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ABSTRACT

Recently published studies have shown that partitional clustering
algorithms that optimize certain criterion functions, which measure
key aspects of inter- and intra-cluster similarity, are very effective
in producing hard clustering solutions for document datasets and
outperform traditional partitional and agglomerative algorithms. In
this paper we study the extent to which these criterion functions
can be modified to include soft membership functions and whether
or not the resulting soft clustering algorithms can further improve
the clustering solutions. Specifically, wefocus on four of these hard
criterion functions, derive their soft-clustering extensions, present a
comprehensive experimental evaluation involving twelve different
datasets, and analyze their overall characteristics. Our results show
that introducing softnessinto the criterion functions tends to lead to
better clustering results for most datasets and consistently improve
the separation between the clusters.
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1. INTRODUCTION

Fast and high-quality document clustering algorithms play an im-
portant role in helping users to effectively navigate, summarize,
and organize an enormous amount of text documents available on
the Internet, digital libraries, news sources, and company-wide in-
tranets. Over the years a variety of different algorithms have been
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developed. These algorithms can be categorized along different di-
mensions based either on the underlying methodology of the algo-
rithm, leading to agglomerative [36, 24, 15, 16, 22] or partitional
approaches [28, 20, 32, 8, 41, 19, 38, 7, 13], or on the nature of the
membership function, leading to hard (crisp) or soft (fuzzy) solu-
tions.

In recent years, soft clustering a gorithms have been studied in doc-
ument clustering and shown to be effective [29, 25, 30] in find-
ing both overlapping and non-overlappying clusters. Studies have
shown that “hardening” the results obtained by fuzzy C-means pro-
duces better hard clustering solutions than direct K-means [17],
which suggests that including soft membership functionsinto other
criterion functions may lead to better hard clustering solutions as
well.

Recently, we studied seven different hard partitional clustering cri-
terion functions in the context of document clustering, which op-
timize various aspects of intra-cluster similarity, inter-cluster dis-
similarity, and their combinations [45, 44, 46]. Our experiments
showed that different criterion functions lead to substantially dif-
ferent results, whereas our analysis showed that their performance
depends on the degree to which they can correctly operate when
the dataset contains clusters of different densities (i.e., they contain
documents whose pairwise similarities are different) and the degree
to which they can produce balanced clusters. We a so showed that
among these seven criterion functions, there are a set of criterion
functions that consistently outperform the rest.

Thefocus of this paper isto extend four of these hard criterion func-
tions (Z1, Z2, £1, G1 [45]) to alow soft membership functions, and
to see whether or not introducing softness into these criterion func-
tions leads to better clustering solutions. These criterion functions
were selected because they include some of the best- and worst-
performing schemes, and represent some of the most widely-used
criterion functions for document clustering. We developed a hard-
clustering based optimization algorithm that optimizes the various
soft criterion functions. Since this optimization algorithm simul-
taneously produces both a hard and a soft clustering solution, we
focused on evaluating the hard clustering solution and compared it
with the one obtained by the hard criterion functions. We present
a comprehensive experimental evaluation involving twelve differ-
ent datasets. Our experimental results show that introducing soft-
ness into the criterion functions tends to consistently improve the
separation between the clusters. Although the experimental results
show some dataset dependency, for most datasets the soft criterion



functions tend to lead to better clustering results. Moreover, our
experimental results show that the soft clustering extension of the
worst-performing hard criterion function (Z,) achieves the best rel-
ative improvement.

The rest of this paper is organized as follows. Section 2 provides
some information on how documents are represented and how the
similarity or distance between documents is computed. Section 3
discusses some existing soft clustering algorithms related to our
work. Sections 4 and 5 describe the four hard criterion functions
that are the focus of this paper and presents their soft clustering
extensions, respectively. Section 6 describes the algorithm that op-
timizes the various soft criterion functions and the clustering algo-
rithm itself. Section 7 provides the detailed experimental evalu-
ation of the various soft criterion functions. Section 8 discusses
some important observations from the experimental results. Fi-
nally, Section 9 provides some concluding remarks and future re-
search directions.

2. PRELIMINARIES

Through-out this paper we will use the symbols n, m, and k to de-
note the number of documents, the number of terms, and the num-
ber of clusters, respectively. We will use the symbol S to denote
the set of n documents that we want to cluster, Si1, Ss, ..., Sk to
denote each one of the k clusters, and n1, na, . .., ng to denote the
sizes of the corresponding clusters.

