ScalParC : A New Scalable and Efficient Parallel Classification Algorithm for
Mining Large Datasets *

Mahesh V. Joshi

George Karypis

Vipin Kumar

Department of Computer Science
University of Minnesota, Minneapolis, MN 55455.
{mjoshi,karypis,kumar} @cs.umn.edu

Abstract

In this paper, we present ScalParC (Scalable Parallel
Classtfier), a new parallel formulation of a decision tree
based classification process. Like other state-of-the-art de-
cision tree classifiers such as SPRINT, ScalParC is suited
for handling large datasets. We show that existing parallel
Sformulation of SPRINT is unscalable, whereas ScalParC is
shown to be scalable in both runtime and memory require-
ments. We present the experimental results of classifying
up to 6.4 million records on up to 128 processors of Cray
T3D, in order to demonstrate the scalable behavior of Scal-
ParC. A key component of ScalParC is the parallel hash ta-
ble. The proposed parallel hashing paradigm can be used
to parallelize other algorithms that require many concurrent
updates to a large hash table.

1 Introduction

Classification is an important problem in the rapidly
emerging field of data mining. The problem can be stated
as follows. We are given a training dataset consisting of
records. Each record is identified by a unique record id and
consists of fields corresponding to the attributes. An at-
tribute with a continuous domain is called a continuous at-
tribute. An attribute with finite domain of discrete values
is called a categorical attribute. One of the categorical at-
tributes is the classifying attribute or class and the values in
its domain are called class labels. Classification is the pro-

*This work was supported by NSF CCR-9423082, by Army Research
Office contract DA/DAAH04-95-1-0538, by Army High Performance
Computing Research Center cooperative agreement number DAAH04-95-
2-0003/contract number DAAH04-95-C-0008, the content of which does
not necessarily reflect the position or the policy of the government, and no
official endorsement should be inferred. Access to computing facilities was
provided by AHPCRC, Minnesota Supercomputer Institute. Related papers
are available via WWW at URL: http://www.cs.umn.edu/ kumar.

1063-7133/98 $10.00 © 1998 IEEE

573

cess of discovering a model for the class in terms of the re-
maining attributes. The decision-tree models are found to be
most useful in the domain of data mining. They yield com-
parable or better accuracy as compared to other models such
as neural networks, statistical models or genetic models [8].
The decision-tree based classifiers that handle large datasets
are attractive, because use of larger datasets improves the
classification accuracy even further[2]. Recently proposed
classifiers SLIQ [7] and SPRINT [10] use entire dataset for
classification and are shown to be more accurate as com-
pared to the classifiers that use sampled dataset or multiple
partitions of the dataset [2, 3].

The decision tree model is built by recursively splitting
the training set based on a locally optimal criterion until all
or most of the records belonging to each of the partitions
bear the same class label. Briefly, there are two phases to
this process at each node of the decision tree. First phase
determines the splitting decision and second phase splits the
data. The very difference in the nature of continuous and
categorical attributes requires them to be handled in dif-
ferent manners. The handling of categorical attributes in
both phases is straightforward. Handling the continuous at-
tributes is challenging. An efficient determination of the
splitting decision used in most of the existing classifiers re-
quires these attributes to be sorted on values. The classi-
fiers such as CART [1] and C4.5 [9] perform sorting at every
node of the decision tree, which makes them very expensive
for large datasets, since this sorting has to be done out-of-
core. The approach taken by SLIQ and SPRINT sorts the
continuous attributes only once in the beginning. The split-
ting phase maintains this sorted order without requiring to
sort the records again. The attribute lists are split in a consis-
tent manner using a mapping between a record identifier and
the node to which it belongs after splitting. SPRINT imple-
ments this mapping as a hash table, which is built on-the-fly
for every node of the decision tree. The size of this hash ta-
ble is proportional to the number of records at the node. For



the upper levels of the tree, this number is O(N), where N
is the number of records in the training set. If the hash table
does not fit in the main memory, then SPRINT has to divide
the splitting phase into several stages such that the hash table
for each of the phases fits in the memory. This requires mul-
tiple passes over each of the attribute lists causing expensive
disk 1/O.

