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Abstract. Collaborative Filtering (CF)-based recommender systems bring
mutual bene�ts to both users and the operators of the sites with too
much information. Users bene�t as they are able to �nd items of interest
from an unmanageable number of available items. On the other hand,
e-commerce sites that employ recommender systems can increase sales
revenue in at least two ways: a) by drawing customers' attention to items
that they are likely to buy, and b) by cross-selling items. However, the
sheer number of customers and items typical in e-commerce systems de-
mand specially designed CF algorithms that can gracefully cope with
the vast size of the data. Many algorithms proposed thus far, where the
principal concern is recommendation quality, may be too expensive to
operate in a large-scale system. We propose ClustKnn, a simple and
intuitive algorithm that is well suited for large data sets. The method
�rst compresses data tremendously by building a straightforward but
e�cient clustering model. Recommendations are then generated quickly
by using a simple Nearest Neighbor-based approach. We demonstrate
the feasibility of ClustKnn both analytically and empirically. We also
show, by comparing with a number of other popular CF algorithms that,
apart from being highly scalable and intuitive, ClustKnn provides very
good recommendation accuracy as well.

1 Introduction

The amount of content available on the web today is tremendous. The English
version of the online encyclopedia Wikipedia contains more than 1.1 million
articles. Flickr, a popular photo sharing service, has about 130 million photos1.
The blog search engine Technorati has over 41 million blogs and 2.5 billion links
in its index. This is far too much content for any person to consume, and is, in a
nutshell, the problem of information overload. To help solve this problem, people

1 http://time.com/time/magazine/article/ 0,9171,1186931,00.html



need tools to help them decide what items might be worthwhile to look at. One
e�ective tool for this task is a recommender system. These systems suggest items
that a user might be interested based on her preferences, observed behaviors,
and information about the items themselves.

An example of a recommender system in use is the personalized internet radio
station last.fm2, which chooses songs to play for a user based on the songs and
artists that she has listened to and expressed opinions about in the past. Another
example is MovieLens3, a movie recommender that uses peoples' opinions about
movies to recommend other movies that users might enjoy watching.

Collaborative Filtering. Recommender systems are often implemented us-
ing an automated collaborative �ltering (ACF, or CF) algorithm. These algo-
rithms produce recommendations based on the intuition that similar users have
similar tastes. That is, people who you share common likes and dislikes with
are likely to be a good source for recommendations. Numerous CF algorithms
have been developed over the past �fteen years, each of which approach the
problem from a di�erent angle, including similarity between users[20], similar-
ity between items[23], personality diagnosis[19], Bayesian networks[2], singular
value decomposition[25], and neural networks[18]. These algorithms have distin-
guishing qualities with respect to evaluation metrics such as recommendation
accuracy, speed, and level of personalization.

When deciding which algorithm to use in a system, one key factor to con-
sider is the algorithm's ability to scale given the size of the data. In systems with
millions of items and possibly tens of millions of users, the number of CF algo-
rithms that are practically able to produce quality recommendations in real time
is limited. Even with costs of commodity hardware falling rapidly, a brute-force
approach may be prohibitively expensive. Tradeo�s between speed and recom-
mendation accuracy often need to be made, and the problem of developing highly
scalable algorithms continues to be an interesting problem.

E�cient and Scalable CF Algorithms. Yu et al. note in [32] that there
has been relatively little work in studying the e�ciency of CF algorithms and
developing algorithms that do not have either extremely expensive precompu-
tation time or slow online performance. Linden et al. explore the suitability of
several algorithms for use on the Amazon.com web site and conclude that algo-
rithms based on similarity between items are the best choice for a system of their
size[14]. They consider algorithms based on clustering techniques, but dismiss
those algorithms on the premise that they produce poor recommendation quality.
However, other researchers have found that using clustering techniques can in-
deed lead to good recommendations[4, 30, 22, 13]. The algorithm proposed in this
paper is based on classical clustering methods, and based on our results, we also
believe that using clustering is a viable way to increase e�ciency and scalability
while maintaining good recommendation quality. A more in-depth summary of
previous work in applying clustering methods to collaborative �ltering can be
found in [13].

2 http://last.fm
3 http://www.movielens.umn.edu



Contributions. In this paper, we propose ClustKnn, a hybrid memory
and model-based CF algorithm based on clustering techniques, as a way to
overcome this scalability challenge. By applying complexity analysis, we ana-
lyically demonstrate the performance advantages that ClustKnn has over tra-
ditional CF algorithms. In addition, we present empirical measurements of the
performance and recommendation accuracy of ClustKnn and several other al-
gorithms.

The remainder of this paper is organized as follows. Section 2 introduces the
general framework in which CF algorithms operate in, and further discusses the
problem that we are solving. Section 3 describes our proposed approach in detail.
Section 4 outlines several other well-known CF algorithms that we compare
our approach to. The results of our comparison are presented in section 5 and
discussed in section 6. Finally, we conclude in section 7 with a brief discussion
of future work.