We represent the documents using the vector-space model [35]. In
this model, each document d is considered to be a vector in the
space of the distinct terms present in the collection. We employ
the tf-idf term-weighting scheme that represents each document d
as the vector

disigr = (tf, x idf,, tf, x idf,, ... tf xidf ).
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In this scheme, tf, corresponds to the frequency of the ith term in
the document and idf, = log(n/df,) corresponds to itsinverse doc-
ument frequency in the collection (df; is the number of documents
that contain the ith term). To account for documents of different
lengths, we scale the length of each document vector so that it is of
unit length.

We measure the similarity between a pair of documents d; and
d; by taking the cosine of the angle formed between the tf-idf
representation of their vectors. Specifically, thisis defined as
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which can be simplified to cos(d;, d;) = d;‘d;, since the docu-
ment vectors are of unit length. This similarity measure becomes
one if the document vectors point to the same direction (i.e., they
contain identical set of terms in the same relative proportion), and
zero if there is nothing in common between them (i.e., the vectors
are orthogonal to each other).

Finally, given aset A of documents and their corresponding vector
representations, we define the composite vector Da tobe D4 =
> 4ca d, and the centroid vector Cs tobe Ca = D4 /|Al.

3. RELATED RESEARCH

Soft clustering that allows an object to appear in multiple clusters
has been studied extensively and still remains of great interest. As
many datasets and application domains require soft clustering solu-
tions. The fuzzy C-means agorithm [3] is one of the most widely

used soft clustering algorithms. It is a soft version of the K -means
algorithm that uses a soft membership function. Given a set of ob-
jectsdy, da, ..., dm, the fuzzy C-means algorithm tries to optimize
aleast-squared error criterion:
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where u; - isthed;’smembership in therth fuzzy cluster satisfying
fozl wir = 1,4, m isthe fuzzy factor, and C.. isthe fuzzy cen-
troid. This minimization problem can be solved analytically by us-
ing Lagrange multipliers, and the optimization can be achieved by
iteratively updating the membership function and fuzzy centroids
asfollows:
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The fuzzy factor m controls the fuzzyness of the clustering solu-
tion. In general, the fuzzyness of the clustering solution increases
as the value of m increases and vice versa. As m approaches one,
the algorithm behaves more like standard K'-means.

Other newly devel oped soft clustering algorithms differ from fuzzy
C-means by employing different dissimilarity functions [4, 29], or
by including both asoft membership function and aweight function
(measuring the contribution of each object in afuzzy cluster) inthe
criterion functions (robust fuzzy C-means [21] and K-harmonic
means [43]). Hamerly and Elkan [17] provided an interesting com-
parison between K-means, fuzzy C-means, K-harmonic means
and two other variates to show the effectiveness of various soft
membership functions and weight functions.

Soft clustering has been applied to document clustering and shown
to be effective [29, 25, 30]. One of the limitations of classic fuzzy
C-means in document clustering is the use of Euclidean distance.
Hence, the focus of that research has been on exploring similarity
measures that are more suitable for document clustering, for ex-
ample, cosine similarity (Mendes et a. [29]). To our knowledge,
extending other effective criterion functions (for example, & and
G1) with soft membership functions for document clustering has
not been studied in the literature.

Another approach to soft clustering proposed by Backer isinduced
fuzzy partitioning [1]. The key idea is that a hard clustering so-
lution is always mentained in the optimization process. The opti-
mization process starts from an initial hard parition and consists of
anumber of iterations. During each iteration, the soft membership
function is estimated based on the affinity that each object has for
hard clusters to induce a soft partition. Then, the hard partition is
modified in away such that the new induced soft partition leads to
a better criterion function value. The optimization stops when no
modification of the hard partition can be made. Notice that after
the optimization process terminates, thereisapair of clustering so-
lutions: a hard clustering solution and the induced soft one. Our
proposed optimization algorithm is similar to induced fuzzy par-
titioning and we focus on evaluating the hard clustering solution
obtained by this optimization.