The memory limitations faced by serial decision-tree
classifiers and the need of classifying much larger datasets
in shorter times make the classification algorithm an ideal
candidate for parallelization. The parallel formulation, how-
ever, must address the issues of efficiency and scalability in
both memory requirements and parallel runtime. Relatively
little work has been done so far in developing parallel for-
mulations of decision tree based classifiers [10, 4]. Among
these, the most relevant one is the parallel formulation of
SPRINT[10], as it requires sorting of continuous attributes
only once. SPRINT’s design allows it to parallelize the split
determining phase effectively. The parallel formulation pro-
posed for the splitting phase, however, is inherently unscal-
able in both memory requirements and runtime. It builds the
required hash table on all the processors by, gathering the
record-id-to-node mapping from all the processors. For this
phase, the communication overhead per processor is O(IV).
Apart from the initial sorting phase, the serial runtime of a
classifier is O(N). Hence, SPRINT is unscalable in run-
time. It is unscalable in memory requirements also, because
the memory requirement per processor is O(N), as the size
of the hash table is of the same order as the size of the train-
ing dataset for the upper levels of the decision tree, and it
resides on every processor.

In this paper, we present a new paraliel formulation of a
decision tree based classifier. We call it ScalParC (Scalable
Parallel Classifier) because it is truly scalable in both run-
time and memory requirements. Like SPRINT, ScalParC
sorts the continuous attributes only once in the beginning.
It uses attribute lists similar to SPRINT. The key difference
is that it employs a distributed hash table to implement the
splitting phase. The communication structure used to con-
struct and access this hash table introduces a new paral-
lel hashing paradigm. A detailed analysis of applying this
paradigm to the splitting phase shows that the overall com-
munication overhead of the phase does not exceed O(N),
and the memory required to implement the phase does not
exceed O(N/p) per processor. This makes ScalParC scal-
able in both runtime and memory requirements. We imple-
mented the algorithm using MPI to make it portable across
most of today’s parallel machines. We present the experi-
mental results of classifying up to 6.4 million records on up
to 128 processors of Cray T3D, in order to demonstrate the
scalable behavior of ScalParC in both runtime and memory
requirements.

The paper is organized as follows. We describe the se-

quential decision tree based classification prdcess in detail,
and identify the limitations of serial algorithms in section 2.
Section 3 gives a detailed description of the ScalParC de-
sign process, by discussing the issues of load balancing, data
distribution, possible parallelization approaches, the parallel
hashing paradigm and its application to the splitting phase.
Section 4 outline the algorithm. The experimental results
are presented in Section 5.

2 Sequential Decision Tree based Classifica-
tion

A decision tree model consists of internal nodes and
leaves. Each of the internal nodes has a decision associated
with it and each of the leaves has a class label attached to
it. A decision-tree based classification learning consists of
two steps. In the first step of tree induction, a tree is induced
from the given training set. In the second step of tree prun-
ing, the induced tree is made more concise and robust by re-
moving any statistical dependencies on the specific training
dataset. The induction step is computationally much more
expensive as compared to the pruning step. In this paper, we
concentrate only on the induction step.

Tree induction consists of two phases at each of the in-
ternal nodes. First phase makes a splitting decision based
on optimizing a splitting index. We call this phase the split
determining phase. The second phase is called the splitting
phase. It splits the records into children nodes based on the
decision made. The process stops when all the leaves have
records bearing only one class label.

One of the commonly used splitting criteria is to mini-
mize the gini index [1] of the split. The calculation of gini
index involves computing the frequency of each class in
each of the partitions. Let a parent node, having n records
from ¢ possible classes, be split into d partitions, each parti-
tion corresponding to a child of the the parent node. The gini
index for the ¢*" partition is gini; = 1 — 327 (ny/ni)?,
where n; is the total number of records in partition 7, among
which n;; records bear class label j. The matrix [n;;] is
called the count matrix. The gini index of the total split is
given by ginispz = Zf=1 {(ni/n) gini;. The partitions
are formed based on a splitting decision which consists of a
condition on the values of a single attribute called the splis-
ting attribute. The condition which gives the least value for

ginispuit is chosen to split the records at that node.