2 The Problem Domain

A collaborative �ltering domain consists of a set of n customers or users {u1, u2,
. . . , un}, a set of m products or items {a1, a2, . . . , am}, and users' preferences on
items. Typically, each user only expresses her preferences for a small number of
items. In other words, the corresponding user × item matrix is very sparse.

Users' preferences can be in terms of explicit ratings on some scale including
a binary like/dislike, or they can be implicit�for example, a customer's purchase
history, or her browsing patterns. A recommender system may also maintain de-
mographic and other information about the users, and information about item
features such as actors, directors, and genres in the case of a movie. This addi-
tional content information can be used to create content-based �ltering [16, 21],
which can help improve a CF system, particularly where rating data is limited
or absent (e.g., newly introduced items). In this paper we consider CF systems
consisting of explicit numerical ratings and no content information.

Next we address two semantically di�erent types of recommendations. A CF
recommender system can produce two forms of recommendations on the items
the target user has not already rated: a) predicted ratings on the items, and
b) an ordered list of items the user might like the most. The latter type of
recommendations is sometimes referred to as top-N recommendations [25, 23].
Note that a top-N list can be trivially constructed by �rst computing rating
predictions on all items not yet rated, and then sorting the result and keeping
the top N . We study both types of recommendation in this paper.

We now turn to the problem statement. An e-commerce recommender system
may easily involve millions of customers and products [14]. This amount of data
poses a great challenge to the CF algorithms in that the recommendations need
to be generated in real-time. Furthermore, the algorithm also has to cope with a
steady in�ux of new users and items. For the majority of the algorithms proposed
to date, the primary emphasis has been given into improving recommendation
accuracy. While accuracy is certainly important and can a�ect the pro�tability



of the company, the operator simply cannot deploy the system if it does not
scale to the vast data of the site.

3 Proposed Approach

In [2], Breese et al. introduce a classi�cation of CF algorithms that divides them
into two broad classes: memory-based algorithms and model-based algorithms.
Here, we brie�y discuss each of these and describe how our approach leverages
the advantages of both types of algorithms.

A memory-based algorithm such as User-based KNN [20] utilizes the en-
tire database of user preferences when computing recommendations. These al-
gorithms tend to be simple to implement and require little to no training cost.
They can also easily take new preference data into account. However, their online
performance tends to be slow as the size of the user and item sets grow, which
makes these algorithms as stated in the literature unsuitable in large systems.
One workaround is to only consider a subset of the preference data in the calcu-
lation, but doing this can reduce both recommendation quality and the number
of items that can be recommended due to data being omitted from the calcula-
tion. Another workaround is to perform as much of the computation as possible
in an o�ine setting. However, this may make it di�cult to add new users to the
system on a real-time basis, which is a basic necessity of most online systems.
Furthermore, the storage requirements for the pre-computed data could be high.

On the other hand, a model-based algorithm such as one based on Bayesian
networks [2] or singular value decomposition (SVD) [25] computes a model of
the preference data and uses it to produce recommendations. Often, the model-
building process is time-consuming and is only done periodically. The models
are compact and can generate recommendations very quickly. The disadvantage
to model-based algorithms is that adding new users, items, or preferences can
be tantamount to recomputing the entire model.

ClustKnn, our proposed approach is a hybrid of the model and memory

based approaches and has the advantages from both types. One of our primary
goals is to maintain simplicity and intuitiveness throughout the approach. We
believe this is important in a recommender algorithm because the ability to suc-
cintly explain to users how recommendations are made is a major factor in pro-
viding a good user experience [29]. We achieve this by utilizing a straightforward
partitional clustering algorithm [12] for modeling users. To generate recommen-
dations from the learned model, we use a nearest-neighbor algorithm similar to
the one described in [20]. However, since the data is greatly compressed after
the model is built, recommendations can be computed quickly, which solves the
scalability challenge discussed previously.

One interesting property of ClustKnn is its tunable nature. We show later
in the paper that a tunable parameter, the number of clusters k in the model,
can be adjusted to trade o� accuracy for time and space requirements. This
makes ClustKnn adaptable to systems of di�erent sizes and allows it to be
useful throughout the life of a system as it grows.



We now provide the details of the algorithm. First we give an outline, and
following that we provide explanations of the key points. The algorithm has two
phases: model building (o�ine) and generation of predictions or recommenda-
tions (online).

Model Building

� Select the number of user-clusters k, considering the e�ect on the recom-
mendation accuracy and resource requirements.

� Perform Bisecting k-means clustering on the user-preference data.
� Build the model with k surrogate users, directly derived from the k cen-

troids: {c1, c2, . . . , ck}, where each ci is a vector of size m, the number of
items. That is, ci = (R̃ci,a1 , R̃ci,a2 , . . . , R̃ci,am), where R̃ci,aj is the element

in the centroid vector ci corresponding to the item aj . Further, since R̃ci,aj

is essentially an average value, it is 0 if nobody in the i-th cluster has rated
aj .