4. HARDCLUSTERING CRITERIONFUNC-
TIONS

A key characteristic of many partitional clustering algorithms is
that they use a global criterion function whose optimization drives
the entire clustering process. For some of these algorithms the cri-
terion function is implicit (e.g., PDDP [7]), whereas for other al-
gorithms (e.g, K-means [28] and Autoclass [8, 10]) the criterion
function is explicit and can be easily stated. This later class of al-
gorithms can be thought of as consisting of two key components.
First isthe criterion function that needs to be optimized by the clus-
tering solution, and second isthe actual algorithm that achievesthis
optimization.

Recently, we studied seven different hard partitional clustering cri-
terion functions in the context of document clustering, which op-
timize various aspects of intra-cluster similarity, inter-cluster dis-
similarity, and their combinations [45, 44, 46]. Our experiments
showed that different criterion functions lead to substantially dif-
ferent results, whereas our analysis showed that their performance
depends on the degree to which they can correctly operate when
the dataset contains clusters of different densities (i.e., they contain
documents whose pairwise similarities are different) and the degree
to which they can produce balanced clusters.

In this paper, due to space constraints, we focus on only four out of
these seven criterion functions, which are referred to as 7,, 7o,
&1, and G, [45, 46]. This subset represents some of the most
widely-used criterion functions for document clustering, and in-
cludes some of the best- and worst-performing schemes. A short
description of these functions is presented in the rest of this sec-
tion, and the reader should consult [45] for a complete description
and motivation.

The Z; criterion function (Equation 1) maximizes the sum of the
average pairwise similarities (as measured by the cosine function)
between the documents assigned to each cluster weighted accord-
ing to the size of each cluster and has been used successfully for
clustering document datasets [34].

k
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TheZ; criterion function (Equation 2) isused by the popular vector-
space variant of the K-means algorithm (also referred to as spher-
ical K-means) [9, 26, 12, 37]. In this algorithm each cluster is
represented by its centroid vector and the goal is to find the solu-
tion that maximizes the similarity between each document and the
centroid of the cluster that is assigned to.

k
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The &, criterion function (Equation 3) computes the clustering by
finding a solution that separates the documents of each cluster from
the entire collection. Specifically, it tries to minimize the cosine
between the centroid vector of each cluster and the centroid vector
of the entire collection. The contribution of each cluster isweighted
proportionally to its size so that larger clusters will be weighted

higher in the overall clustering solution.

k
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The G, criterion function (Equation 4) is derived by modeling the
rel ationships between the documents using the document-to-document
similarity graph G [2, 42, 11]. G, is obtained by treating the
pairwise similarity matrix of the dataset as the adjacency matrix of
Gs. The G; function [13] views the clustering process as that of
partitioning the documents into groups that minimize the edge-cut
of each partition. However, because this edge-cut-based criterion
function may have trivial solutions the edge-cut of each cluster is
scaled by the sum of the cluster’'s internal edges [13]. Since the
similarity between each pair of documents is measured using the
cosine function, the edge-cut between the rth cluster and the rest
of the documents (i.e., cut(S,, S — S;) and the sum of theinternal
edges between the documents of the rth cluster are given by the
numerator and denominator of Equation 4, respectively.

k Zdiesr,djeS_ST COS(di,dj)
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minimize G, =

4

5. SOFT CLUSTERING CRITERION FUNC-
TIONS

A natural and straight-forward way of deriving soft clustering solu-
tions is to assign each document to multiple clusters. Thisis usu-
ally achieved by using membership functions [29, 17, 3, 1] that
for each document d; and cluster .S;, they compute a non-negative
weight, denoted by m; ;, such that Zj m;,; = 1, which indicates
the extent to which document d; belongs to cluster S;. Thus, we
can think of the various m; ; values as the fraction by which d;
belongs to cluster S;. Note that in the case of a hard clustering
solution, for each document d; one of these m; ; valuesis one (the
one corresponding to the cluster that d; belongsto) and the rest will
be zero.

Using these membership functions, the soft clustering extensions of
the hard criterion functions described in Section 4 can be derived
asfollows.

Soft Z; Criterion Function.  Since each cluster can now con-
tain fractions of all the documents, a natural way of measuring the
overall pairwise similarity between the documents assigned to each
cluster isto take into account their membership functions. Specif-
ically, we can compute the pairwise similarity between the (frac-
tional) documents assigned to the rth soft cluster as

Dttt cos(di, dy).

