results, the
engineering cost is prohibitively high for most applications.
Thus, this type of research has been focused mainly on those
problems where performance is critical. For example linear
algebra kernels [20] and data management systems [4].

There has also been a number of projects related to op-
timized general purpose virtual memory management sys-
tems. Most relevant to SBMA are three projects. The first is
by Brown et al. [2], who looked at an entirely compiler-based
solution for prefetching and releasing memory in out-of-core
applications. The compiler used analysis of the source code
to identify potentials points in the execution where data
could be safely loaded and unloaded so as to reduce mem-
ory access latency. The complete solution also included a
runtime layer which intercepted the compilers prefectch and
release instructions and decided if they were still appropri-
ate to execute based on the current state of the system at
the time of interception. Using this approach the authors
showed that for many large scientific applications, I/O stall
time could be reduced by more than 50%. The second is
the DI-MMAP system of Van Essen et al. [6, 21], a kernel
module which replaces the existing Linux memory map run-
time with a custom runtime. The authors showed that for
the metagenomics application used in their paper the DI-
MMAP system achieved a 4.88× performance improvement
over the Linux kernel memory map runtime. Like SBMA,
DI-MMAP is also built as a drop in replacement for memory
acquisition, however DI-MMAP is built as a kernel module
and is seen as an extension to the kernel rather than an ap-
plication level VMM. In contrast to the Linux kernel VMM,
which is optimized for shared libraries, DI-MMAP is opti-
mized specifically for data-intensive out-of-core applications,
including optimizations like bulk flushing of the page table
and transition-look-aside buffers. Compared with SBMA,
the DI-MMAP system is much lower-level and thus, has no
notion of the cooperative multi-tasking nature of BDMPI.
Lastly is the work of Meswani et al. [12], which addresses
this problem for future Exascale machines. The authors
argue that a programmer-driven approach to memory man-



agement is the quickest way to reach the bandwidth targets
of the Exascale machines. Their results show that while
programmer-driven methods are an improvement over auto-
mated systems, their is still more research to be done before
the bandwidth targets of the Exascale machines are reached.

6. EXPERIMENTAL SETUP
6.1 Benchmark Applications
We evaluated the performance of SBMA using a synthetic
application and three real-world applications: (i) PageRank
on an unweighted undirected graph [13], (ii) graph partion-
ing using ParMetis on an unweighted undirected graph [8],
and (iv) sparse tensor factorization using SPLATT on an
three dimensional sparse tensor [18].

6.1.1 Synthetic Application
The synthetic application was designed to quantify the over-
head associated with a memory management subsystem built
on top of the Linux kernel signaling mechanisms. The appli-
cation allocates a single chunk of memory large enough to fill
the RAM of the host machine, which in our case was slightly
less than 4GB to avoid interference by the OS VMM. The
synthetic application is comprised of three micro-benchmarks,
each executing a single type of memory access operation
from the following: read (==), write (=), or read/write (+=).
Each micro-benchmark consists of a for loop which iterates
over the entire allocation performing the appropriate mem-
ory access operation on each byte. To increase the stability
of the timings, before each micro-benchmark is executed, the
system’s page cache is cleared via a call to posix_fadvise()
and the CPU caches are cleared using unoptimized code to
populate a sufficiently large segment of memory which is
immediately released.

Each micro-benchmark was executed using the four possi-
ble combinations of the following memory placement poli-
cies: in-memory (I) and read (R) and memory protection
policies: aggressive (A) and lazy (L). The I memory place-
ment policy means that during the entire execution of the
micro-benchmark the allocation is stored in memory, this is
in contrast to the R policy where memory is stored on disk
and must be read before being accessed. For a write (=)
access, reading from disk is unnecessary and thus, the data
is not loaded before writing. The A memory protection pol-
icy dictates that the first time that a read protection fault
is raised for the allocation, the memory protection for the
entire allocation is updated to read protected. The opposite
of this is the L policy where each read protection fault raised
causes only the corresponding sbpage’s memory protection
to be updated to read protected. Note that this is not true
for write faults, since SBMA always grants write permission
exactly one sbpage at time.

