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Abstract

Discovery of sequential patterns is becoming increasingly useful and essential in many scienti�c and
commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns
demand e�cient and scalable algorithms. In this paper we present a parallel formulation of a serial
sequential pattern discovery algorithm based on tree projection that uses a novel dynamic load balancing
algorithm which is well suited for distributed memory parallel computers. Our experimental evaluation
on a 32 processor IBM SP show that this algorithms are capable of achieving good speedups, substantially
reducing the amount of the required work to �nd sequential patterns in large databases.

1 Introduction

Sequence data arises naturally in many applications. For example, marketing and sales data collected over
a period of time provide sequences that can be analyzed and used for projections and forecasting. In the
past several years there has been an increased interest in using data mining techniques to extract interesting
sequential patterns from temporal sequences. The most time consuming operation in the discovery process
of such patterns is the computation of the frequency of the occurrences of interesting sub-sequences of set of
events (called candidate patterns) in the database of sequences. However, the number of sequential patterns
grows exponentially and various formulations have been developed [AS96, MTV95, SA96, JKK99] that try
to contain the complexity by imposing various temporal constraints, and by consider only those candidates
that have a user speci�ed minimum support. Even with these constraints, the task of �nding all sequential
patterns requires a lot of computational resources (i.e., time and memory), making it an ideal candidate
for parallel processing. This was recognized by Zaki [Zak99] which developed a parallel formulation of the
SPADE algorithm [Zak98] for shared-memory parallel computers.

In [GGK01], we proposed two di�erent parallel algorithms for �nding sequential association rules on
distributed-memory parallel computers. The �rst algorithm decomposes the computation by exploiting
data parallelism, whereas the other utilizes task parallelism. Experimental evaluation showed that the
algorithms incur small communication overheads, achieve good speedups, and can e�ectively utilize the
di�erent processors, and that static task-parallel algorithm outperformed data-parallel algorithm. However,
as number of processors increased, the accuracy of estimated work-load decreased and the computation
became increasingly un-balanced.

To overcome this problem, in this paper we developed a di�erent parallel algorithm for �nding sequential
association rules on distributed-memory parallel computers that utilizes task parallelism along with dynamic
load balancing. One of the key contributions of this paper is development of dynamic scheme that minimizes
idle time in case when distributed workload is unbalanced. We experimentally evaluated the performance
of proposed algorithm on di�erent datasets on a 32-processor IBM SP2 parallel computer. Our experiments
show that the proposed algorithm achieves good speedups and outperforms static load balancing scheme
proposed in [GGK01].

�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Research O�ce contract
DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing Research Center contract
number DAAH04-95-C-0008. Access to computing facilities was provided by the Minnesota Supercomputing Institute.

1



< >

< (1) > < (2) > < (3) > < (4) >

< (1 2) > < (1 3) > < (1) (3) > < (2) (1) > < (2) (2) > < (2 3) > < (2) (3) > < (3) (1) > < (3) (2) >

< (1 2 3) > < (1 2) (3) > < (2) (1 2) > < (2) (1) (2) > < (2 3) (1) > < (3) (1 2) >< (2 3) (2) >

level 0

level 1

level 2

level 3

Notation:

- active node - inactive node

Figure 1: An example of Projection Tree

2 Sequence Mining

The problem of mining for sequential patterns was �rst introduced by Agrawal et al [AS96]. The authors
showed how their association rule algorithm for unordered data [AS94] could be adapted to mine for frequent
sequential patterns in sequence data. The class of episodes being mined was generalized, and the performance
enhancements were presented in [SA96]. In this section we will summarize the terminology �rst introduced
by Agrawal [AS96] and being used throughout the paper.

We are given a database D of sequences called data-sequences. Each data-sequence consists of the list
of transactions, ordered by increasing transaction-time. A transaction has the following �elds: sequence-id,
transaction-id, transaction-time, and the items present in the transaction. We assume that the set of items
I = fi1; i2; : : : ; img, is the set of literals that can be sorted in lexicographical order. The items in the
transaction are sorted in lexicographical order.