0,3

Similarly, we can compute the soft sizem, of the rth soft cluster as
nr =y, mir. Using these definitions, then the soft Z; criterion
function, denoted by S7,, isdefined as follows:

k
maximize SZ; = E Tor (_LQ E Wi e g, COS(di,dj)) . (5
n
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Soft Z, Criterion Function. A soft version of the Z, criterion
function can be obtained by extending the notion of the cluster's
centroid vector to soft clusters. Since each soft cluster contains




fractions of documents, its centroid vector should also be cal cul ated
based on the fractional documents that it contains. Specifically, we
can define the soft centroid vector of the rth soft cluster C,. as
G — vazl /u,rdi7
zs

which takes into account the fractional membership of each docu-
ment and its soft size. Using the above definition, the soft Z, cri-
terion function, denoted by SZ-, can be obtained by requiring the
clustering solution to maximize the similarity between the (frac-
tional) documents assigned to a soft cluster and its centroid. This
isformally defined as follows:

k N
maximize ST, =) (Z i cos(di,Ur)> . (6)
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Soft £ Criterion Function.  The &; criterion function tries to
separate the centroid of each cluster from that of the entire collec-
tion and weights each cluster by itssize. Thus, the new element be-
ing introduced in trying to develop a soft version of the &; criterion
function (over those introduced by 7Z; and Z:) is the notion of the
collection centroid. In our soft formulation of £, we compute this
centroid by treating the entire collection as one soft cluster. In this
case, the value of the membership function for each document to
this cluster is one, and as a result, the soft collection centroid is the
same as that for hard clustering; that is, C = C = 3.~ | di/N).
Given this definition and the earlier definitions of soft cluster cen-
troid and soft cluster size, the soft &; criterion function, denoted by
SG,, isdefined asfollows:

minimize S&, =

k
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Soft G; Criterion Function.  In order to develop a soft version
of the G; criterion function we need to properly define (i) the edge-
cut between acluster and the rest of the documentsin the collection,
and (ii) the sum of the weights of the edges between the documents
in each cluster. Since the weights of the edges between each pair
of documents corresponds to the cosine similarity between their
respective documents vectors, both of the above quantities can be
easily obtained by extending the expressions in Equation 4 to take
into account the membership functions. Specifically, we can com-
pute the soft version of the sum of the weights of the edges between
the documents of the rth cluster (the denominator of Equation 4) as
24 Miritg,r cos(di, d;). Similarly, since the rth cluster contains
fractions of al the documents, the fractions of the documents that
are not assigned to this cluster are the fractions that belong to the
cluster corresponding to the “rest” of the documents. As a resullt,
we can compute the edge-cut between the rth cluster and the rest of
the documentsinthe collectionas 3, ; pi,r (1 — puj,r) cos(ds, d;).
Using these definitions, the soft version of the G, criterion function,
denoted by SG, , is defined as follows:

Z 220 M (1 = ) cos(di, dy) ®
EZ g Mir g, cos(d;, d;) .

6. SOFT PARTITIONAL CLUSTERINGAL-
GORITHM

Our focus thus far has been on developing soft-clustering exten-
sions for four different criterion functions that are used to obtain
hard-clustering solutions. \We now turn our attention on developing

minimize SG; =

algorithms that compute clustering solutions that optimize each of
these criterion functions.

Traditionally, soft clustering algorithms are derived by analytically
optimizing their respective criterion functions using Lagrange mul-
tipliers (e.g., fuzzy C-means algorithm [3]). This analytical ap-
proach leads directly to an iterative strategy that determines the
values of the various membership functions by which the overall
criterion function is optimized. Even though this approach can be
applied to optimize the SZ, criterion function [29], analytically
deriving such optimization iterations for the SZ:, S&€1, and SG;
functions is hard if not impossible. For this reason, we developed
a soft partitional clustering algorithm that determines the values
of the membership functions of the various documents following
the induced fuzzy partitioning approach [1], and optimizes the soft
criterion functions using a hard-clustering based optimization ap-
proach.