The AI and LI combinations allow for the quantification of
the inherent overhead of a memory subsystem based on the
Linux kernel signaling mechanisms. The AR and LR pol-
icy combinations correspond exactly to the SBMA schemes
including each of these policies. Thus, they allow us to mea-
sure the overhead which can be expected from the SBMA
system. A special case, denoted as no protection (np) was
included, in which the allocation is given read and write
permission at the time of request and is not changed dur-
ing execution, thus incurring no overhead. In this case, the

A and L policies will only be applicable to the R memory
placement policy where they dictate the resolution at which
data is read from the disk. In the case of the I policy, results
will be identical for A and L. This special case is represen-
tative of a BDMPI runtime without SBMA and acts as a
baseline to compare the other schemes against.

For each micro-benchmark we reported the average through-
put, namely, the number of system pages operated on per
second. This is obtained by timing the entire for loop of
each micro-benchmark then dividing the total time by the
number of system pages in the allocation. Further, each
time reported is the average throughput of ten executions of
the synthetic application. Due to the precautions taken, the
timings results were extremely stable, < 0.5% error, thus no
error statistics are reported.

6.1.2 Real-world Applications
The implementation of PageRank was the same as that used
in [9] and uses a one-dimensional row-wise decomposition of
the sparse adjacency matrix. Each MPI process gets a con-
secutive set of rows such that the number of non-zeros of the
sets of rows assigned to each process is balanced. Each itera-
tion of PageRank is performed in three steps using a push al-
gorithm [13]. The ParMetis implementation is version 4.0.3
and was downloaded directly from the author’s website [15].
The code was modified by changing a single line to disable
the use of its own workspace management and thus allow
SBMA to manage its memory allocations. The SPLATT
implementation is a version that was obtained directly from
the author of [18] and uses a three-dimensional decomposi-
tion of the sparse adjacency tensor. Each MPI process gets
a consecutive set of rows such that the number of non-zeros
of the sets of rows assigned to each process is balanced. For
our experiments, we compute 16 factors. Each iteration up-
dates the factorization using the alternating least squares
method and checks for convergence.

For the three benchmarks, we gathered results by perform-
ing five executions of each application. The times that we
report correspond to the average time required to perform
each iteration, which was obtained by dividing the total time
by the number of iterations. As a result, the reported times
include the costs associated with loading and storing the in-
put and output data. The number of running slaves was set
to one in all cases, and the total number of slaves was cho-
sen as the smallest number of slaves such that the required
memory for each slave fit completely in physical memory.

The performance gains achieved by the SBMA subsystem
when the application is executed on a single node are ex-
pected to carry over when the program is executed on mul-
tiple nodes. For this reason, the focus of our experiments
was within a single node. However, in some cases, the SBMA
subsystem may change the scheduling within a node which
can potentially affect performance in a multi-node system.
Thus, to demonstrate the performance of an SBMA enabled
BDMPI runtime beyond a single node, we have also included
a brief set of experiments which involve execution of appli-
cations on multiple nodes.

6.2 Datasets



Table 1: The performance of baseline methods on the different applications.

#Nodes=1 #Nodes=4
BDMPI BDMPI

Application Dataset Mem (GB) Serial MPI w/o SBMA MPI w/o SBMA

PageRank uk-2007-05 35 14.84 > 160.00 19.86 10.25 4.34
ParMetis nlp-kkt240 13 > 300.00 > 300.00 255.17 N/A N/A
SPLATT NELL-large 26 13.52 > 160.00 38.32 5.38 4.01

Each row represents an application and includes the dataset used, the aggregate amount of memory required by all slaves,
the runtime for the problem using a single process, standard MPI and BDMPI without SBMA on a single node and on four
nodes. All times reported are in minutes. The MPI and BDMPI experiments use the same number of process/slaves as the
experiments in Section 7. For example the PageRank problem uses 12 slaves, so on a four nodes, each node would be assigned
three process for MPI and three slaves for BDMPI.

