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Abstract

In this paper, we present ScalParC (Scalable Parallel Classi�er), a new parallel

formulation of a decision tree based classi�cation process. Like other state-of-the-art

decision tree classi�ers such as SPRINT, ScalParC is suited for handling large datasets.

We show that existing parallel formulation of SPRINT is unscalable, whereas ScalParC

is shown to be scalable in both runtime and memory requirements. We present the

experimental results of classifying up to 6.4 million records on up to 128 processors of

Cray T3D, in order to demonstrate the scalable behavior of ScalParC. A key component

of ScalParC is the parallel hash table. The proposed parallel hashing paradigm can be

used to parallelize other algorithms that require many concurrent updates to a large

hash table.
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1 Introduction

Classi�cation is an important problem in the rapidly emerging �eld of data mining. The
problem can be stated as follows. We are given a training dataset consisting of records. Each
record is identi�ed by a unique record id and consists of �elds corresponding to the attributes.
An attribute with a continuous domain is called a continuous attribute. An attribute with
�nite domain of discrete values is called a categorical attribute. One of the categorical
attributes is the classifying attribute or class and the values in its domain are called class
labels. Classi�cation is the process of discovering a model for the class in terms of the
remaining attributes. The decision-tree models are found to be most useful in the domain of
data mining because they are relatively inexpensive to construct, easy to interpret, and easy
to integrate with the commercial database systems. For a variety of problem domains, they
yield comparable or better accuracy as compared to other models such as neural networks,
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statistical models or genetic models [9]. The decision-tree based classi�ers that handle large
datasets are attractive, because use of larger datasets improves the classi�cation accuracy
even further[4]. Recently proposed classi�ers SLIQ [2] and SPRINT [1] use entire dataset
for classi�cation and are shown to be more accurate as compared to the classi�ers that use
sampled dataset or multiple partitions of the dataset [4, 5].

The decision tree model is built by recursively splitting the training set based on a locally
optimal criterion until all or most of the records belonging to each of the partitions bear the
same class label. Briey, there are two phases to this process at each node of the decision
tree. First phase determines the splitting decision and second phase splits the data. The very
di�erence in the nature of continuous and categorical attributes requires them to be handled
in di�erent manners. The handling of categorical attributes in both phases is straightforward.
Handling the continuous attributes is challenging. An e�cient determination of the splitting
decision used in most of the existing classi�ers requires these attributes to be sorted on
values. The classi�ers such as CART [10] and C4.5 [11] perform sorting at every node of the
decision tree, which makes them very expensive for large datasets, since this sorting has to be
done out-of-core. The approach taken by SLIQ and SPRINT sorts the continuous attributes
only once in the beginning. The splitting phase maintains this sorted order without requiring
to sort the records again. A separate list is kept for each of the attributes, which maintains
a record identi�er for each sorted value. In the splitting phase, parts of a particular record
from di�erent lists need to be assigned to the same node of the decision tree. Implementation
of this o�ers the design challenge. SPRINT builds a mapping between a record identi�er and
the node to which it goes to based on the splitting decision. The mapping is implemented
as a hash table and is probed to split the attribute lists in a consistent manner. These hash
tables are built on-the-y for every node of the decision tree, and their size is proportional
to the number of records at the node. For the upper levels of the tree, this size is of the
same order as the size of the training set. If the hash table does not �t in the main memory,
then SPRINT has to divide the splitting phase into several stages such that the hash table
for each of the phases �ts in the memory. This requires multiple passes over each of the
attribute lists causing expensive disk I/O.

The memory limitations faced by serial decision-tree classi�ers and the need of classifying
much larger datasets in shorter times make the classi�cation algorithm an ideal candidate
for parallelization. The parallel formulation, however, must address the issues of e�ciency
and scalability in both memory requirements and parallel runtime. Relatively little work has
been done so far for development of parallel formulations for decision tree based classi�ers
[1, 7, 6]. Among these, the most relevant one is the parallel formulation of SPRINT[1], as it
requires sorting of continuous attributes only once. SPRINT's design allows it to parallelize
the split determining phase e�ectively. The parallel formulation proposed for the splitting
phase, however, is inherently unscalable in both memory requirements and runtime. It builds
the required hash table on all the processors by gathering the record-id-to-node mapping
from all the processors. For this phase, the total communication overhead per processor is
O(N), where N is the number of records in the dataset. Apart from the beginning phase of
sorting, the serial runtime of a classi�er is O(N). Hence, SPRINT is unscalable in runtime.
It is unscalable in memory requirements also, because the total memory requirement per
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processor is O(N), as the size of the hash table is of the same order as the size of the
training dataset for the upper levels of the decision tree, and it resides on every processor.