6.1 Determining the Membership Functions

Given ahard k-way clustering solution {S1, Sa, ..., Sk }, we define

the membership of document d; to cluster .S; to be
cos(ds, C;)™

TS cos(di,

where C,. isthe centroid of the hard cluster S..
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The parameter m in Equation 9 is the fuzzy factor and controls the
“softness’ of the membership function and hence the “softness’
of the clustering solution (the inclusion of the fuzzy factor was
motivated by the formulation of the fuzzy C-means agorithm).
When m is equal to zero, the membership values of a document
to each cluster are the same (i.e., there is no preference to a partic-
ular cluster). On the other hand, as m approaches infinity, the soft
membership function becomes the hard membership function (i.e.,
wi; = 1,if d; ismost closeto Sj; pi ; = 0, otherwise). In general,
the softness of the clustering solution increases as the value of m
decreases and vice versa

6.2 Determining the Clusters

Aswe mentioned in Section 3, ahard-clustering based optimization
approach resultsin a pair of clustering solutions: a hard clustering
solution and the induced soft clustering solution. In this paper, we
focus on the hard clustering solution and used a clustering approach
that determines the overall k-way clustering solution by performing
asequence of cluster bisections. In this approach, a k-way solution
is obtained by first bisecting the entire collection. Then, one of the
two clusters is selected and it is further bisected, leading to atotal
of three clusters. The process of selecting and bisecting a partic-
ular cluster continues until & clusters are obtained. This repeated
bisectioning approach was motivated for two reasons. First, re-
cent studies on hard partitional clustering [37, 46] have shown that
such an approach leads to better clustering solutions than the tradi-
tional approach that computes the k-way solution directly. Second,
it leads to an agorithm that has alower computational complexity
(in most casesit is faster by an order of k).

Each of these bisections is performed in two steps. During the first
step, an initial clustering solution is obtained by randomly assign-
ing the documents to two clusters. During the second step, the ini-
tial clustering is repeatedly refined so that it optimizes the desired
clustering criterion function.

The refinement strategy consists of a number of iterations. During



each iteration, the documents are visited in a random order. For
each document, d, we compute the change in the value of the soft
criterion function obtained by moving d to the other cluster. Thisis
done by deriving the membership values for the original and mod-
ified hard clustering solution (i.e., assuming that d moved to the
other cluster) and then calculate the change of the soft criterion
function. If the change improves the criterion function, then d is
moved to the cluster. If no such cluster exists, d remainsin the clus-
ter that it already belongs to. The refinement phase ends, as soon
as we perform an iteration in which no documents moved between
clusters. The detailed pseudo-code and algorithm description refer
to Algorithm 6.1.

Algorithm 6.1: SOFT2WAY REFINE(S1, S2)

C « centroid of .S;

C2 « centroid of Sz

i,5 < membership values using C1 and Cs
F « fuzzy criterion function value

while movements are made

(for each d € S1 U §2

((S1,S3) < 2-way clustering after moving d
C + centroid of S}

C% « centroid of S5

i ; — membership values using C; and C

do Fle fuzzy criterion function value

do 3 it £ isbetter than ¥
S1 — S
So «— Sh
then Fe F

i, g M;,jv VZ,]

\ \

return (Si, S2)

Note that unlike the traditional refinement approach used by K-
means type of algorithms, the above algorithm moves a document
as soon as it is determined that it will lead to an improvement in
the value of the criterion function. This type of refinement algo-
rithms are often called incremental [14]. Since each move directly
optimizes the particular criterion function, this refinement strategy
always converges to alocal minima.

The greedy nature of the refinement algorithm does not guarantee
that it will converge to aglobal minima, and thelocal minima solu-
tion it obtains depends on the particular set of seed documents that
were selected during theinitial clustering. To eliminate some of this
sensitivity, the overall process is repeated a number of times. That
is, we compute N different clustering solutions (i.e, initial clus-
tering followed by cluster refinement), and the one that achieves
the best value for the particular criterion function is kept. In all of
our experiments, we used N = 10. For the rest of this discussion
when we refer to the clustering solution we will mean the solution
that was obtained by selecting the best out of these N potentialy
different solutions.

6.2.1 Cluster Selection
A key step in this repeated bisection algorithm is the method used
to select which cluster to bisect next. In our experiments, we used a
simple strategy of bisecting thelargest cluster available at that point
of the clustering solution. Our earlier experience with thisapproach

showed that it leads to reasonably good and balanced clustering
solutions [37, 45].

We also used a strategy to stop bisecting a cluster. Specifically, if
after the bisection, one of the resulted two clusters contains less
than 5% of all the documents, we consider that the cluster is not
separable according to the criterion function. In such cases, we
keep the cluster asiit is and do not select it for further bisections.
Thus, the number of clusters returned by our algorithm could be
smaller than the number of required clusters as the input (if al the
resulted clusters meet the stop condition).