An itemset i is a non-empty set of items, denoted by (i1i2 : : : im), where ij is an item. A sequence is an
ordered list of itemsets, denoted by < s1s2 : : : sn >, where si is an itemset. The support of a sequence is
de�ned as the fraction of total data-sequences that contain this sequence. A sequence is said to be frequent
if its support is above a certain user-speci�ed minimum threshold. Given a database D of data-sequences,
the problem of mining for sequential patterns is to �nd the all frequent sequences among all data-sequences.
Each such frequent sequence represents a sequential pattern. It is important to note that from now on the
term sequential is adjective of pattern, while term serial is adjective of algorithm.

2.1 Serial Tree Projection Algorithm

The tree projection algorithm represents discovered patterns in the tree structure, called Projection Tree
(PT). The tree is grown progressively by the algorithm such that only the nodes corresponding to frequent
patterns are generated. The level-wise version of the algorithm grows the tree in a breadth-�rst manner. In
iteration k, it extends all the nodes at level k � 1. The candidate extensions of a given node are formed by
using only the frequent extensions of its parent. A node can be extended into multiple children nodes via
items in two ways as follows. A child of the node can be created by extending the last itemset in a pattern
represented by a node with an item that is lexicographically larger than all the items in that itemset (called
itemset extension) or by extending a pattern with a new 1-item itemset (called sequence extension). The
new children represent (k + 1)-item patterns. All the nodes that belong to a sub-tree which potentially can
be extended are called active extensions. If the node cannot be extended any further it becomes inactive

and is pruned from the tree.
Figure 1 illustrates an example of Projection Tree. In this example the set of active extensions of node

< (2) > is f1; 3g, where 1 is an active sequence extension and 3 is an active itemset extension. The set of
active items is f1; 2; 3g.
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One of the key features of the algorithm is that the supports of the patterns represented by the candidate
extensions are gathered by using the set of projected data-sequences at the parent. The algorithm maintains
a list of active items of the node. Active item list of a node consists of items that can be found in itemset
represented by its descendants. When a data-sequence is projected on a node, only the items that occur in
its active item list are kept. The data-sequence gets recursively projected along the paths determined by
active extensions. The idea is, only those items in a data-sequence percolate down the tree that can only
potentially be useful in extending the tree by one more level.

The process of counting support of (k+1)-item pattern is accomplished as follows. Each node, representing
the pattern P =< s1s2 : : : sm >, at level k � 1 maintains four count matrices, which are used to count the
support of four di�erent types of patterns. Once data-sequences are projected to the node with matrices,
the algorithm iterates through them to gather support counts. For more detail refer to [GGK01].

3 Recent Research

We recently developed two di�erent approaches for parallelizing the sequential tree projection algorithm,
both of which use static assignment of work to processors [GGK01].

The �rst approach exploits the data parallelism that exists in computing the support at each node.
In particular, it works as follows. If p is the total number of processors, the original database is initially
partitioned into p equal size parts, and each one is assigned to a di�erent processor. To compute the support
of the candidate sequences at level k, each processor projects its local set of data sequences to the nodes
at level k � 2, and computes their support based on the local data sequences. The global supports are
determined by using a reduction operation to add up the individual supports. These global supports are
made known to all the processors, and are used to determine which nodes at the kth level meet the minimum
support constraints. Note that in this approach, all the processors build the same tree (which is identical to
that built by the serial algorithm). Even though this approach does lead to load balanced computations it
incurs high communication overhead.

The second approach exploits the task parallelism that exists in the tree-based nature of the computation.
The key idea behind the task parallel formulation (STPF) is that when the support of the candidate patterns
at level k is computed by projecting the databases at the various nodes at the k � 2 level of the tree, the
computations at each of these k � 2 nodes are independent of each other. Thus, the computations at each
node becomes an independent task and the overall computation can be parallelized by distributing these tasks
among the available processors. The task parallel formulation distributes the tasks among the processors
in the following way. First, the tree is expanded using the data-parallel algorithm described above, up to a
certain level k + 1, with k > 0. Then, the di�erent nodes at level k are distributed among the processors.
Once this initial distribution is done, each processor proceeds to generate the subtrees (i.e., sub-forest)
underneath the nodes that it has been assigned.

The key step in the STPF algorithm is the method used to partition the nodes of the kth level of the
tree into p disjoint sets S0; S1; : : : ; Sp�1. To ensure load balance and minimize the database overlap we use
minimum-cut bipartite graph partitioning approach described in [GGK01]. The essence of this approach is
to assign to each processor nodes of the tree that need access to the same set of data-sequences as much as
possible.