574

Each of the attributes is a candidate for being the split-
ting attribute. For a continuous attribute, A, we assume that
two partitions are formed based on the condition 4 < v, for
some value v in its domain. One partition contains records
which satisfy the condition and the other contains the rest.
For a categorical attribute, B, having m distinct values in
its domain, we assume that the splitting decision forms m



partitions', one for each of the values of B. The computa-
tion of gini index for a categorical attribute is straightfor-
ward because there is only one count matrix possible. For
a continuous attribute, we need to decide on the value v. If
the continuous attribute is sorted on its values at each of the
nodes in the tree, then a linear search can be made for the
optimal value of v by moving the possible split point from
the beginning to the end of the list, one value at a time, up-
dating the count matrix, and computing the gini,y;; value
for each point. Since each attribute needs to be processed
separately, the training set is fragmented vertically into lists
for each of the attributes. These lists are called the attribute
lists. A record id is associated with each value in all the at-
tribute lists.

After the splitting decision is made, the second phase
splits the records among the children nodes. All the at-
tribute lists should be split. The information regarding
which record gets assigned to which node is obtained based
on the splitting decision and the record ids in the list of the
splitting attribute. With this information, the list of splitting
attribute can be split easily. The lists of other attributes must
be split consistently, which means that the values belong-
ing to a particular record id from all the attribute lists must
get assigned to the same node of the decision tree. Different
lists, in general, may have a different order on record ids, be-
cause the continuous attributes are sorted on values. Hence
to perform a consistent assignment efficiently, some kind of
amapping of record ids to node is required. The structure of
this mapping is determined by the approach used for split-
ting. Among the different possible approaches, SPRINT’s
approach is the most suitable one for handling large datasets
on a serial machine.

SPRINT associates the class information along with the
record id for each value in the attribute lists. It splits each
of the attribute lists physically among nodes. The splitting
1s done such that the continuous attribute lists maintain their
sorted order on values at each of the nodes. All these choices
make it possible to implement the split determining phase
efficiently by a sequential scan of continuous attribute lists.
Once the splitting decision is made, it is straightforward to
split the list of the splitting attribute. In order to split other
lists in a consistent manner, a hash table is formed to main-
tain a mapping of record ids to nodes. The hash table is built
from record ids in the splitting attribute’s list in conjunction
with the splitting decision. Then the record ids in the lists of
non-spitting attributes are searched to get the node informa-
tion, and perform the split accordingly. The size of this hash
table is proportional to the number of records at the current
node. For the root node of the decision tree, this size is the
same as the original training dataset size, and it remains of
the same order for the nodes at upper levels. Thus, this ap-

11t is also possible to form two partitions for a categorical attribute each
characterized by a subset of values in its domain.

575

proach also faces memory limitations for the upper levels of
the tree. If the hash table does not fit in the memory, then
multiple passes need to be done over the entire data requir-
ing additional expensive disk I/O.

3 Designing ScalParC

The design goals for a parallel formulation of the deci-
sion tree based classification algorithms are scalability in
both runtime and memory requirements. The parallel for-
mulation should overcome the memory limitations faced by
the sequential algorithms; i.e., it should make it possible to
handle larger datasets without requiring redundant disk I/O.
Also, a parallel formulation should offer good speedups over
serial algorithms. In this section, we describe the design is-
sues involved in parallelizing the classification process de-
scribed in the previous section and propose the design ap-
proach taken by ScalParC.

The parallel runtime consists of computation time and the
parallelization overhead. If T’ is the serial runtime of an al-
gorithm and T}, is the parallel runtime on p processors, then
the parallelization overhead is given by T, = pT, — T.
For runtime scalability, the overhead, T,, should not ex-
ceed O(T5)[6]; i.e., the parallelization overhead per proces-
sor should not exceed O(T5 /p).

For the classification problem at hand, let the training set
size be N and the problem be solved on p processors. Let
there be n. classes and n, attributes out of which n; are con-
tinuous and n, are categorical. After the initial sorting of the
continuous attributes, the serial runtime is T; = O(N) fora
majority of levels, when large datasets are being classified.
Memory efficient and scalable formulations of parallel sort-
ing are well known [6]. Hence, for runtime scalability, the
algorithm must be designed such that none of the compo-
nents of the overall communication overhead of the classifi-
cation process exceeds O(V) at any level; i.e., the per pro-
cessor communication overhead should not exceed O(N/p)
per level. Since the memory required to solve the classifi-
cation problem on a serial machine is O(N), for memory
scalability of the paralle] formulation, the amount of mem-
ory per processor should not exceed O(N/p).