In this paper, we present a new parallel formulation of a decision tree based classi�er. We
call it ScalParC (Scalable Parallel Classi�er) because it is truly scalable in both runtime and
memory requirements. Like SPRINT, ScalParC sorts the continuous attributes only once in
the beginning. It uses attribute lists similar to SPRINT. The key di�erence is that it employs
a distributed hash table to implement the splitting phase. The communication structure
used to construct and access this hash table introduces a new parallel hashing paradigm.
A detailed analysis of applying this paradigm to the splitting phase shows that the overall
communication overhead of the phase does not exceed O(N), and the memory required to
implement the phase does not exceed O(N=p) per processor. This makes ScalParC scalable
in both runtime and memory requirements. We implemented the algorithm using MPI to
make it portable across most of today's parallel machines. We present the experimental
results of classifying up to 6.4 million records on up to 128 processors of Cray T3D, in order
to demonstrate the scalable behavior of ScalParC in both runtime and memory requirements.

The paper is organized as follows. We describe the sequential decision tree based clas-
si�cation process in detail, and identify the limitations of serial algorithms in section 2.
Section 3 gives a detailed description of the ScalParC design process, by discussing the is-
sues of load balancing, data distribution, possible parallelization approaches, the parallel
hashing paradigm and its application to the splitting phase and �nally, some possible opti-
mizations. Section 4 gives a detailed description of the algorithm and the data structures
it uses. The experimental results are presented in Section 5. Section 6 contains concluding
remarks.

2 Sequential Decision Tree based Classi�cation

A decision tree model consists of internal nodes and leaves. Each of the internal nodes has a
decision associated with it and each of the leaves has a class label attached to it. A decision-
tree based classi�cation learning consists of two steps. In the �rst step of tree induction, a
tree is induced from the given training set. In the second step of tree pruning, the induced
tree is made more concise and robust by removing any statistical dependencies on the speci�c
training dataset. The induction step is computationally much more expensive as compared
to the pruning step. In this paper, we concentrate only on the induction step.

Tree induction consists of two phases at each of the internal nodes. First phase makes
a splitting decision based on optimizing a splitting index. We call this phase the split
determining phase. The second phase is called the splitting phase. It splits the records into
children nodes based on the decision made. The process stops when all the leaves have
records bearing only one class label.

One of the commonly used splitting criteria is to minimize the gini index [10] of the
split. The calculation of gini index involves computing the frequency of each class in each
of the partitions. Let a parent node, having n records from c possible classes, be split into
d partitions, each partition corresponding to a child of the the parent node. The gini index
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Figure 1: (a). An example training set. (b). Classi�cation of the training set into a decision
tree model.

for the ith partition is ginii = 1 �
Pc

j=1(nij=ni)
2, where ni is the total number of records

in partition i, among which nij records bear class label j. The matrix [nij] is called the
count matrix. The gini index of the total split is given by ginisplit =

Pd
i=1(ni=n) ginii. The

partitions are formed based on a splitting decision which consists of a condition on the values
of a single attribute called the splitting attribute1. The condition which gives the least value
for ginisplit is chosen to split the records at that node.

Each of the attributes is a candidate for being the splitting attribute. For a continuous
attribute, A, we assume that two partitions are formed based on the condition A < v, for
some value v in its domain. One partition contains records which satisfy the condition and
the other contains the rest. For a categorical attribute, B, having m distinct values in its
domain, we assume that the splitting decision forms m partitions2, one for each of the values
of B. The computation of gini index for a categorical attribute is straightforward because
there is only one count matrix possible. For the continuous attributes, we need to decide
on the value v. If the continuous attribute is sorted on its values at each of the nodes in
the tree, then a linear search can be made for the optimal value of v by moving the possible

1Some classi�ers allow a condition on a linear combination of many attributes [8], but we restrict ourselves
to a single splitting attribute.

2It is also possible to form two partitions for a categorical attribute each characterized by a subset of
values in its domain.
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split point from the beginning to the end of the list, one value at a time, updating the
count matrix, and computing the ginisplit value for each point. Since each attribute needs
to be processed separately, the training set is fragmented vertically into lists for each of the
attributes. These lists are called the attribute lists. Sorting the lists of continuous attributes
on values introduces a relatively random order on record ids. This makes it necessary to
associate a record id with each value in all the attribute lists.

The process described so far can be better understood using an example. Consider a
sample training set shown in Figure 1(a). The class column is identi�ed by cid. There are
two attributes: a continuous attribute, A and a categorical attribute B. Attribute B can
take two distinct values H and C. There are two possible class labels, 0 and 1. Figure 1(b)
shows the entire tree induction process. First the training set is fragmented into attribute
lists for A and B. They are shown after sorting A on values. The split determining process is
illustrated in detail for the top node of the tree. A linear search made for the optimal value
of A, is shown by the count matrices and their corresponding computed ginisplit values for
all the possible positions. The decision A < 35 is found3 to yield an optimal value of 0.21.
If B were to serve as the splitting attribute, then it forms two partitions, one containing
records with values H and other with C. The count matrix for this partitioning is shown in
the �gure along with the corresponding ginisplit, which is 0.34. Hence, the overall least or
optimal ginisplit is given by the decision A < 35, which is chosen to split the top node.