4 Dynamic Load Balancing

The underlying assumption for the e�cient execution of STPF algorithm described in Section 3 is that
the relative amount of work required to expand each one of the tree nodes can be accurately estimated
beforehand. The experiments, presented in [GGK01] and in Section 5, show that even though estimates are
in general accurate, their accuracy tends to decrease as the number of processors increases. Moreover, there
exist data sets for which the estimates can be substantially wrong, even for small number of processors. For
this reason we developed a dynamic task parallel formulation (DTPF) that monitors the load imbalance and
moves work between the processors, as needed.

The topic of dynamic load balancing of tree-based computations has been extensively studied in the
context of parallel heuristic state-space algorithms [KGGK94] and a number of di�erent approaches have
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been developed. A simple way to load balance the computation is do that in a synchronous fashion [KGGK94,
KK94]. In this approach after the nodes and database are partitioned between processors, the processors
synchronously extend the tree level by level. After each level expansion the processors communicate between
each other to determine whether the work needs to be re-balanced. If the conclusion is made that workload
re-distribution is necessary, then the processor Pi with lth maximum estimated workload Wi sends work
to the processor Pj with lth minimum estimated workload Wj . The portion of the work to be send to the
receiving processor can be determined randomly or the minimum cut bipartite graph partitioning approach
described in [GGK01] cab be used to select the parts of the tree that lead to the least amount of data sharing
overhead.

Unfortunately, even though this approach is quite simple to implement, it does not signi�cantly reduce
the load imbalance overhead. This is primary due to the fact that number of possible load balancing points is
quite small (equal to the depth of the tree). To see this, consider a scenario in which a computation at certain
level is particularly unbalanced. The imbalance will only be determined after the counting of candidate
extensions has been completed at that level. At this point nothing can be done to correct this imbalance. If
this imbalanced computation contributes to the majority of the parallel imbalance, the synchronous dynamic
load balancing scheme cannot do anything to correct it. Our experiments with this approach (not presented
here) veri�ed this observation, as we were not able to substantially reduce the load imbalance overhead.

For this reason we focused on developing dynamic load balancing algorithm that uses asynchronous
paradigms, that are described in the next section.

4.1 Asynchronous Dynamic Task Parallel Formulation

Our asynchronous dynamic load balancing algorithm is similar in nature to the task parallel formulation
algorithm described in Section 3. That is, the tree is extended to level k+1 using the data parallel formulation
and then the bipartite graph partitioning algorithm is used to partition the nodes at level k among the p
processors. However, instead of allowing each processor to expand its di�erent subtrees independently to
the very end, the processors check to determine whether the work needs to be re-balanced.

To accomplish this, one can use receiver initiated load balancing with random pooling scheme [KGGK94].
In this scheme, as a processor becomes idle (that is it �nishes its portion of allocated work), it randomly
selects a donor processor and sends it a work request. The donor sends a response indicating whether or
not it has additional work. If a response indicates that a donor doesn't have anymore work, the processor
selects another donor and sends work request to that donor. Otherwise, the processor receives nodes to
expand, along with the portion of the database to associated with those nodes. Upon receiving new work
the processor starts extending newly received nodes. This process continues until every processor completely
extended the nodes assigned to it. Dijkstra's token termination algorithm [DSG83] can be used to detect
whether all processors have become idle.

The key issue in this approach is when will the processors service work requests. The natural point at
which an active processor can service a request is the time between the point it completed counting support
of candidate extensions at a certain level and is ready to count support of candidate extensions at the next
level. This is because, this is the time at which work can be transferred by sending only some of the nodes
of the tree along with relevant portions of the locally stored databases. On the other hand, if we allow work
transfered to take place while a processor is in the middle of counting the support of the candidate patterns
at the next level, then besides the tree nodes and their respective portions of the database, we also need to
send the partial counting matrices associated with the di�erent nodes. This will substantially increase the
amount of data that needs to be transferred, severely reducing the gains achieved by dynamic load balancing.