3.1 Data Distribution and Load Balancing

The first design issue is the assignment of data to the pro-
cessors. The computation time at a node is proportional to
the number of records at that node. So, the best way to
achieve load balance at the root node is to fragment each at-
tribute list horizontally into p fragments of equal sizes and
to assign each fragment to a different processor [10].

We assume that the initial assignment of data to the pro-
cessors remains unchanged throughout the process of clas-
sification. With this approach, the splitting decision may



cause the records of a node to be distributed unevenly among
processors. If the computations for all the records of all the
nodes at a level are performed before doing any synchro-
nizing communication between the processors, then the per-
node imbalance would not be a concern. This approach of
doing per-level communications as against per-node com-
munications should also perform better on the parallel ma-
chines with high communication latencies, especially be-
cause the number of nodes will be large at the levels much
deeper in tree.

3.2 Possible Parallelization Approaches

The next issue is the design of algorithms for each of the
two phases of tree induction. The implementation of the
split determining phase is straightforward. For the continu-
ous attributes, the design presented in parallel formulation of
SPRINT [10] is efficient. For a given continuous attribute,
it initializes the count matrices on every processor corre-
sponding to the split point lying at the beginning of the lo-

cal attribute list on that processor. Then each processor pro- -

ceeds to compute gini indices for all possible positions in its
local part of the list. For the categorical attributes, the local
count matrices from all the processors can be gathered onto
a single processor, where the gini index can be computed.

The parallelization of the splitting phase is more difficult.
In the parallel formulation of SPRINT, the required hash ta-
ble is built on all the processors for each node of the deci-
sion tree. Then each processor splits its local copies of all
the attribute lists as in the sequential algorithm. Since each
processor has to receive the entire hash table, the amount
of communication overhead per processor is proportional to
the size of the hash table, which is (V) as noted earlier in
section 2. Hence, this approach is not scalable in runtime.
The approach is not scalable in terms of memory require-
ments also, because the hash table size on each processor is
O(N) for the top node as well as for nodes at the upper lev-
els of the tree.

3.3 The ScalParC Parallelization Approach

Here, we present our approach to parallelizing the split-
ting phase which is scalable in both memory and runtime re-
quirements.

3.3.1 Parallel Hashing Paradigm

We first present the scalable parallel hashing paradigm that
is used in ScalParC to achieve scalability in the splitting
phase. The paradigm gives mechanisms to construct and
search a distributed hash table, when many values need to
be hashed at the same time. We assume that there is a hash
function, h, that hashes a given key, k, to'yield a pair of num-
bers h(k) = (pi,1), such that k hashes to location / on the

576

local part of the hash table residing on processor p;. Each
key k is associated with a value v. The hash table is con-
structed as follows. First each processor scans through all
its (k,v) pairs and hashes k in each pair to determine the
destination processor, p;, and location, !, for storing value
v. Every processor maintains a separate buffer destined for
each of the processors, p;. Each entry in this buffer is an
(I,v) pair. Note that some of these buffers might be empty,
if none of the keys hashes to the corresponding processors.
Then one step of an all-to-all-personalized communication
[6] is done. Finally, each processor extracts the (I, v) pairs
from the received buffers and stores value v at index ! of
their respective hash tables. The same process can be fol-
lowed while searching for values given their corresponding
keys. Each processor hashes its keys, k, to fill an enquiry
buffer for all the processors p; with indices [. The receiv-
ing processors look up for v values at indices [, fill them in
a buffer and another step of all-to-all-personalized commu-
nication gets the values back to the processors who require
them. If each processor has m keys to hash at a time, then the
all-to-all personalized cothmunication can be done in O(m)
time provided m is Q(p) [6]. Thus, the parallel hashing done
in the proposed manner above is scalable as long as Q(p?)
keys are hashed at the same time. Note that this paradigm
can also support collisions by implementing open chaining
at the indices [ of the local hash tables.