Prediction Generation
In order to compute the rating prediction R̂ut,at for the target (user, item) pair
(ut, at), the following steps are taken.

� Compute similarity of the target user with each of the surrogate model users
who have rated at using the Pearson correlation coe�cient:

wut,ci
=

∑
a∈I(Rut,a −Rut)(R̃ci,a −Rci)√∑

a∈I(Rut,a −Rut)2
∑

a∈I(R̃ci,a −Rci)2

where I is the set of items rated by both the target user and i-th surrogate
user.

� Find up to l surrogate users most similar to the target user.
� Compute prediction using the adjusted weighted average:

R̂ut,at
= Rut +

∑l
i=1(R̃ci,at −Rci)wut,ci∑l

i=1 wut,ci

Note that any partitional clustering [12] technique can used for model-building
in ClustKnn. We selected the Bisecting k-means algorithm, which we de-
scribe below.

Bisecting k-means is an extension to and an improved version of the basic
k-means algorithm [12]. The algorithm starts by considering all data points
(rating-pro�les of all users, in our case) as a single cluster. Then it repeats the
following steps (k − 1) times to produce k clusters.

1. Pick the largest cluster to split.
2. Apply the basic k-means (2-means, to be exact) clustering to produce 2

sub-clusters.
3. Repeat step 2 for j times and take the best split, one way of determining

which is looking for the best intra-cluster similarity.
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Fig. 1. The space encompassed by the CF algorithms we studied.

At this stage, it is straightforward to derive the time-complexity ofClustKnn.
Note that the time complexity of CF algorithms can be divided into two parts:
one for the o�ine model-building, and the other for the online generation of
recommendations.

The time-complexity of the basic k-means is reported to be O(n) in [12];
however, this is assuming the cost of computing the similarity or distance be-
tween the data points and centroids as a constant. However, in ClustKnn, this
cost is O(m), so the k-means time-complexity becomes O(mn). Therefore, the
complexity of the Bisecting k-means becomes O((k−1)jmn) ' O(mn), which
is the o�ine complexity of ClustKnn.

During the online stage, O(k) similarity weight calculations are needed for
the target user, each of which takes O(m) time; therefore, online time-complexity
is O(km) ' O(m).

In their work on document clustering [28], Steinbach et al. empirically showed
that Bisecting k-means performed the best on a set of text datasets. Further-
more, the authors noted a nice property of Bisecting k-means�the produced
clusters tended to be of relatively uniform size. Whereas, in regular k-means,
the cluster sizes may vary signi�cantly, producing poorer quality clusters.

4 Other CF algorithms Considered

Xue et al [31] took the same idea of using clustering to transform a k-NN-based
CF algorithm scalable. We study this algorithm side by side with our approach.
In order to investigate how ClustKnn compares with other CF algorithms, we
selected several other algorithms shown in �gure 1. Our criteria for picking the
algorithms include a) how frequently the algorithms are cited in the literature,
and b) whether the algorithms span the classi�cation space introduced by Breese
et al [2]. In the following, we provide a brief overview of each of the selected al-



gorithms.

pLSA
Probabilistic Latent Semantic Analysis (pLSA) for collaborative �ltering is an
elegant generative model proposed by Hofmann et al [11]. pLSA is a three-way

aspect model adapted from their earlier contribution of two-way aspect models
applied to text analysis [10].

At the heart of the pLSA approach is the notion of the latent class variable Z.

Fig. 2. 3-
way aspect
model.

The number of states of Z is an input to the model, and each
state z can be interpreted as a di�erent user-type. Each user be-
longs to these user-types with a unique probability distribution
P (z|u). Recall that this type of probabilistic assignment of enti-
ties to groups is similar in principle to the so-called soft-clustering
approach.

Hofmann models the probability density function p(r|a, z)
with a Gaussian mixture model and develops an Expectation
Maximization (EM) method to learn mixture coe�cients P (z|u)
and p(r|a, z). Note that, due to Gaussian modeling, estimating
p(r|a, z) becomes estimating p(r;µa,z, σa,z).

In the end, the learned model includes P (z|u)s for each user
and for each state of Z, and values of µ and σ for each item and
each state of Z.

Prediction for the target (user, item) pair is simply the weighted average of
the means of at for each state z. That is,

R̂ut,at
=

∑
z

P (z|ut)µat,z (1)

Note that the model size grows linearly with the number of users; in fact, it
is O(m + n) ' O(n), if n � m. Furthermore, since P (z|u)'s are precomputed in
the model, recommending to the new users pose a challenge. Hofmann proposes
to perform a limited EM iteration in this situation.