After the splitting decision is made, the second phase splits the records among the children
nodes. All the attribute lists should be split. The information regarding which record gets
assigned to which node is obtained based on the splitting decision and the record ids in the
list of the splitting attribute. For example, in Figure 1, the splitting decision at the top node
and the list of splitting attribute A yield the information that record ids f5,2,6g go to child
0 (or the left child) and record ids f1,0,4,3g go to child 1 (or the right child). With this
information, the list of splitting attribute can be split easily. The lists of other attributes
must be split consistently, which means that the values belonging to a particular record id
from all the attribute lists get assigned to the same node of the decision tree. Di�erent
lists, in general, may have a di�erent order on record ids, because the continuous attributes
are sorted on values. Hence to perform a consistent assignment e�ciently, some kind of a
mapping of record ids to node is required. The structure of this mapping is determined
by the approach used for splitting. Among the di�erent possible approaches of splitting
proposed until now, SPRINT's approach is the most suitable one for handling large datasets
on a serial machine.

SPRINT associates the class information along with the record id for each value in the
attribute lists. It splits each of the attribute lists physically among nodes. The splitting is
done such that the continuous attribute lists maintain their sorted order on values at each
of the nodes. All these choices make it possible to implement the split determining phase
e�ciently by a sequential scan of continuous attribute lists. This is shown in Figure 1, where
the lists for attribute A at both the nodes of second level are sorted and have the class
information needed to determine the split point. Once the splitting decision is made, it is

3The value used in the splitting condition is normally considered to be the average of two values around
the split point.
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straightforward to split the list of the splitting attribute. In order to split other lists in a
consistent manner, a hash table is formed to maintain a mapping of record ids to nodes.
The hash table is built from record ids in the splitting attribute's list in conjunction with
the splitting decision. Then the record ids in the lists of non-spitting attributes are searched
to get the node information, and perform the split accordingly. The size of this hash table is
proportional to the number of records at the current node. For the root node of the decision
tree, this size is the same as the original training dataset size, and it remains of the same
order for the nodes at upper levels. Thus, this approach also faces memory limitations for
the upper levels of the tree. If the hash table does not �t in the memory, then multiple
passes need to be done over the entire data requiring additional expensive disk I/O.

3 Designing ScalParC

The design goals for a parallel formulation of the decision tree based classi�cation algorithms
are scalability in both runtime and memory requirements. The parallel formulation should
overcome the memory limitations faced by the sequential algorithms; i.e., it should make
it possible to handle larger datasets without requiring redundant disk I/O. Also, a parallel
formulation should o�er good speedups over serial algorithms. In this section, we describe
the design issues involved in parallelizing the classi�cation process described in the previous
section and propose the design approach taken by ScalParC.

The parallel runtime consists of computation time and the parallelization overhead. If Ts

is the serial runtime of an algorithm and Tp is the parallel runtime on p processors, then the
parallelization overhead is given by To = pTp�Ts. For runtime scalability, the overhead, To,
should not exceed O(Ts)[3]; i.e., the parallelization overhead per processor should not exceed
O(Ts=p). This overhead, in general, consists of communication time and the overhead due
to load imbalance. The algorithm design should try to minimize both by deciding on how
the data is distributed among processors and how it is accessed. The design should also
take into account the characteristics of the underlying parallel machine such as the latency
and the bandwidth of the communication subsystem. Similarly, for scalability in memory
requirements, the amount of memory required per processor should be O(M=p), where M is
the memory required on serial machine.

For the classi�cation problem at hand, let the training set size be N and the problem
be solved on p processors. Let there be nc classes and na attributes out of which nt are
continuous and ng are categorical. After the initial sorting of the continuous attributes, the
serial runtime is Ts = O(N) for a majority of levels, when large datasets are being classi�ed.
Memory e�cient and scalable formulations of parallel sorting are well known [3]. Hence,
for runtime scalability, the algorithm must be designed such that none of the components
of the overall communication overhead of the classi�cation process exceeds O(N) at any
level; i.e., the per processor communication overhead should exceed O(N=p) per level. Since
the memory required to solve the classi�cation problem on a serial machine is O(N), for
memory scalability of the parallel formulation, the amount of memory per processor should
not exceed O(N=p).
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Figure 2: Demonstration of load imbalance of per-node approach and load balancing of
per-level approach.

3.1 Data Distribution and Load Balancing

The �rst design issue is the assignment of data to the processors. The computation time at
a node is proportional to the number of records at that node. So, the best way to achieve
load balance at the root node is to fragment each attribute list horizontally into p fragments
of equal sizes and to assign each fragment to a di�erent processor [7, 1].