6.2.2 Computational Complexity

Each iteration of the refinement of a 2-way clustering of a set of
documents requires the examination of the movement of each one
of the documents to the other cluster. During this process, the most
expensive computation is the calculation of the membership values
which need to be updated for al the documents. Thus, the time
complexity of each iteration is O(n?). If we assume that each suc-
cessive bisection splits the documents into two roughly equal-size
clusters and that we follow a larger-cluster selection strategy, then
the ovezrall amount of timerequired to compute al k& — 1 bisections
isO(n?).

7. EXPERIMENTAL RESULTS

We experimentally evaluated the performance of the various soft
criterion functions and compared them with the corresponding hard
criterion functions using a number of different datasets. In the rest
of this section we first describe the various datasets and our experi-
mental methodology, followed by a description of the experimental
results.

7.1 Document Collections

In our experiments, we used a total of twelve different datasets,
whose general characteristicsare summarized in Table 1. The small-
est of these datasets contained 356 documents and the largest con-
tained 1,170 documents. To ensure diversity in the datasets, we
obtained them from different sources. For all datasets, we used a
stop-list to remove common words, and the words were stemmed
using Porter’s suffix-stripping algorithm [33]. Moreover, any term
that occurs in fewer than two documents was eliminated.

The hitech and sports datasets were derived from the San Jose Mer-
cury newspaper articles that are distributed as part of the TREC
collection (TIPSTER Vol. 3). Each one of these datasets were
constructed by selecting documents that are part of certain topics
in which the various articles were categorized (based on the DE-
SCRIPT tag). The hitech dataset contained documents about com-
puters, electronics, health, medical, research, and technology; and
the sports dataset contained documents about baseball, basketball,
bicycling, boxing, football, golfing, and hockey. The datasets kla,
klb, and wap are from the WebACE project [31, 18, 5, 6]. Each
document corresponds to aweb page listed in the subject hierarchy
of Yahoo! [40]. The datasets kla and k1b contain exactly the same
set of documents but they differ in how the documents were as-
signed to different classes. In particular, kla contains a finer-grain
categorization than that contained in k1b. The fbis dataset is from
the Foreign Broadcast Information Service data of TREC-5 [39],
and the classes correspond to the categorization used in that col-
lection. Thelal and |a2 datasets were obtained from articles of
the Los Angeles Times that was used in TREC-5 [39]. The cate-
gories correspond to the desk of the paper that each article appeared



Table 1: Summary of data setsused to evaluate the various clustering criterion functions.

Data Source # of documents | #of terms | # of classes
hitech San Jose Mercury (TREC) 767 7499 6
sports San Jose Mercury (TREC) 858 7163 7
reutersl || Reuters-21578 908 10582 3
odp Open Directory Project 356 551 3
inspecl || Scientific Database 920 11803 3
wap WebACE 780 7131 20
kla WebACE 1170 9527 20
k1b WebACE 1170 9781 6
fbis FBIS (TREC) 821 1997 17
lal LA Times (TREC) 801 8449 6
a2 LA Times (TREC) 769 8333 6
rel Reuters-21578 829 3221 25

and include documents from the entertainment, financial, foreign,
metro, national, and sports desks. The dataset re0 is from Reuters-
21578 text categorization test collection Distribution 1.0 [27]. The
reutersl, odp, and inspecl datasets are the datasets used by [29].
Refer to [29] for detailed information about these datasets. As a
summary, reutersl was derived from the Reuters-21578 collection.
The reutersl dataset contains documents from three classes: trade,
acq and earn. The odp dataset was derived from the open direc-
tory project and consists of three classes. drugs, health, and sport.
Finally, the inspecl dataset was derived from a scientific database
and the documents are on the topics of back-propagation, fuzzy
control, and pattern classification. Note that all the datasets used in
our study do not contain documents with multiple classlabels. The
original odp and inspecl datasets in [29] contain some documents
with multiple class labels. For the purpose of our study, we only
selected those documents that only belong to one class.