SVD
Singular Value Decomposition (SVD) is a matrix factorization technique that
can produce three matrices given the rating matrix A: SV D(A) = U × S × V T .
Details of SVD can be found in [6]; however, su�ce it to say that the matrices
U , S, and V can be reduced to construct a rank-k matrix, X = Uk × Sk × V T

k

that is the closest approximation to the original matrix.
SVD requires a complete matrix to operate; however, a typical CF rating

matrix is very sparse (see table 2). To circumvent this limitation of the CF
datasets, [25] proposed using average values in the empty cells of the rating
matrix. An alternate method proposed by Srebro et al. [27] �nds a model that
maximizes the log-likelihood of the actual ratings by an EM procedure. The EM
procedure is rather simple and is stated below:

E-step: Missing entries of A are replaced with the values of current X. This
creates an expected complete matrix A′.



M-step: Perform SV D(A′). This creates un updated X.
This EM process is guaranteed to converge. Upon convergence, the �nal X

represents a linear model of the rating data, and the missing entries of the orig-
inal A are �lled with predicted values.

Personality Diagnosis
Personality Diagnosis [19] is a probabilistic CF algorithm that lies in between
model-based and memory-based approaches. In this CF algorithm, each user is
assumed to have a personality type that captures their true, internal preferences
for items. However, the true personality type is unobservable, since users rate
items by adding a Gaussian noise to their true preferences on the items.

The probability that the target user ut's rating on an item at is x, given ut

and ui's personality types are same, is de�ned by equation 2.

P (Rut,at
= x|typeut

= typeui
) = e−(x−Rui,at )2/2σ2

(2)

The authors derive the probability that two users' personalities are of the
same type as follows.

P (typeut
= typeui

|Rut
) = 1/n

∏
a∈I

P (Rut,a = xa|typeut = typeui) (3)

where Rut is the set of ratings reported by the target user.
Finally, the prediction on the target item at for ut is computed as

R̂ut,at = argmax
x

P (Rut,at = x|Rut) (4)

= argmax
x

∑
i

P (Rut,at
= x|typeut

= typeui
)

.P (typeut = typeui |Rut) (5)

User-based KNN
This algorithm belongs to the memory-based class of CF algorithms. Predictions
under this algorithm are computed as a two step process. First, the similarities
between the target user and all other users who have rated the target item are
computed � most commonly using the Pearson correlation coe�cient [8, 20].
That is,

wuiut =
∑

a∈I(Rui,a −Rui
)(Rut,a −Rut

)√∑
a∈I(Rui,a −Rui

)2
∑

a∈I(Rut,a −Rut
)2

(6)

where I is the set of items rated by both of the users.
Then the prediction for the target item at is computed using at most k closest

users found from step one, and by applying a weighted average of deviations from
the selected users' means:



R̂ut,at
= Rut

+
∑k

i=1(Rui,at
−Rui

)wui,ut∑k
i=1 wui,ut

(7)

Note that we follow a number of improvements suggested in [8], including
dividing similarities by a constant if the two users have not co-rated enough
items.

Item-based KNN
This algorithm is also an instance of a memory-based approach. Predictions are
computed by �rst computing item-item similarities. [23] proposed adjusted co-
sine measure for estimating the similarity between two items a, and b:

wa,b =

∑
ui∈U (Rui,a −Rui

)(Rui,b −Rui
)√∑

ui∈U (Rui,a −Rui)2
∑

ui∈U (Rui,b −Rui)2
(8)

Where, U denotes the set of users who have rated both a and b.
Once the item-item similarities are computed, the rating space of the target

user ut is examined to �nd all the rated items similar to the target item at. Then
equation 9 is used to perform the weighted average that generates the prediction.
Typically, a threshold of k similar items are used rather than all.

R̂ut,at
=

∑
all_similar_items,d(wat,d ∗Rut,d)∑

all_similar_items,d(|wat,d|)
(9)

CbSmooth

In their paper [31], the authors present a framework to address two issues of the
recommender systems: rating sparseness and algorithm scalability. We brie�y
discuss the framework as the following steps:

� Step 1: Cluster users into a pre-determined number of groups. Authors use
the k-means clustering algorithm and Pearson correlation coe�cient as the
similarity function.

� Step 2: Replace the missing ratings of each user using the cluster a user
belongs to. If a user ut has not rated an item a, a smoothed rating is in-
jected as a combination of the average rating of ut and the average de-
viation of ratings on a by all users in ut's cluster who rated a. That is,
Rut

+
∑

ui∈C(ut,a)(Rui,a − Rui
)/|C(ut, a)|, where C(ut, a) indicates all the

users of ut's cluster who rated a.
� Step 3: Find the most similar clusters of each user by computing the simi-
larity between a user and the centroids of the clusters. Pre-select the users
of the closest clusters of the target user so that neighbors are sought only
from these pre-selected users.