For the PageRank experiments the undirected version of the
uk-2007-05 [1] web graph was used, with 105 million vertices
and 3.3 billion edges. To ensure that the performance of the
PageRank algorithm was not affected by a favorable order-
ing of the vertices, the vertices of the graph were renum-
bered randomly. For the ParMetis experiments the undi-
rected nlpkkt240 [17] graph was used, with 28 million ver-
tices and 760 million edges. For the SPLATT experiments
the NELL-large [3] dataset was used, with 2.9 million rows,
2.14 million columns, 25.5 million fibers, and a total of 143.6
million non-zero elements. The dataset was randomly per-
muted to ensure the SPLATT algorithms were not affected
by favorable tensor ordering.

6.3 System Configuration
The experiments were run on a dedicated cluster consist-
ing of four Dell Optilex 9010s. Each machine is equipped
with an Intel Core i7 @ 3.4GHz processor, 4GB of mem-
ory, and a Seagate Barracuda 7200RPM 1.0TB hard drive.
Because of BDMPI’s dependence on the swap-file for data
storage when SBMA is disabled, the machines were set up
with 300GB swap partitions. The four machines run the
Ubuntu 14.04.1 LTS distribution of the GNU/Linux operat-
ing system. The C compiler used was GNU GCC 4.8.2 and
the MPI implementation was MPICH 3.0.4.

7. RESULTS
7.1 Synthetic Benchmark
Table 2 shows the throughput for the three different mem-
ory access operations: read, write, and read/write. The
most relevant results with respect to the BDMPI system as
a whole are the rows labeled AR and LR. When any of the
columns representing sbpage sizes are compared against the
np column, the result is a quantification of the overhead
of the SBMA system. In this respect, Table 2 reveals two
important results.

First, by comparing the throughput of the np scheme for
a given memory operation to the throughput for the corre-
sponding SBMA operation for each of the sbpage sizes, we
can derive an upper limit to the overhead associated with
SBMA under the set of conditions proposed in this bench-
mark. Thus, we see that any given memory operation is at
most 2.4 times slower under SBMA than in a system which
defers memory management to the OS. For a sufficiently
large sbpage size, the overhead introduced by the implicit

signal driven memory handling of SBMA can be greatly re-
duced, in some cases nearly to the performance of explicit
memory handling, see the read (==) operation for sbpage
size 64 using the AI or LI policy which both have through-
put which is less than 3% lower than the np case. Second,
by comparing the results for all of the experiments involving
disk I/O, we we see that the results for all experiments, in-
cluding those of the np scheme are identical within a given
policy. Thus, we can conclude that the overhead related to
the signal handling mechanisms inherent to SBMA are over-
shadowed by the disk I/O. Furthermore, since all of these
results are nearly the same, even when comparing the two
policies, it suggests that the disk bandwidth is the limiting
factor for operations involving disk I/O.

The read (==) and read/write (+=) experiments of the AI
and LI policies can be used to further quantify the overhead
associated with the signal handling mechanism. By com-
paring the results of these experiments between A and L,
we see that the L policy introduces a 17.5% overhead on
average. The magnitude of the overhead for a given sbpage
size is proportional to the sbpage size itself. This is as we
would expect, since the L policy dictates that the memory
protection of each sbpage must be updated independently
versus the A policy which has the memory protection of the
entire allocation updated at once. This overhead holds for
the write(=) operation as well, since by definition, a write
fault in SBMA must first generate a read fault.

7.2 Performance of PageRank
Table 3 shows the performance achieved by the different pro-
grams on the PageRank benchmark. The PageRank bench-
mark does not include any results for variations of the SBMA
threshold. The reason for this is that the code requires a
fixed set of allocations, all of which are larger than any rea-
sonable SBMA threshold. Thus, for the PageRank bench-
mark, SBMA will necessarily manage all allocations.