However, the problem associated with servicing work requests only at the natural breaking points of the
computation is the following. The bulk of the computation is performed during the counting phases, as a
result if processor Pi sends a work request to processor Pj right after Pj has started its counting phase, it
will take a signi�cant amount of time before Pj services that request. Through out that time processor Pi
will remain blocked, waiting for work. One way of eliminating this idling is to follow a protocol in which
processor Pj periodically checks for request (while working on its counting phase), and responds to them
by indicating that even though it has work it cannot send it right away. Upon receiving such a response,
processor Pi can either decide to wait for Pj or ask another processor for work.

This new load balancing protocol can eliminate of the waiting time incurred in receiving work. However,
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Dataset Avg. no. of transactions Avg. no. of items Avg. length of maximal Avg. size of itemsets MinSup(%)
per sequence per transaction potentially frequent maximal potentially

sequences frequent sequences

DS1 10 2.5 4 1.25 0.1
DS2 10 5 4 1.25 0.25
DS3 10 5 4 2.5 0.33
DS4 20 2.5 4 1.25 0.25

Table 1: Parameter values for datasets

as discussed earlier, because the depth of the trees are quite small, the overall number of natural work
transfer points is quite small. As a result, a processor can still be blocked for a long time. To address this
problem we developed the following algorithm. Instead of servicing work request only during the natural
points, we follow a policy in which if a request comes during the early stages of each counting phase, then
the processor can discard the work it has done so far and service the work request. Because the amount of
work done so far is not substantial, this will not a�ect the overall time signi�cantly. Instead the computation
will bene�t from the load balancing.

The overall structure of the developed algorithm is the following. If a work request comes at the early
stages of a counting phase, an active processor discards work done so far and shares its workload with the
recipient. If a work request comes at the middle stages of the counting phase, an active processor lets the
receiver know that while it has work, the work is not available immediately. Along with this message, the
active processor also sends an estimated time before completion as well as an estimated relative amount of
workload at the next level. Towards the end of the counting phase, an active processor ignores the work
requests. The requests received during that time are processed upon completion of the counting phase at
that level.

If an idle processor doesn't receive work from a potential donor (either because the donor doesn't have
work or in the middle of its counting phase), it chooses another processor to inquire about work. If after
polling all available processors, an idle processor didn't get any work, this processor picks an active processor
with work and lets it know that it will wait for work until it gets it. To ensure that idle processors will
pick di�erent active processors, an idle processor will pick top n (in terms of estimate of waiting time and
remaining workload) active processors and will randomly choose one to attach itself to.

5 Experimental Evaluation

5.1 Experimental Setup

We use the same synthetic datasets as in [SA96], albeit with more data-sequences. We generated datasets
by setting number of maximally potentially frequent sequences NS = 5000, number of maximal potentially
frequent itemsets NI = 25000 and number of items N = 10000. The number of data-sequences D was set to
1 million. Table 1 summarizes the dataset parameter settings and shows the minimum support that were
used in experiments reported below. Note that for each of the datasets we used di�erent support threshold.
These are the same thresholds used in experiments presented in [GGK01] and were carefully selected so that
resulting tree is deep enough to parallelize computation, but number of discovered sequential patterns is such
that the algorithms �nishes in reasonable amount of time. We ran our experiments on IBM SP cluster. The
IBM SP consists of 79 four-processor and 3 two-processor machines with 391 GB of memory. The machines
utilize the 222 MHz Power3 processors.

5.2 Results

The performance of our task parallel tree projection algorithm that uses dynamic load balancing (DTPF)
was compared against the best of the static load balancing algorithms described in [GGK01], namely the
task parallel formulation (STPF). In particular, we used both algorithms to �nd the frequent sequential
patterns in all four datasets on 2, 4, 8, 16, and 32 processors. The amount of time required for each of
these experiments is shown in Table 2. Recall from Section 4.1, that our dynamic load balancing algorithm
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DS1 DS2
Approach 2 4 8 16 32 2 4 8 16 32
STPF 1689.95 676.83 255.21 109.29 56.7 2933.57 1224.34 445.42 241.6 119.72
DTPF-25-50-25 1746.43 643.13 236.59 111.42 60.1 3025.35 1124.99 448.24 201.9 119.01
DTPF-25-70-5 1644.66 663.66 247.36 110.99 63.36 2884.1 1239.56 477.06 215.66 122.32
DTPF-0-75-25 1635.09 648.83 242.51 107.13 62.34 2774.06 1131.99 450.78 213.89 128.17