� Step 4: Recompute the similarity between the active user and the pre-selected
users by weighting each pre-selected user's ratings based on whether the



Table 1. Comparison of time-complexities of the selected CF algorithms.

CF algorithm O�ine Online Scalable?

pLSA O(mn) O(m) Yes
SVD O(n2m + m2n) O(m) Yes, expensive o�ine
Personality Diagnosis - O(mn) No
ClustKnn O(mn) O(m) Yes
User-based KNN - O(mn) No
Item-based KNN - O(mn) No; yes with precomputation
CbSmooth O(mn) O(mn) or O(m) Yes; needs O(n2) memory

rating is actual or smoothed. A parameter λ, where 0 ≤ λ ≤ 1, is used to
provide a weight of (1 − λ) for an actual rating, and a weight of λ for a
smoothed rating. Step 5: Let us denote these weights by wλ.

� Compute recommendations for a user by selecting top K most similar users
found in step 4, and by applying an equation similar to 7, however, incorpo-
rate wλs for neighbors' ratings.

Authors say that a number of di�erent algorithms can emanate from this frame-
work by including or not including some of the steps, such as smoothing miss-
ing rating and neighbor pre-selection. However, their �agship algorithm is what
authors call Scbpcc, which includes all of the steps above. We denote this al-
gorithm by CbSmooth (Cluster-based Smoothing) in this paper.

CbSmooth addresses the rating sparsity problem by introducing smoothed
ratings (step 2 above). However, CbSmooth is not scalable. Authors advocate
to pre-select about 30% of all users for each user. This means that the computa-
tions still remain O(mn) and are reduced by a constant factor only. CbSmooth
can be made scalable if the neighbor pre-selections are performed during the of-
�ine phase. However, this imposes an additional memory requirement of O(n2),
which can be prohibitive in many systems.

Comparison of time-complexity
Table 1 shows the time complexities of all the CF algorithms we address in this
paper including ClustKnn. We have collected the complexity-values directly
from the respective papers where they were introduced, without formally deriv-
ing them here. We, however, translate the values into the notations we follow in
this paper. For an example, Hofmann [11] shows that the o�ine time complexity
of pLSA is O(kN), where k is the number of states of Z and N is the total
number of ratings in the system. Since in the worst case, N = nm, we use the
o�ine complexity to be O(mn).

From the table it is clear that ClustKnn is one of the cheapest CF al-
gorithms presented, considering both the o�ine and online time complexities.
Since ClustKnn produces recommendations for a user in O(m) time, it e�ec-
tively transforms the User-based KNN into a highly scalable version by reducing
the online time from O(mn) to linear in m. Note that although the time com-



plexities of pLSA and ClustKnn are identical, ClustKnn is much simpler and
operates on an intuitive basis.

5 Empirical Analysis

5.1 Datasets

We derived our datasets from MovieLens, a research recommender site main-
tained by the GroupLens project4. Although the registered users of MovieLens
can perform activities like adding tags, adding and editing movie-information,
engaging in forum discussions, and so forth, the main activity taking place is
rating movies so that they can receive personalized movie recommendations. As
of this writing, MovieLens has more than 105,000 registered members, about
9,000 movies, and more than 13 million ratings.

Table 2. Properties of the datasets

Property Ml1m MlCurrent

Number of users 6,040 21,526
Number of movies 3,706 8,848
Number of ratings 10,00,209 29,33,690
Minimum |ui|, ∀i 20 15
Average rating 3.58 3.43
Sparsity 95.5% 98.5%

Rating distribution

Rating Distribution

1 million dataset

Boundary Count Centers
1 622795 5.01% 0.5
2 1164207 9.36% 1.5
3 3507395 28.19% 2.5
4 4518944 36.32% 3.5
5 2628642 21.13% 4.5

ML_Current (3 million)

Boundary Count Centers
1 135018 4.60% 0.5
2 255992 8.73% 1.5
3 703108 23.97% 2.5
4 1233257 42.04% 3.5
5 606315 20.67% 4.5
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We use two datasets in this paper. The �rst dataset is publicly available. The
second dataset has been created by taking the latest 3 million ratings and the
corresponding users and movies. We denote the former dataset asMl1m and the
latter as MlCurrent throughout the paper. Table 2 summarizes the number
of users, number of movies, number of ratings, minimum number of ratings of
each user, sparsity, and rating distribution of each dataset. Sparsity of a dataset
is de�ned as the percent of empty cells (that is, no rating) in the user ×movie
matrix.

One key di�erence between the two datasets is in the rating scale. In Ml1m,
the rating scale is 1 star to 5 stars, with an increment of 1 star; however, for
the last couple of years MovieLens has enabled half-star ratings. As a result, in
MlCurrent, the rating scale is 0.5 star to 5.0 stars, in 0.5 star increments.