3.3.2 Applying the Paradigm to ScalParC

Now, let us consider applying this paradigm to the split-
ting phase of classification. Once the splitting decision has
been made at a node, a record-id-to-node mapping needs to
be constructed using the list of splitting attribute, and then,
this mapping will be inquired while splitting other attribute
lists. The information needed to be stored in the mapping
is the child number that a record belongs to after:splitting.
We call this mapping a node table. The node table is as-
sumed to be a hash table with the hash function h(j) =
(7 div N/p, j mod N/p), where the global record id j is the
key and the child number is the value associated with it. The
node table is of size IV. Itis distributed equally among p pro-
cessors; hence, the size on each processor is O(N/p). Note
that, since the total number of global records is V, the above
hash function is. collision-free. 'Figure 1(b) shows a dis-
tributed node table for the example training dataset shown
in the part (a) of the figure. For the example in the figure,
we have N = 9 and p = 3, hence the hash function is
h(j) = (pi,1), where p; = j div 3 and I. = j.mod 3. Ini-
tially, this node table is empty. We now apply the communi-
cation structure described in section 3.3.1 to update and in-
quire the child number information stored in the distributed
node table.

The process of updating the node table is similar to the



rid = Salary Age cid
Pi : Processor i 0 24542 70 0
SP : split point
rid : global record id 1 98816 33 0
cid : class label 2 1 49241 19 1
kid : child number 3| 126146 38 1
L : left child (child 0)
R : right child (child 1) 4 | 94766 50 (0
5| 97672 24 0
6 | 136838 40 1
7 | 153032 58 1
8 | 64911 28 0
(a)
Updated
Node Table
hash buffers fid kid
PO P2 0 2 1 0|L
Po [ (O,L)|(2,L)[(2,L) PO (O,L)|(2,.L)|(1,L) PO [ 1|L
PO Pl comm 4 5 3 e § Il;
u
P (LD ALEL)| —= PILL|CLIOR)] —= . 4L
Pi P2 8 6 1 g ]1;
P2 P2
(O,R){ (O,R}(1,R) (2,1)[(O,R)|(1,R), » [71R
8(L

(c)

Salary Age Node Table
value rid cid value rid cid rid kid
24542 (0[O0 19 12]1 0f-

PO | 49241 |2f1]| PO 24|5]|0 POl1}-
64911 {80 28 | 810 21-
94766 [4]0 33 (110 3]-

Pl 97672 |50 P1| 38 3|t P1[4]-

> 98816 | 1[0 4061 S|-
SP 126146 (31 50 (40 6|-
P2 {1368386]1 P2| 58171 P2(7]-
153032 {7]1 70 (010 8-
(b)
irv buff intermediate index
enquiry buffers buffers
go 1;1 1;2 PO Pl P2
p[ 2] 2]2] [ 2] 1]o0]
1 3 6
ali{ofo] =% m[z]o]1]
0 4 7
w0 [ 1] 2o 1]
retrieve
intermediate value
buffers result buffers
PO, PI , P2
plL L] pol L [L L]
PO, Pl , P2
PO, P, P2
p[L| R|R | [L]L]R]
@

Figure 1. lllustrating the concept of distributed node table and the application of parallel hashing
paradigm to splitting phase of ScalParC. (a) An example training set. (b) The attribute lists and empty
node table at the beginning of splitting phase at the root node. (c) The process of hashing values into
the node table. The global record id is shown corresponding to each of the entries in the received
buffers. (d) The process of enquiring values from the node table. The global record id is shown cor-
responding to each of the entries in the enquiry buffers.

process of constructing a distributed hash table. Figure 1(c)
illustrates this process at the top node of the decision tree be-
ing built using the training set of Figure 1(a). The splitting
attribute is Salary and the optimal split point is as shown.
The record-id-to-node mapping obtained out of the list of
splitting attribute is used to form the hash buffers. Each ele-
ment of these buffers is a (I, child number) pair. For exam-
ple, after the splitting decision, processor PO knows that all
the record ids in its local list of Salary belong to child O or
the left child (denoted by L). So, after hashing record id 8, it
fills an entry (I = 8 mod 3 = 2, child number = L) in pro-
cessor P2’s hash buffer. Each processor follows the same
procedure. Then, a step of all-to-all-personalized commu-
nication is performed, and the node table is updated, using
the received information. The updated node table is shown
in the figure.