We assume that the initial assignment of data to the processors remains unchanged
throughout the process of classi�cation. With this approach, the splitting decision may
cause the records of a node to be distributed unevenly among processors. Refer to Figure 4
for an example of such an imbalance. The root node in the �gure has the best possible load
balance, whereas the splitting decision makes both its children nodes to have a severe load
imbalance. For the left child, processor P0 gets 9 entries to process (5 of B1 and 4 of B2)
whereas processor P1 gets only one. Similar load imbalance can be observed for the other
child. But, at the same time, if we look at the total number of records that are available
per processor at the entire level, the balance among the processors is perfect. Hence, if
the computations for all the records at a level are performed before doing any synchronizing
communication between the processors, then the per-node imbalance would not be a concern.
This approach of doing per-level communications as against per-node communications should
also perform better on the parallel machines with high communication latencies, especially
because the number of nodes will be large at the levels much deeper in tree. Hence, for the
purposes of achieving load balance and avoiding high latency costs, we choose to build the
decision tree in breadth-�rst order and perform communications in a single phase at each
level.

3.2 Possible Parallelization Approaches

The next issue is the design of algorithms for each of the two phases of tree induction.
The implementation of the split determining phase is straightforward. For the continuous
attributes, the design presented in parallel formulation of SPRINT [1] is e�cient. For a given
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continuous attribute, it initializes the count matrices on every processor corresponding to
the split point lying at the beginning of the local attribute list on that processor. Then each
processor proceeds to compute gini indices for all possible positions in its local part of the
list. For the categorical attributes, the local count matrices from all the processors can be
gathered onto a single processor, where the gini index can be computed [1, 7].

The parallelization of the splitting phase is more di�cult. In the parallel formulation of
SPRINT, the hash table required for consistent splitting is built on all the processors for
each node of the decision tree. Then each processor splits it local copies of all the attribute
lists as in the sequential algorithm. Since each processor has to receive the entire hash table,
the total amount of communication overhead per processor is proportional to the size of the
hash table, which is O(N) as noted earlier in section 2. Hence, this approach is not scalable
in runtime. The approach is not scalable in terms of memory requirements also, even if the
communication is done on a per-node basis. This is because the size of the mapping needed
per processor is proportional to the total number of records at that node, which is again
O(N) for the top node as well as for nodes at the upper levels of the tree.

3.3 The ScalParC Design Approach

Here, we present our approach to parallelizing the splitting phase which is scalable in both
memory and runtime requirements.

3.3.1 Parallel Hashing Paradigm

We �rst present the scalable parallel hashing paradigm that is used in ScalParC to achieve
scalability in the splitting phase. The paradigm gives mechanisms to construct and search a
distributed hash table, when many values need to be hashed at the same time. We assume
that there is a hash function, h, that hashes a given key, k to yield a pair of numbers
h(k) = (pi; l), such that k hashes to location l on the local part of the hash table residing
on processor pi. Each key k is associated with a value v. The hash table is constructed as
follows. First each processor scans through all its (k; v) pairs and hashes k in each pair to
determine the destination processor, pi, and location, l, for storing value v. Every processor
maintains a separate bu�er destined for each of the processors, pi. Each entry in this bu�er
is an (l; v) pair. Note that some of these bu�ers might be empty, if none of the keys hashes
to the corresponding processors. Then one step of an all-to-all-personalized communication
[3] is done. Finally, each processor extracts the (l; v) pairs from the received bu�ers and
stores value v at index l of their respective hash tables. The same process can be followed
while searching for values given their corresponding keys. Each processor hashes its keys, k,
to �ll an enquiry bu�er for all the processors pi with indices l. The receiving processors look
up for v values at indices l, �ll them in a bu�er and another step of all-to-all-personalized
communication gets the values back to the processors who require them. If each processor
has m keys to hash at a time, then the all-to-all personalized communication can be done in
O(m) time provided m is 
(p) [3]. Thus, the parallel hashing done in the proposed manner
above is scalable as long as 
(p2) keys are hashed at the same time. Note that this paradigm
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can also support collisions by implementing open chaining at the indices l of the local hash
tables.

3.3.2 Applying the Paradigm to ScalParC

Now, let us consider applying this paradigm to the splitting phase of classi�cation. Once
the splitting decision has been made at a node, a record-id-to-node mapping needs to be
constructed using the list of splitting attribute, and then, this mapping will be inquired while
splitting other attribute lists. The information needed to be stored in the mapping is the child
number that a record belongs to after splitting. We call this mapping a node table. The node
table is assumed to be a hash table with the hash function h(j) = (j div N=p; j mod N=p),
where the global record id j is the key and the child number is the value associated with
it. The node table is of size N . It is distributed equally among p processors; hence, the
size on each processor is O(N=p). Note that, since the total number of global records is N ,
the above hash function is collision-free. Figure 3(b) shows a distributed node table for the
example training dataset shown in the part (a) of the �gure. For the example in the �gure,
we have N = 9 and p = 3, hence the hash function is h(j) = (pi; l), where pi = j div 3 and
l = j mod 3. Initially, this node table is empty. We now apply the communication structure
described in section 3.3.1 to update and inquire the child number information stored in the
distributed node table.