DS3 DS4
Approach 2 4 8 16 32 2 4 8 16 32
STPF 2516.28 1035.96 901.38 396 314.37 2169.73 983.75 389.54 184.7 147.95
DTPF-25-50-25 2386.42 876.37 391.35 193.07 116.62 2248.32 857.14 353.23 165.47 100.92
DTPF-25-70-5 2339.03 901.79 431.8 216.12 135.43 2180.04 918.62 388.25 179.84 106.3
DTPF-0-75-25 2342.18 840.73 388.76 189.75 129.37 2183.5 828.06 344.22 185.86 107.06

Table 2: Execution Time (in secs)

DS1 DS2
2 4 8 16 32 2 4 8 16 32

1.03 1.07 1.05 1.09 1.23 1.04 1.09 1.07 1.21 1.35

DS3 DS4
2 4 8 16 32 2 4 8 16 32

1.13 1.31 2.83 2.32 4.11 1.005 1.03 1.11 1.23 1.22

Table 3: Load Balance of STPF approach

divides the counting phase of each processor into three stages, the early, intermediate, and late, and uses
a di�erent protocol for handling work requests in each of these stages. The results in Table 2 show three
di�erent instances of DTPF. The �rst instance DTPF-25-50-25 corresponds to an algorithm in which each
one of the early and late stages represent approximately 25% of the overall computation (with respect to
a particular counting phase), and the remaining 50% correspond to the intermediate stage. Similarly, the
results labeled \DTPF-25-70-5" and \DTPF-0-75-25" correspond to instances of the algorithm with a 25%,
70%, 5%, and a 0%, 75%, 25% division between early, intermediate, and late stages, respectively.

A number of interesting observations can be made by looking at these results. First, both of the algorithms
achieve super-linear speedups as we increase the number of processors from 2 to 8. This is consistent with
experiments presented in [GGK01] for the STPF algorithm and is due to the fact that each processor is
assigned a sub-forest of the original tree and the databases are re-distributed. As a result, the amount of
the time spent in projecting and disk I/O actually reduces as the number of processors increases.

Second, comparing DTPF against STPF we can see that for each one of the di�erent experiments DTPF
achieves comparable or substantially lower run-times. In particular, focusing on the 32-processor results we
can see that for DS1 and DS2, DTPF is comparable to STPF and for DS3 and DS4, DTPF-25-50-25 is
2.7 and 1.5 times faster, respectively. The dramatic improvement achieved by DTPF on the DS3 is due to
the fact that the underlying tree leads to highly unbalanced computations, which the DTPF can balance
by dynamically moving work between the processors. To illustrate that we calculated workload imbalance
for STPF for all four datasets. These results are shown in Table 3. As we can see from that table, STPF
algorithm produces highly unbalanced computations for DS3 for any number of processors. However for the
remaining data sets, the overall computations are not signi�cantly unbalanced, and for this reason the gains
achieved by DTPF are much smaller, and in some cases the overhead induced by DTPF (due to its dynamic
load balancing protocol and termination detection algorithm) can lead to slight increases in overall parallel
execution time. For example, the computation produced by STPF approach on DS4 run on two processors
had load balance equal to 1.005. As a result, the computation doesn't bene�t from using dynamic load
balancing, but instead su�ers from overhead incurred by DTPF.

Finally, comparing the di�erent instances of the DTPF algorithm we can see that for smaller number of
processors, DTPF-0-75-25 does somewhat better compared to DTPF-25-50-25, but as number of processors
increases, DTPF-25-50-25 achieves lower run-times. In particular on 32 processors, DTP-25-50-25 is about
4%-12% faster. The reason is that for small number of processors, the overall number of work transfer
requests is quite small, and can be arrive within the small time window between successive counting phases.
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However, as the number of processors increases, the large time window of the early stage allows the algorithm
to reduce idling overheads.

6 Conclusion

In this paper we presented a new load balancing algorithm for �nding sequential patterns using the tree
projection algorithm that is suitable for for distributed memory parallel computers. Our experiments show
that it achieves good speedups as the number of processors increase. Furthermore, the overall performance
is improved in comparison to static load balancing algorithm.
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