4 http://www.cs.umn.edu/Research/GroupLens/
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Fig. 3. Prediction performance of ClustKnn: (a)-(b) on Ml1m, and (c)-(d) on Ml-

Current dataset. Results of user-based KNN are shown for comparison.

Furthermore, note from the average ratings and the rating distributions that,
the distributions are skewed toward higher rating values. This is perhaps a com-
mon phenomenon since people typically consume products they think they might
like. Therefore, their reports on products (movies, in this context) are mostly
on what they enjoyed. Another reason for positive skewness might be the user
interface itself�if the products presented to the users are ordered by the like-
lihood that the users would like them, they may only focus on these products
when submitting ratings.

5.2 Evaluation Metrics

In this section we brie�y review the metrics we use to evaluate the quality of
recommendations produced by the CF algorithms. The �rst two to follow are to
evaluate rating-predictions, and the last category is to evaluate top-N recom-
mendations.

NMAE
Mean Absolute Error (MAE) is the most commonly applied evaluation metric
for CF rating predictions. MAE is simply the average of the absolute deviation
of the computed predictions from the corresponding actual ratings. Formally,



MAE =
1
N

N∑
j=1

|Ruj − R̂uj | (10)

where N represents the total number of predictions computed for all users.
According to this metric, a better CF algorithm has a lower MAE.
Other similar metrics such as Mean Squared Error (MSE) or Root Mean

Squared Error (RMSE) are sometimes used for CF evaluation as well. Here, we
only report MAE, as one general result from past work is that most evaluation
metrics correlate well [25, 9].

In [7], the authors wondered about how good the CF algorithmMAEs are over
purely random guessing. They proposed using the Normalized Mean Absolute
Error (NMAE) that is computed by dividing the MAE of a CF algorithm with
the expected MAE from random guessing. In this paper, we use the version of
NMAE proposed in [15]. Formally,

NMAE = MAE/E[MAE] (11)

Since the Ml1m dataset has a rating scale of 1-5, E[MAE]
= 1

25

∑5
i=1

∑5
j=1 |i− j| = 1.6, assuming both ratings and predictions are gener-

ated by a uniform distribution. Similarly, for theMlCurrent dataset, E[MAE] =
1.65.

Note that an NMAE value less than 1.0 means the approach is working bet-
ter than random. An added bene�t of using NMAE is that evaluation of CF
datasets of di�erent rating scales become comparable.

Expected Utility (EU)
A limitation of MAE is that it treats the same values of error equally across the
space of the rating scale. For example, MAE would �nd no di�erence between
the two (R̂, R) pairs (5.0, 2.0) and (2.0, 5.0). However, depending on the under-
lying product-domain, the users may be unhappy more about the former pair
than the latter.

In order to overcome this limitation, we propose the Expected Utility (EU)
metric, a variant of which can be commonly found in Decision Theory.

For this accuracy metric, we arrange a 10 × 10 matrix for a CF algorithm,
where rows represent predictions, and the columns represent actual ratings. The
(i, j)-th cell of this matrix gives the count of occurrence of the pair (R̂i, Rj). We
also construct a static 10 × 10 utility table where each entry corresponding to
(R̂i, Rj) is computed using the following utility formula: U(R̂i, Rj) = Rj−2|R̂i−
Rj |. Notice that the utility equation tries to penalize false positives more than

false negatives. For example, U(R̂i = 5, Rj = 2) = −4, U(R̂i = 2, Rj = 5) = −1,
U(R̂i = 5, Rj = 5) = 5, and U(R̂i = 1, Rj = 1) = 1. The interpretation is that
not seeing a movie you would not like is no cost or value, not seeing a movie you
would have liked is low cost (because there are many other good movies to see),
seeing a movie you did not like is expensive and a waste of time, and seeing a
movie you like is a good experience.



Based on these two matrices, the expected utility is computed as follows:

EU =
∑

1≤i≤10
1≤j≤10

U(R̂i, Rj)P (R̂i|Rj) (12)

Note that many cells of the 10 × 10 matrix are zeros or contain very small
values; therefore, we estimate probabilities using an an m-estimate [3] smoothing.
The m-estimate can be expressed as the following:

p =
r + m ∗ P

n + m
(13)

where n is the total number of examples, r is the number of times the event
we are estimating the probability for occurs, m is a constant, and P is the prior
probability. We have used m = 2 for our calculations.

Note that according to EU, the higher the EU of a CF algorithm, the better
the performance is.

Precision-Recall-F1
Precision and recall [5] have been in use to evaluate information retrieval sys-
tems for many years. Mapping into recommender system parlance, precision and
recall have the following de�nitions regarding the evaluation of top-N recom-
mendations. Precision is the fraction of the top-N recommended items that are
relevant. Recall is the fraction of the relevant items that are recommended. A
third metric, F1, is the harmonic mean of precision and recall, and combines
precision and recall into a single metric. Formally,

F1 =
2 ∗ precision ∗ recall

(precision + recall)
(14)

Since the metrics involve the notion of relevancy, it is important to de�ne
what the relevant items are to a user. Furthermore, it is safe to say that users
almost never enter preference information into the system on all the relevant

items they have ever consumed�making the recall measure questionable in the
CF domain. A good source of discussion on these and other CF evaluation metrics
can be found in [9].