After updating the node table, it needs to be inquired for

577

the child number information in order to split the lists of
non-splitting attributes. Each attribute list is split separately.
The process is illustrated in Figure 1(d) for the attribute Age
at the root node. Using the paradigm above, each proces-
sor first forms the enquiry buffers by hashing the record ids
in its local list of Age! An enquiry buffer for a processor
contains local indices [. For example, processor P1 forms
an enquiry buffer for processor P2 containing [ = 0 af-
ter hashing the global record id 6 in its local list. After a
step of all-to-all-personalized communication, each proces-
sor receives the intermediate index buffers containing local
indices to be searched for. The node table 1s then searched,
and the child numbers obtained are used to fill intermediate
value buffers. These are communicated using another step
of all-to-all-personalized communication to form the result
buffers, which are used to extract the child information. All
these buffers are shown in Figure 1(d) for the enquiry pro-



Pre-sort
1= 1 (corresponds to the root level of the decision tree)
do while (there are non-empty nodes at level )
Find-Split I
Find-Split I
Perform-Split-1
Perform-Split-IT
[=1+1
end do

Figure 2. ScalParC tree induction algorithm.

cess of Age.

A detailed per-level analysis of runtime and memory
scalability of the above process shows that no processor re-
ceives more than O(N/p) updates to the node table, and no
processor inquires more than (ngN/p) entries in the node
table. There is a possibility, however, that some processors
might send more than O(N/p) updates to the node table.
This can render the formulation runtime unscalable, but it
can be shown that no parallelization approach, which sorts
the continuous attributes and maintains initial data distri-
bution, can achieve runtime scalability in such cases. The
memory scalability is still ensured in ScalParC in such cases,
by dividing the updates being sent into blocks of N/p. The
detailed analysis and some possible ways of optimizing the
communication overheads are given in [5].

To summarize, applying the parallel hashing paradigm
makes ScalParC truly memory scalable. Furthermore, it is
also runtime scalable except for some pathological cases.

4 The ScalParC Algorithm

The main data structures used in ScalParC are the dis-
tributed attribute lists, the distributed node table, and the
count matrices. The details can be found in [5].

With these data structures, the ScalParC tree induction al-
gorithm is shown in Figure 2.

In the Pre-sort phase, we use the scalable parallel sample
sort algorithm [6] followed by a parallel shift operation, to
sort all the continuous attributes.

In the Find-Split-I phase, for each continuous attribute,
the local count matrix is computed for each node, corre-
sponding to the split point lying at the beginning of the local
attribute list, and then a parallel prefix operation is applied
to compute the global count matrix for that split point posi-
tion. For a categorical attribute, a processor is designated to
coordinate the computation of the global count matrices for
all the nodes, using parallel reduction operation [6].

In the Find-Split-II phase, termination criterion is applied
to decide if a node needs further splitting. For the nodes re-
quiring a split, the optimal gini index is computed using the

578

global count matrices found in previous phase. For a contin-
uous attribute, the local list is scanned one record at a time
to find the optimal split point. For a categorical attribute, the
designated processor computes the gini index. The overall
best splitting criteria for each node is found using a parallel
reduction operation.

In the Perform-Split-1 phase, the lists of splitting at-
tributes are split, the hash buffers are formed, and the dis-
tributed node table is updated using the process described in
section 3.3.2. As noted in that section, there might be more
than one communication steps needed to update the node ta-
ble, in order to ensure memory scalability.

In the Perform-Split-II phase, the lists of all non-splitting
attributes are split, one attribute at a time. For each such at-
tribute, the node table is inquired using the enquiry process
described in section 3.3.2. The collected node information
is then used to split the attribute.

Refer to [5] for illustrations and further details of the al-
gorithm.

5 Experimental Results

We have implemented the ScalParC tree induction al-
gorithm using MPI. We tested it on up to 128 processors
of a Cray T3D where each processor had 64MB of mem-
ory. We benchmarked the combination of Cray’s tuned MPI
implementation and the underlying communication subsys-
tem assuming a linear model of communication. On an av-
erage, we obtained a latency of 100 psec and bandwidth
of 50- MB/sec for: point-to-point communications, and a la-
tency of 25 usec per processor and bandwidth of 40 MB/sec
for the all-to-all collective communication operations. We
tested ScalParC for training sets containing up to 6.4 million
records, each containing seven attributes. There were two
possible class labels. The training sets were artificially gen-
erated using a scheme similar to that used in SPRINT[10].