The process of updating the node table is similar to the process of constructing a dis-
tributed hash table. Figure 3(c) illustrates this process at the top node of the decision tree
being built using the training set of Figure 3(a). The splitting attribute is Salary and the
optimal split point is as shown. The record-id-to-node mapping obtained out of the list
of splitting attribute is used to form the hash bu�ers. Each element of these bu�ers is a
(l; child number) pair. For example, after the splitting decision, processor P0 knows that
all the record ids in its local list of Salary belong to child 0 or the left child (denoted by
L). So, after hashing record id 8, it �lls an entry (l = 8 mod 3 = 2, child number = L)
in processor P2's hash bu�er. Each processor follows the same procedure. Then, a step of
all-to-all-personalized communication is performed, and the node table is updated, using the
received information. The updated node table is shown in the �gure.

After updating the node table, it needs to be inquired for the child number information
in order to split the lists of non-splitting attributes. Each attribute list is split separately.
The process is illustrated in Figure 3(d) for the attribute Age at the root node. Using the
paradigm above, each processor �rst forms the enquiry bu�ers by hashing the record ids in
its local list of Age. An enquiry bu�er for a processor contains local indices l. For example,
processor P1 forms an enquiry bu�er for processor P2 containing l = 0 after hashing the
global record id 6 in its local list. After a step of all-to-all-personalized communication, each
processor receives the intermediate index bu�ers containing local indices to be searched for.
The node table is then searched, and the child numbers obtained are used to �ll intermediate
value bu�ers. These are communicated using another step of all-to-all-personalized commu-
nication to form the result bu�ers, which are used to extract the child information. All these
bu�ers are shown in Figure 3(d) for the enquiry process of Age.
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(c) The process of hashing values into the node table. The global record id is shown corre-
sponding to each of the entries in the received bu�ers. (d) The process of enquiring values
from the node table. The global record id is shown corresponding to each of the entries in
the enquiry bu�ers.
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Figure 4: Depicts a scenario in which one processor might require to send O(N) data while
updating the node table using the per-level approach of communication.

3.3.3 Verifying Runtime and Memory Scalability

We now verify whether the application of the paradigm yields the desired scalability.
First consider the process of updating the node table. Note that, the communication is

done on a per-level basis. So, each processor scans through its local lists of the splitting
attributes for all the nodes at the current level of the decision tree in order to form the hash
bu�ers. If the number of records at the current level of the tree is Nl, then no more than
Nl entries in the node table will be updated at that level. Since Nl = O(N) for the upper
levels of tree, the overall communication overhead in updating the node table is O(N)4.
Considering on a per-processor basis, no processor receives more than O(N=p) updates,
because the node table size on each processor is O(N=p). Hence, the per-processor memory
requirement for the receiving bu�ers also does not exceed O(N=p). However, the number of
updates sent by a processor depends on the distribution (among di�erent processors) of the
splitting attributes selected for di�erent nodes at the current level. Although in most of the
cases, the updates being sent will be equitably distributed among processors, there might
be some situations in which some processors end up sending more than O(N=p) updates.
In this case, the runtime will be dominated by the processor that has the highest number
of updates to send, which could be O(N) in the worst case. Figure 4 shows a possible
worst-case scenario, in which processor P0 has to hash all global record ids at the second
level. Although the formulation becomes runtime unscalable in such a scenario, it can be
seen that no parallelization approach which sorts continuous attributes only once, can avoid
this unscalability. Also, from our experience, because of the relative randomness among
the attribute lists, on an average, any given processor will not send more than 5-10% extra
elements than N=p. Hence, such scenarios are rare and do not impact runtime scalability.
Even in the worst case, our formulation still ensures memory scalability by dividing the
updates being sent into blocks of N=p, hence requiring only O(N=p) memory for the hash
bu�ers.

4Recall that parallel formulation of SPRINT requires O(N) communication overhead per processor re-
sulting in O(N p) overall communication overhead
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In the process of enquiring the node table, for each of the attributes, no processor has
more than O(N=p) record ids to search at any level of the tree. Hence, at most (na� 1) N=p
values need to be searched to split all the remaining attributes. Thus, the total amount
of data communicated in this process is O(na N=p) per processor at any level. Hence, the
formulation is runtime scalable for the enquiry process. The memory required during the
process does not exceed O(N=p), because the attribute lists are processed one after another
and no processor needs to �ll in more than O(N=p) entries in the enquiry bu�ers for any given
attribute. Also, since the size of the node table on each processor is O(N=p), the intermediate
index bu�ers (and the intermediate value bu�ers) require at most O(N=p) memory. Hence,
the formulation is memory scalable in enquiry process. Note that the memory required in
both the update and enquiry processes can be expressed as O(N=p+ p) because some of the
bu�ers required in the collective communication operations such as all-to-all-personalized
operation, are of size proportional to number of processors. For N larger than 
(p2), the
memory required is O(N=p).

To summarize, applying the parallel hashing paradigm makes ScalParC truly memory
scalable. Furthermore, it is also runtime scalable except for the pathological case as discussed
above.

3.3.4 Optimizing Communication Overheads

The communication overheads can be further optimized by avoiding any communication for
the categorical attributes. It is possible because the categorical attributes do not need any
speci�c order on the record ids and hence they can be distributed to processors using the
same distribution criterion as used for the node table. So, the communication overhead
comes down from O(na N) to O(nt N).