Researchers have tried a variety of ways to incorporate precision and recall
into CF evaluation [1, 24]. In this paper, we follow an approach similar to Basu
et al [1]. In particular, for our datasets, we consider the target user's relevant
items known to us as the ones she rated 4.0 or above. Furthermore, since our
experiment protocol involves dividing the data into training and test sets, we
focus on the test set to �nd the actual relevant items of the target user and
to compute the top-N list for her. Speci�cally, the top-N list only contains
items that are in the target user's test set. Similarly, a list of relevant items
are also constructed for the target user from her test set items. Based on the
relevant list of and the top-N list for the target user, the usual precision-recall-F1
computation ensues.



5.3 Results

Table 3. Comparison of rating-prediction quality of the selected CF algorithms. (The
best results in each column and the results of ClustKnn are shown in bold face.)

CF algorithm MAE NMAE EU
Ml1m MlCurrent Ml1m MlCurrent Ml1m MlCurrent

SVD 0.69 - 0.43 - 6.81 -
User-based KNN 0.70 0.61 0.44 0.37 6.98 8.44
Item-based KNN 0.70 0.60 0.44 0.36 6.93 8.48

ClustKnn (k=200) 0.72 0.62 0.45 0.37 6.63 7.82

pLSA 0.72 0.61 0.45 0.37 6.57 7.95
Personality Diagnosis 0.77 0.66 0.48 0.40 5.00 3.19
CbSmooth 0.71 0.62 0.44 0.37 6.86 8.24

Most of our empirical investigation involves taking a �ve-fold cross-validation
approach over each dataset. In other words, we randomly partition our data into
�ve disjoint folds and apply four folds together to train a CF algorithm, and
use the remaining fold as a test set to evaluate the performance. We repeat this
process �ve times for each dataset so that each fold is used as a test set once.
The results we present are averages over �ve folds.

First we demonstrate the rating-prediction performance of ClustKnn. Fig-
ure 3 plots the predictive performance of ClustKnn both for the metrics NMAE
and EU, and for both of the datasets. Since ClustKnn can be regarded as ap-
proximating user-based KNN with the two becoming equivalent when k equals
the number of users in the system (assuming non-empty clusters), we have also
included the predictive performance of user-based KNN in the plots � to con-
sider it as an upper bound for ClustKnn. As depicted in �gure 3, the per-
formance of ClustKnn with a moderate value of k, both by MAE and EU,
is nearly as good as the user-based KNN. For example, on the MlCurrent

dataset, which has more than 21,500 users, a ClustKnn model with 200 clus-
ters gives an NMAE of 0.37 and EU=7.82 � very close to the corresponding
user-based KNN results: NMAE=0.36 and EU=8.44. Furthermore, a trend evi-
dent from the graph is that as k gets higher, accuracy keeps improving.

Table 3 compares prediction qualities of the ratings produced by the selected
CF algorithms. Note that each algorithm requires a few parameters to be set
which can be crucial for its better performance. For example, number of z in
pLSA, σ in personality diagnosis, and so forth. We followed the suggestions and
speci�cations found in the respective papers to tune the algorithms so that they
perform their best.

We see from table 3 that SVD produced the best quality rating-predictions
according to both NMAE and EU on theMl1m dataset. We did not have enough
computational resources available to run our particularMatlab implementation
of SVD on the MlCurrent dataset. User and item-based KNN produce the
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with varying values of N .

next best quality predictions. ClustKnn with k=200 performs very well, and
it is at least as accurate as pLSA and CbSmooth, and much better than the
other hybrid model- and memory-based CF algorithm, personality diagnosis.
Interestingly, paying a close attention to the NMAE and EU columns, the �nding
of [25, 9] that CF evaluation metrics correlate, becomes evident. Indeed, the
correlation coe�cient between MAE and EU on Ml1m dataset is -0.94, and on
MlCurrent dataset it is -0.97. Note that negative correlations are due to the
fact that the directions of MAE and EU are opposite, i.e., MAE is an errormetric
and EU is a value metric. Next we turn into top-N recommendation results.

Figure 4 shows the interplay between precision and recall, and the resulting
F1 for ClustKnn as N varies. The pattern present in the �gure is consistent
across each of the CF algorithms we studied. Note that more than 50% of the
users have only 12 or fewer relevant items in the test sets of Ml1m, and 6 or
fewer in the test sets of MlCurrent. Therefore, recall values quickly ramp up
and higher values of N provide less valuable information if we want to compare
the algorithms.