Figure 3(a) shows the runtime scalability of ScalParC by
plotting the speedup obtained for various training set sizes.
For a given problem instance, the relative speedups decrease
as the number of processors are increased, because of in-
creased overheads. In particular, for 1.6 million records,
ScalParC achieved a relative speedup of 1.61 while going
from 16 to 32 processors, and a relative speedup of 1.31
while going from 64 to 128 processors.  Relative speedups
improve for larger problem sizes, because of increased com-
putation to communication ratio. In particular, while going
from 64 to 128 processors, the relative speedup obtained for
6.4 million records was 1.43 and a relative speedup obtained
for 3.2 million records was 1.36. These trends are typical of
a normal scalable parallel algorithm[6]. Note that ScalParC
could classify 6.4 million records in just 77 seconds on 128
processors. This demonstrates that large classification prob-
lems can be solved quickly using ScalParC.



120 ¥ T Ll T T T
. 0.2m --—
Ry 0.4m -+
| 0.8m -o-- |
100 ‘-.\.\ 1.6m -*—
B 3.2m -+--
-6.4m -x-
80 + 4 ».\_\‘ J

B0F %

Parallel Runtime (Seconds)

0 20 40 60 80 100 120 140
Number of Processors
(a)

Memory Requirements per processor (in million bytes)

0 20 40 60 80 100 120 140
Number of Processors :
(b)

Figure 3. ScalParC behavior (a) Scalability for Parallel Runtime. (b) Scalability for Memory Require- .

ments.

Figure 3(b) demonstrates the memory scalability of Scal-
ParC by plotting the memory required per processor against
the number of processors for various training set sizes. For
smaller number of processors, the memory required drops
by almost a perfect factor of two when the number of pro-
cessors is doubled. Sizes of some of the buffers required for
the collective communication operations increase with the
increasing number of processors. Hence, for larger num-
ber of processors, we see a deviation from the ideal trend.
In particular, for 0.8 million records, the memory required
drops by a factor of 1.94 going from 8 to 16 processors, and
it drops by a factor of 1.78 going from 32 to 64 processors.

Refer to [5] for more detailed results.

References

[1] L. Breiman, J.H.Friedman, R.A.Olshen, and C.J.Stone.
Classification and Regression Trees. Wadsworth, Belmont,
1984.

[2]1 J. Catlett. Megainduction: Machine Learning on Very Large
Databases. PhD thesis, University of Sydney, 1991.

[3] P.K. Chanand S. Stolfo. Meta-learning for multistrategy and
parallel learning. In Proc. of Second International Workshop
on Multistrategy Learning, pages 150-165, 1993.

[4] D. J. Fifield. Distributed tree construction from large data-
sets. Bachelor’s Honors thesis, Australian National Univer-
sity, 1992.

[5] M. V. Joshi, G. Karypis, and V. Kumar. Design of scalable
parallel classification algorithms for mining large datasets.

579

[6]

(71

[8]

[91
{101

Technical Report 98-004, Department of Computer Science,
University of Minnesota, Minneapolis, MN, 1998. Also
available at URL: http://www.cs.umn.edu/kumar:

V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduc-
tion to Parallel Computing: Algorithm Design and Analysis.
Benjamin-Cummings/Addison Wesley, Redwood City, CA,
1994.

M. Mehta, R. Agarwal, and J. Rissanen. SLIQ: A fast
scalable classifier for data mining. In Proc. of 5th In-
ternational Conference on Extending Database Technology
(EBDT), Avignon, France, March 1996. :

D. Michie, D.J.Spiegelhalter, and C. C. Taylor. Machine
Learning, Neural and Statistical Classification. Ellis Hor-
wood, 1994,

J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufman, 1993.

J. Shafer, R. Agarwal, and M. Mehta. SPRINT: A scalable
parallel classifier for data mining. In Proc. of 22nd Interna-
tional Conference on Very Large Databases, Mumbai, India,
September 1996.