Another improvement over the communication overhead is possible. The intermediate
index bu�ers formed in the search process, are �xed for each attribute throughout the clas-
si�cation process. This is true because the distribution of attribute lists among processors
is �xed. Hence the communication overhead of the �rst step of sending enquiry bu�ers can
be incurred only once. But, this saving requires extra storage for the intermediate index
bu�ers. The total memory requirement goes up by O(nt N=p), and is still acceptable for
scalability.

To put everything in perspective, the use of distributed node table allows a design that
is scalable in both runtime and memory requirements. The next section gives detailed
description of the data structures used and sketches the ScalParC algorithm.

4 The ScalParC Algorithm

4.1 Data Structures

� Attribute Lists.

As noted in the section 3.1, the training set is fragmented vertically into separate lists
for all attributes. The record id information is attached to every element in all the
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Sort Continuous Attributes. (Pre-sort)
do while (there are nodes requiring splitting at the current level)

Compute count matrices. (Find-Split I.)
Compute best gini index for nodes requiring split. (Find-Split II.)
Partition splitting attributes and Update the Node Table. (Perform-Split-I.)
Partition non-splitting attributes. (Perform-Split-II.)

end do

Figure 5: ScalParC tree induction algorithm.

attribute lists. The choice of including the class labels in each list needs to be evaluated.
The class labels are needed to compute the gini index. There are two options. One
is to include the class labels in each of the lists. The other is to include them only
in the distributed node table. The communication overhead of the latter approach is
more, because both the node information and the class labels need to be communicated.
Hence, for minimizing the overheads, we choose to store class labels in each of the lists.
Each attribute list is fragmented horizontally into p fragments such that the �rst p� 1
fragments have the same size. Fragment i is assigned to processor i. The continuous
attribute lists will later be sorted in parallel to achieve a sorted order on values. The
categorical attribute lists are assumed sorted on record ids before distributing them.
As noted in section 3.3.4, this helps in optimizing the communication overheads for
such attributes, provided that the node table is also distributed identically.

� Node Table. The global node table stores the node information for each record id.
The record ids are implied by the table indices. If the splitting decision splits a node
into m children, then the children are numbered from 0 to m � 1. Each record can
belong to only one node of the decision tree at any given instance, and it can propagate
to a node only through the parent of that node. Hence, we need to store only the child
number relative to a parent, for any record id. The global node table is fragmented
horizontally into p fragments such the �rst p� 1 fragments have the same size as that
of the fragments of categorical attributes. Fragment i is stored on processor i.

� Count matrices. The count matrix [nij], as described in section 2, is stored for each of
the attributes. The choice of breadth-�rst order and per-level communication requires
storing the count matrices of all the nodes at a given level. This storage can be reused
for the next level.

4.2 Algorithm

Given distributed attribute lists, the ScalParC tree induction algorithm is shown in Fig-
ure 5. Each phase of the algorithm is explained in detail below. The algorithm is illustrated
on three processors, using an example training set shown in Figure 3(a).
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Figure 6: The ScalParC decision tree induction process.
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� Pre-sort. We use the parallel sample sort algorithm followed by a parallel shift op-
eration, to sort all the continuous attributes. This algorithm is scalable [3]. The shift
operation is needed to maintain equal number of records on each processor initially
and is performed very e�ciently in our implementation. The result of the pre-sorting
phase is shown in Figure 6 for both the continuous attributes: Salary and Age.

� Find-Split-I. For a continuous attribute, each processor �rst computes the local count
matrix corresponding to the split position lying at the beginning of the local attribute
list. Then a parallel pre�x operation [3] is performed to compute the global count
matrices for these split point positions. This process is illustrated in Figure 6, where
for each processor, the local count matrix for attribute Age is shown for the beginning
of the local part of the list. The �gure also shows the global count matrices formed
after the pre�x operation. For a categorical attribute, there is only one count matrix
possible per node. Each processor �lls in its local copy of the count matrix. The global
count matrix for that node is computed on a coordinating processor by doing a parallel
reduction operation [3]. Note that, for any attribute, the count matrices from all the
nodes at the current level of processing are combined before performing the collective
communication.

� Find-Split-II. At �rst, for each node, the count matrix for one of the attributes is
examined to determine whether the records at that node require to be split further.
If all records bear one class label or alternately, the count matrix has only one non-
zero entry, then that node does not need to be split further. Otherwise, for each
continuous attribute, a processor �nds the optimal split point (with minimum gini
index) for its local part of the list. This is done by incrementally updating the count
matrix and computing the gini index for each of the possible split point positions from
the beginning to the end of the local list. For a categorical attribute, the assigned
coordinator processor computes the gini index. The overall best splitting criterion
is obtained by doing a parallel reduction operation. For example, Figure 6 shows the
split points (SP) obtained after performing the reduction operation at both the decision
nodes of the tree.