Table 4 shows the comparative top-N recommendation results of the algo-
rithms for N=3 and 10. The results closely follow the results in the rating predic-
tions. Further, ClustKnn displays good top-N performance, as good as pLSA
and CbSmooth, and much better than personality diagnosis.

6 Discussion

Scalability and other features. From the discussion thus far we see that
ClustKnn is highly scalable�the online prediction time varies linearly with
the number of items in the system. ClustKnn is intuitive. Its foundation rests
on a neighborhood-based algorithm that embraces the collaborative �ltering phi-
losophy, i.e., recommend based on the neighbors' opinions. However, since there



Table 4. Comparison of top-N recommendation quality of the selected CF algorithms.

CF algorithm
top-3

Precision F1
Ml1m MlCurrent Ml1m MlCurrent

SVD 0.8399 - 0.379 -
User-based KNN 0.833 0.6693 0.379 0.4086

Item-based KNN 0.819 0.657 0.374 0.407
ClustKnn (k=200) 0.825 0.659 0.377 0.407

pLSA 0.817 0.656 0.375 0.406
Personality Diagnosis 0.789 0.622 0.366 0.391
CbSmooth 0.816 0.645 0.372 0.399

CF algorithm
top-10

Precision F1
Ml1m MlCurrent Ml1m MlCurrent

SVD 0.7564 - 0.6131 -
User-based KNN 0.750 0.5953 0.610 0.556
Item-based KNN 0.749 0.592 0.610 0.556
ClustKnn (k=200) 0.743 0.589 0.606 0.553

pLSA 0.739 0.587 0.604 0.552
Personality Diagnosis 0.723 0.565 0.595 0.537
CbSmooth 0.742 0.584 0.605 0.549

can be far too many users from which to �nd neighbors, ClustKnn creates a
constant number of pseudo users by grouping real users. The accuracy of this
hybrid memory and model-based algorithm is very good�the best algorithm in
our collection is better by only a tiny percentage. The sensitivity of recommender
system users to changes in algorithm accuracy has not been studied, but it is
reasonably unlikely that users will notice an MAE change of less than 1%. The
learned cluster model can be used to �nd various customer segments and their
general characteristics.

Memory Footprint. The memory footprint of this algorithm is very small
once the model is learned. The Memory required to generate recommendations
for the target user is only O(km + m), where m is the number of items in the
system�O(km) for the model and O(m) to store the target user's pro�le. As
a result, this algorithm is ideal for platforms with low storage and processing
capabilities.

Recommendations on Handheld Devices. One such platform is hand-
held computers. These devices are far slower and can store much less data than
their desktop counterparts. Furthermore, many devices in use today are not
continuously connected to networks. Deployment of recommender systems on
handheld devices is an active area of research today [17], and ClustKnn pro-
vides one possible way to implement a self-contained recommender system on
a handheld device. ClustKnn can also be useful in high-usage systems where
recommendation throughput is an important factor.
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Finally, we conclude our discussion with an alternate approach we could have
taken regarding clustering and collaborative �ltering.

Is it better to focus on the best-matched cluster to �nd neighbors,
or to scan all of the cluster-centers? ClustKnn computes recommenda-
tions for the target user by seeking the closest neighbors from the cluster centers.
However, another possibility is to �rst �nd the best-matched cluster for the tar-
get user, and then search for the best neighbors within the selected cluster only.
We now provide three reasons to avoid this approach. First, this approach might
hurt the coverage of the recommender, i.e., there can be more items with fewer
personalized recommendations. The reason is that the users in the chosen cluster
may not have rated a large fraction of the items that people in other clusters
rated. Second, this approach might incur high computational cost similar to the
regular user-based KNN, since the selected cluster can be a very large one. Third,
as �gure 5 shows, a large fraction of the closest neighbors may reside in other
clusters than the one the target user belongs to. As a result, using a single clus-
ter can easily lead to using less similar neighbors and thereby reducing accuracy.
Note also from the �gure that this problem gets worse as the number of clusters
grows.

7 Conclusion

In this paper we have explored clustering to address scalability, a fundamen-
tal challenge to collaborative �ltering recommender algorithms. In particular we
have studied ClustKnn, a hybridmemory- and model-based collaborative �lter-
ing algorithm that is simple, intuitive, and highly scalable. The method achieves
recommendation quality comparable to that of several other well-known CF algo-
rithms. Further, the operator of the recommender system can tune a parameter
in the model to trade o� speed and scalability.



In the future, we plan to extend this approach to mitigate the so called cold-

start problem [26] in CF. That is, a collaborative �ltering recommender cannot
produce personalized recommendations on newly introduced items lacking any
or su�cient user-opinions on those items. By clustering on the space of item
feature information, we hope to investigate the implications of building a hybrid
recommender that works as a CF-based recommender on items with enough
preference information, and as a content-based recommender otherwise.
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