Comparing the performance achieved by the SBMA varia-
tions with the single node results in Table 1, we see that all
configurations of SBMA lead to a decreased runtime against
both MPI and BDMPI without SBMA. BDMPI with SBMA
is 1.6×–1.8× and > 12× faster than BDMPI without SBMA
and MPI respectively. For the multi-node experiments in
the last two columns of Table 1, the performance improve-
ments were similar to the single node experiments. In these
cases, BDMPI with SBMA was 1.51× and 3.58× faster on



Table 2: Throughput of Memory Operations on the Micro-Benchmark.

Read (x == y) Write (x = y) Read/Write (x += y)
np 1 4 16 64 np 1 4 16 64 np 1 4 16 64

AI 1195 1195 1194 1194 1194 514 288 373 405 414 472 276 352 380 387
LI 1195 537 927 1134 1134 514 208 325 379 395 472 198 310 359 373
AR 28 28 28 28 28 514 288 373 405 414 28 28 28 28 28
LR 30 30 30 30 30 514 208 325 379 395 30 30 30 30 30

Throughput, in system pages/sec, for memory access operations under different memory management strategies using a va-
riety of sbpage sizes from 1 to 64. The first column for each memory access operation is the np scheme, where memory is
obtained via a call to mmap() and no memory protection policies are applied to it. A is aggressive, L is lazy, I is in-memory,
and R is reading. The difference between AI and AR is that in the former, data resides only in memory, while in the latter,
the data is read from disk before each read access. The same is true for LI and LR.

Table 3: SBMA performance on PageRank.

#Nodes=1 #Nodes=4
4 16 64 64

ARAW 10.96 10.93 10.53 2.82
ARLW 13.75 13.81 12.55 3.37
LRLW 13.91 12.13 10.28 2.52

Runtime results, in minutes, for PageRank run on the
uk-2007-05 graph. The application was run on one node
with 12 slaves and four nodes with three slaves per node,
with one running slave per node for both.

average than BDMPI without SBMA and MPI respectively.
Surprisingly, the performance improvement over the serial
application, also in Table 1 was more modest. However, as
was discussed in [9], the serial version, by its very nature has
a few advantages over a parallel implementation. First, since
the graph is randomly permuted, distributing it to the 12
slaves is a complex operation. Second, each iteration of the
computation requires an all-to-all communication. Both of
these computations introduce a non-trivial amount of work
into the parallel execution.

For the PageRank experiments, the performance improve-
ment achieved by the SBMA variations can be credited to
the cooperative multi-tasking model of the BDMPI runtime.
In this type of application, where nearly all of the data is ac-
cessed between blocking points, the main advantage of using
a system like SBMA is that it automates the bulk load and
unload before and after each blocking operation. To prove
this, we refer to the results from [9], where the authors per-
formed the same PageRank experiment using BDMPI with-
out SBMA and a version of the PageRank application with
explicit read/write to disk before/after each MPI blocking
operation. The per iteration runtime for that experiment
was 9.98 min for single node and 2.35 min for four node.
Thus, the best of the BDMPI with SBMA runs were < 5%
slower on average than an application optimized by hand.

Comparing only the performance of the various memory ex-
change strategies, we see that ARAW performs the best
whereas ARLW and LRLW perform worse, but roughly the
same, for all sbpage sizes. However, the performance differ-
ence between all three variations is within 10%. Since each
iteration of the algorithm requires that the processes iterate

their memory allocations entirely, there is no obvious ad-
vantage of using an LR based approach. Further, since the
number of slaves is chosen such that the running slave will
occupy a majority of available system memory, whenever a
process is in the blocked state, it will be required to un-
load its memory, nullifying any advantage of an LW based
approach. Thus, we would expect that if there was no over-
head associated with LR and LW, the runtimes for ARLW
and LRLW would be comparable to ARAW. However, as we
see, the results are slightly worse, which suggests that there
is an non-trivial overhead incurred by the resident memory
tracking protocol of LR and LW, which is supported by the
results of the micro-benchmark in Section 7.1.