� Perform-Split-I. In this step, �rst the splitting attribute's list is split. For a continu-
ous splitting attribute, each processor does this trivially by just updating the pointers
into the list to demarcate the records belonging to each of the nodes at the next level.
For a categorical splitting attribute, each processor rearranges its local list and updates
pointers into this rearranged list. Secondly, each processor forms the hash bu�ers by
scanning through the continuous splitting attribute lists of all the nodes at the current
level. Then, the node table is updated using the process described in section 3.3.2.
The updated node tables for the example-at-hand are shown in Figure 6 for each of
the levels. As noted in section 3.3.3, there might be more than one communication
steps needed to update the node table, in order to ensure memory scalability. The
updates to the node table due to the categorical splitting attributes are applied locally
and need not be communicated.
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� Perform-Split-II. This step splits the lists for the non-splitting attributes, one at-
tribute at a time. For a non-splitting continuous attribute, the node table is inquired
using the enquiry process described in section 3.3.2. For a non-splitting categorical
attribute, there is no communication required, as the required node information is
available locally. The collected node information is then used to rearrange the at-
tribute lists such that all the records for a given node are contiguous and a pointer is
kept into this rearranged list for each new node. Figure 6 shows the rearrangement
made for the example-at-hand. For the sake of better understanding, it does not show
the pointers into the rearranged lists, but shows the lists as being physically split
among nodes.

5 Experimental Results

We have implemented the ScalParC tree induction algorithm using MPI. We tested it on up to
128 processors of a Cray T3D where each processor had 64MB of memory. We benchmarked
the combination of Cray's tuned MPI implementation and the underlying communication
subsystem assuming a linear model of communication. On an average, we obtained a latency
of 100 �sec and bandwidth of 50 MB/sec for point-to-point communications, and a latency of
25 �sec per processor and bandwidth of 40 MB/sec for the all-to-all collective communication
operations. We tested ScalParC for training sets containing up to 6.4 million records, each
containing seven attributes. There were two possible class labels. The training sets were
arti�cially generated using a scheme similar to that used for SPRINT[1].

Figure 7(a) shows the runtime scalability of ScalParC by plotting the speedup obtained
for various training set sizes. For a given problem instance, the relative speedups decrease
as the number of processors are increased, because of increased overheads. In particular,
for 1.6 million records, ScalParC achieved a relative speedup of 1.61 while going from 16
to 32 processors, and a relative speedup of 1.31 while going from 64 to 128 processors.
Relative speedups improve for larger problem sizes, because of increased computation to
communication ratio. In particular, while going from 64 to 128 processors, the relative
speedup obtained for 6.4 million records was 1.43 and a relative speedup obtained for 3.2
million records was 1.36. These trends are typical of a normal scalable parallel algorithm[3].
Note that ScalParC could classify 6.4 million records in just 77 seconds on 128 processors.
This demonstrates that large classi�cation problems can be solved quickly using ScalParC.

Another look can be obtained at the parallelization overhead behavior using Figure 7(b).
It plots the parallel runtime obtained on increasing number of processors while keeping the
number of records per processor constant. The slope of a curve between two consecutive
points is proportional to the relative speedup obtained. The slope increases with increasing
number of records per processor, because the computation to communication ratio increases.
For a given number of records per processor, the slopes decrease when larger number of
processors are used, because of relative increase in the communication overheads.

Figure 7(c) demonstrates the memory scalability of ScalParC by plotting the memory
required per processor against the number of processors for various training set sizes. For
smaller number of processors, the memory required drops by almost a perfect factor of two
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Figure 7: ScalParC behavior (a) Scalability for Parallel Runtime in terms of speedup char-
acteristics. (b) Scaleup Characteristics. (c) Scalability for Memory Requirements.
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when the number of processors is doubled. As noted in section 3.3.3, sizes of some of the
bu�ers required for the collective communication operations increase with the increasing
number of processors. Hence, for larger number of processors, we see a deviation from the
ideal trend. In particular, for 0.8 million records, the memory required drops by a factor
of 1.94 going from 8 to 16 processors, and it drops by a factor of 1.78 going from 32 to 64
processors. But, the rate of this drop decreases with the increasing training set size. In
particular, going from 64 to 128 processors, the memory required drops by a factor of 1.74
for 6.4 million records, and it drops by a factor of 1.55 for 0.8 million records.

We observed the times taken by the Pre-Sort phase of ScalParC. In particular, time
required to perform parallel sample sorting of one attribute list containing 100,000 records
per processor on 64 processors was just around 3 seconds. This is very small compared to
the corresponding classi�cation time of 110 seconds. We also computed the load balance
achieved for each of the four phases of the ScalParC tree induction algorithm and it was
found that the maximum di�erence in the computation times of di�erent processors did not
exceed 10%.

We do not present the results for ScalParC with training sets including categorical at-
tributes, because, by design, the scalability behavior of ScalParC remains una�ected with
the inclusion of such attributes. The only communication overhead that is incurred for such
attributes is that of communicating count matrices which form a very small fraction of the
total runtime. Moreover, the gini index computation for categorical attributes is relatively
much smaller than that for continuous attributes, and comes at no extra communication
overheads. Hence, the addition of such attributes will tend to increase the e�ciency of
ScalParC slightly.