To further explore this overhead, we can compare the per-
formance of ARLW and LRLW, where we see that noth-
ing is gained by the additional selectivity introduced by
lazy reading, and the runtime actually increases. This can
be explained by referring to the results of the synthetic
benchmark, see Table 2, where it was shown that LR based
schemes incur an overhead for the write operation when
compared with AR based schemes. In fact the discrepancy
in runtimes between ARLW and LRLW for corresponding
sbpage sizes is inversely proportional to the discrepancy in
write operation throughput between AR and LR in Table 2
for the same sbpage sizes.

Lastly, comparing the results of each of the three multi-
node SBMA variations against the corresponding single node
experiments, we see that the speedup is super-linear. In fact,
the best speedup achieved by any of the three variations was
LRLW which achieved a speedup of 8×. The reason for this
super-linear speedup is due to the fact that the aggregate
amount of memory in the four nodes is higher, which allows
the slaves to retain more of their data in memory between
successive blocking points.

7.3 Performance of ParMetis
Figure 3 shows the performance achieved by the different
SBMA configurations on the ParMetis benchmark. This
figure, in addition to the set of experiments in which the
sbpage size is varied, includes results for variations of the
SBMA threshold. These were included because at various
points during its execution, ParMetis can allocate chunks of
memory whose size is below the SBMA threshold.

The results for the ParMetis benchmark for all SBMA varia-
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Figure 3: Runtime results, in minutes, for ParMetis
run on the nlpkkt240 graph. The application was
run on one node with four slaves, with one running
slave per node.

Table 4: Amount of disk I/O for ParMetis.

Read Write
4 16 64 4 16 64

ARAW 116 117 118 52 56 62
ARLW 67 67 68 38 40 45
LRLW 25 28 32 38 40 45

Number of GB transferred to / from disk during the execu-
tion of ParMetis on a single node with four slaves for the
three SBMA variations and three different sbpage sizes.

tions show a much larger performance improvement over the
execution of BDMPI without SBMA, found in Table 1, when
compared with the results of the PageRank benchmark. In
this case, all three of the SBMA approaches outperformed
BDMPI run without SBMA with speedup ranging from 7×
to 12×. The results compared with the serial execution, also
found in Table 1, are even better, where BDMPI with SBMA
achieved speedup > 20×. The poor performance of serial
ParMetis and BDMPI without SBMA can be attributed to
the reliance on the OS VMM swapping mechanism during
the first and last few stages of the ParMetis algorithm. The
consequence is the same as for the PageRank benchmark,
namely, increased competition for disk resources.

Comparing the performance achieved by the various mem-
ory exchange strategies, we see that LRLW performs the
best whereas ARAW performs the worst, with ARLW in be-
tween. For the ParMetis benchmark, the runtimes of ARLW
are 10% less than ARAW on average and those of LRLW
are 33% less than ARAW on average. This increased gap
in performance is expected for an application like ParMetis,
which is an example of the multi-level paradigm. In its ini-
tial phases of execution, the graph being partitioned is con-
tracted into successively smaller graphs, thus each successive
phase requires a lesser amount of memory be loaded than
the previous phase. This explains the performance improve-
ment of ARLW over ARAW, since during the later phases
of contraction, the memory of all slave processes can fit in
the available system memory. This fact makes the loading
and unloading of entire allocations, as in ARAW, unneces-
sary. Then, in the later phases of execution, the graph is
un-contracted and refined. In most cases, although the un-

Table 5: SBMA performance on SPLATT.

#Nodes=1 #Nodes=4
4 16 64 64

ARAW 12.01 13.04 13.47 2.23
ARLW 11.46 12.28 11.72 2.13
LRLW 11.92 8.41 7.17 2.57

Runtime results, in minutes, for SPLATT run on the
NELL-large graph. The application was run on one node
with 8 slaves and four nodes with two slaves per node, with
one running slave per node for both.

contracted graph will grow from phase to phase, the amount
of memory accessed will remain small relative to the size of
the un-contracted graph because only the information as-
sociated with the interface vertices is accessed. Since only
a relatively small amount of memory is being loaded dur-
ing each of the un-contraction phases, ARAW and ARLW
both suffer from excessive loading and unloading of memory,
due to the transfer of data to and from disk at the alloca-
tion resolution. Table 4 presents the number of GB trans-
ferred to/from disk and shows that although LRLW writes
roughly the same amount of data as ARAW and ARLW, it
reads 75% less data than ARAW and 57% less than ARLW.
The characteristics of these two phases, contraction and un-
contraction, make LRLW ideally suited for an application
like ParMetis, which is supported by the results.

Looking at just the effect of sbpage size on the three strate-
gies we see that each is affected differently. ARAW is af-
fected adversely, ARLW neutral, and LRLW positively. To
understand this, we have to consider the implications of us-
ing different sbpage sizes. Under all three strategies, the
consequence of a larger sbpage size is that the number of
bytes included in DIRTY sbpages can be unnecessarily in-
creased if the application is not writing to all bytes within
an sbpage. This is very likely to happen during later con-
traction and un-contraction phases, when the memory access
pattern becomes more sparse. As Table 4 shows, in all cases,
as sbpage size increase, so does disk I/O. Since this is the
only effect of sbpage size on ARAW we see that ARAW’s
runtime increases as the sbpage size increases. In ARLW,
the increased disk I/O is offset by the nature of lazy writing
and its expression in ParMetis. Many of the ParMetis itera-
tions which are likely to cause unnecessary disk I/O, due to
sparse memory accesses, are also likely to be candidates to
benefit from a lazy write strategy. Like ARLW, LRLW off-
sets the effects of sparse memory accesses using lazy writing,
but has one additional advantage. As sbpage size increases,
the memory protection overhead related to the lazy reading
strategy decreases. This effect of sbpage size was confirmed
in Table 2. Thus, LRLW realizes a new gain in performance
as sbpage size increases as can be seen in Figure 3.

7.4 Performance of SPLATT
Table 5 shows the performance achieved by the different
program configurations on the SPLATT benchmark. These
results do not include any variations of the SBMA thresh-
old for the same reason it was omitted in the PageRank
benchmark, namely that the code requires a fixed set of al-
locations, all of which are larger than any reasonable SBMA



Table 6: Amount of disk I/O for SPLATT.

Read Write
4 16 64 4 16 64

ARAW 70 70 70 24 24 24
ARLW 51 51 51 20 20 20
LRLW 23 23 23 20 20 20

Number of GB transferred to / from disk during the execu-
tion of SPLATT on a single node with 8 slaves for the three
SBMA variations and three different sbpage sizes.

threshold.

For the single node experiments, the characteristics of the
SPLATT experiments were similar to those of the ParMetis
experiments. Namely that the addition of SBMA improved
performance in all cases when compared with the serial ver-
sion and BDMPI without SBMA. Also, despite the addi-
tional overhead of lazy reading and writing, performance
can be improved by enabling these optimizations. Like the
ParMetis results, the performance improvement between the
three schemes can be explained most easily by referring
to Table 6, which shows that the amount of disk I/O for
SPLATT. Like ParMetis, ARAW was the slowest and also
had the highest amount of disk I/O and LRLW was the
fastest and had the lowest amount of disk I/O.

For the multi-node experiments, the results are generally as
expected. Each of the three strategies performed had run-
times 3×–6× faster than their single node counterpart. As
anticipated, ARLW was faster than ARAW. However, not
as expected was the performance of LRLW compared with
the other strategies. As it turns out, the aggregate memory
on the four nodes was large enough to support a great deal
of deferred writes. Thus, the relatively low disk I/O overall,
combined with the overhead of lazy reading, actually had a
negative impact in the LRLW scheme, causing its runtime
to be larger than both ARLW and ARAW. For reference,
the amount of data written to disk was 24GB, 14GB, and
20GB for ARAW, ARLW, and ARLW respectively.

8. CONCLUSION
In this paper we presented various methods to automatically
manage the virtual memory of parallel applications running
on memory constrained systems. By leveraging how BDMPI
controls the execution of different processes, we were able to
optimize resident memory exchange to reduce data transfer
to and from disk. Our results showed that SBMA offers per-
formance gains over applications executed using a BDMPI
runtime that relies on the OS VMM to manage resident
memory.
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