6 Concluding Remarks

This paper presented a parallel formulation of classi�cation algorithms which are based
on sorting of continuous attributes. This algorithm, ScalParC, is scalable in both parallel
runtime and memory requirements. A MPI-based implementation of ScalParC was tested
and the experimental results con�rmed the scalable and e�cient behavior of ScalParC for a
wide range of training set sizes and on a wide range of processors. In particular, ScalParC
achieved a relative speedup of around 7.1 from 4 to 64 processors on a relatively small
problem of classifying 0.4 million records. It could classify 6.4 million records in just over a
minute on 128 processors. Its memory requirements came down from 18.5MB/processor to
3.3 MB/processor when 1.6 million records were classi�ed on 128 processors instead of 16
processors.

It should be noted that throughout the execution of ScalParC, the initial distribution
of the attribute lists is not changed. This may cause some imbalance if the nodes that
terminate in the upper levels of the tree have an uneven distribution of records among
processors. However, an absolute load balance can be maintained by redistributing the lists
among processors when the elimination of records start causing a severe load imbalance.
This approach is explored in [7].

ScalParC's design allows it to handle very large datasets by using increasing number of
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Figure 8: Similarity of ScalParC's communications to the Sparse Matrix Vector Multiplica-
tion algorithms.

processors. This is because, it requires just the local part of the distributed node table to
remain in the main memory of each processor. All the attribute lists can reside on disks
because they are always accessed linearly.

The key component of ScalParC is the parallel hash table. The parallel hashing paradigm
can be used to parallelize other algorithms that require many concurrent updates to a large
hash table. For example, it can be used to design an equally scalable parallelization of the
SLIQ classi�er [2], whose sequential approach is more e�cient than that of SPRINT, but
su�ers a severe memory limitation. Refer to [12] for details of parallelizing SLIQ scalably.

The communication patterns used by ScalParC while doing the parallel hashing were
inspired by those used in parallel sparse matrix-vector multiplication algorithms. Figure 8
demonstrates this similarity by transforming the splitting phase at the root node of Figure 6
into a sparse matrix-vector multiplication problem. The distributed node table acts as the
the vector and the sparse matrix is formed by the record ids that need to be hashed. For
example, as shown in Figure 8, the attribute list for Salary gets mapped into the non zeros
marked by "X"s and the attribute list for Age gets mapped into the non zeros marked by
"O"s. Note that the transformed sparse matrix will have at most nt nonzero elements in each
row, one for each of the continuous attributes. Some of the non zeros may overlap as shown
in Figure 8. Well known parallel formulations of sparse matrix vector multiplication with
horizontal striped partitioning of both the matrix and the vector formed this way, employ
the same communication patterns as those of parallel hashing used in ScalParC.

References

[1] John Shafer, Rakesh Agrawal and Manish Mehta, SPRINT: A Scalable Parallel Classi-
�er for Data Mining, Proc. of 22nd International Conference on Very Large Databases,
Mumbai, India, Sept. 1996.

[2] Manish Mehta, Rakesh Agrawal and Jorma Rissanen, SLIQ: A Fast Scalable Classi�er
for Data Mining, Proc. of the 5th International Conference on Extending Database
Technology (EDBT), Avignon, France, March 1996.

19



[3] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis, Introduction to Par-
allel Computing: Algorithm Design and Analysis, Benjamin-Cummings/Addison Wes-
ley, Redwood City, 1994.

[4] Jason Catlett, Megainduction: Machine Learning on Very Large Databases, PhD thesis,
University of Sydney, 1991.

[5] Philip K. Chan and Salvatore J. Stolfo, Meta-learning for multistrategy and parallel
learning, In Proc. Second Intl. Workshop on Multistrategy Learning, pp.150-165, 1993.

[6] D. J. Fi�eld, Distributed tree construction from large data-sets, Bachelor's Honors The-
sis, Australian National University, 1992.

[7] Eui-Hong (Sam) Han, Anurag Srivastava, Vipin Kumar, Parallel Formulations of Induc-
tive Classi�cation Learning Algorithm, Technical Report 96-040, Department of Com-
puter Science, University of Minnesota, Minneapolis, 1996.

[8] Sreerama K. Murthy, Simon Kasif and Steven Salzberg, A System for Induction of
Oblique Decision Trees, Journal of Arti�cial Intelligence Research vol. 2, pp. 1-32, 1994.

[9] D. Michie, D.J. Spiegelhalter and C. C. Taylor,Machine Learning, Neural and Statistical
Classi�cation. Ellis Horwood, 1994.

[10] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classi�cation and Regression
Trees, Wadsworth, Belmont, 1984.

[11] J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman, 1993.

[12] Mahesh V. Joshi, George Karypis and Vipin Kumar, Design of scalable parallel classi-
�cation algorithms via a new parallel hashing paradigm, Technical Report under prepa-
ration, Department of Computer Science, University of Minnesota, Minneapolis, 1997.

20