7.2 Experimental Methodology and Metrics
For each one of the different datasets we obtained a 10-way and
20-way clustering solution that optimized the various hard and soft
clustering criterion functions (Equations 1- 8). Specifically, for
each hard criterion function, we compared it with the correspond-
ing soft criterion functions with a fuzzy factor m of different val-
ues. The quality of a clustering solution was evaluated using the
entropy measure that is based on how the various classes of docu-
ments are distributed within each cluster.

Given a particular cluster .S, of size n,., the entropy of this cluster
is defined to be

1 L0 nt
E(S,) =— — log —,
(Sr) logq;nr 8 Ny

where ¢ isthe number of classesin the dataset and n’. is the number
of documents of the ith class that were assigned to the rth cluster.
The entropy of the entire solution is defined to be the sum of the
individual cluster entropies weighted according to the cluster size,
ie,

k
Ny
Entropy = —E(S;).
Py ; L B(Sy)
A perfect clustering solution will be the one that leads to clusters
that contain documents from only a single class, in which case the
entropy will be zero. In general, the smaller the entropy values, the
better the clustering solution is.

To eliminate any instances that a particular clustering solution for a
particular criterion function got trapped into a bad local optimum,

in al of our experiments we found ten different clustering solu-
tions. As discussed in Section 6.2 each of these ten clustering so-
lutions correspond to the best solution (in terms of the respective
criterion function) out of ten different initial partitioning and re-
finement phases.

7.3 Comparison of the Hard and Soft Crite-

rion Functions

Our experiments were focused on eval uating the quality of the clus-
tering solutions produced by the various hard and soft criterion
functions when they were used to compute a k-way clustering so-
lution via repeated bisections. The clustering solutions of various
hard criterion functions were obtained by using CLUTO [23]. The
results for the various datasets and criterion functions for 10-, and
20-way clustering solutions are shown in Tables 2 and 3, respec-
tively.

The results for each dataset are shown in each subtable, in which
each column corresponds to one of thefour criterion functions. The
results of the soft criterion functions with various fuzzy factor val-
ues are shown in the first five rows (labeled by the fuzzy factor
values), and those of the various hard criterion functions are shown
inthelast row. The entriesthat are boldfaced correspond to the best
values obtained for each column, (i.e., for each criterion function,
the best value among the hard and various soft criterion functions
with different m values for each dataset), whereas the underlined
entries correspond to the best values obtained among all the crite-
rion functions for each dataset.

A number of observations can be made by analyzing the resultsin
Table 2. First, for most datasets, introducing softness into each one
of the four criterion functions improved the quality of the cluster-
ing solutions, and different trends can be observed in the relative
improvement for different criterion functions. The SZ, criterion
function outperformed Z; on eight datasets, among which the rela-
tive improvements were greater than 10% for six datasets with the
largest improvement of 23%. The effect of introducing softness
was less significant, but more consistent for both SZ> and SG,
than that for SZ; . For only three datasets, SZ» and SG; performed
better than Z, and G, respectively, by more than 10%. However,
87, and SG; outperformed Z> and G; on ten and nine datasets,
respectively. SE&; benefits the least with improvements observed
on seven datasets and improvements greater than 10% observed on
two datasets. Second, the fuzzy factor values that achieved the best
clustering solutions seemed to vary for different datasets, which
suggests that the proper fuzzy factor values may relate to some
characteristics of the datasets and their class conformations. Fi-
nally, SG; was less sensitive to the choice of fuzzy factor values



Table 2: The Entropies of the clustering solutions obtained by hard and soft criterion functionswith various fuzzy factors.

hitech 10-way sports 10-way reutersl 10-way

Method | 7 1o &1 G1 1 1o & G 1 Iy &1 G1
m=1 | 0.757 | 0.644 | 0.674 | 0.584 0.431 | 0.245 | 0.208 | 0.200 0.228 | 0.229 | 0.287 | 0.283
m=2 | 0627 | 0.639 | 0.618 | 0.596 0.497 | 0.248 | 0.219 | 0.161 0.205| 0.194 | 0.232| 0.222
m=4 | 0616 | 0.612 | 0.615 | 0.599 0.270 | 0.250 | 0.119 | 0.170 0.194| 0210 | 0.226 | 0.201
m=26 | 0611 | 0.586 | 0.586 | 0.603 0.274 | 0.177 | 0.106 | 0.156 0.264 | 0.231| 0.298 | 0.214
m =28 | 0.618 | 0.594 | 0.582 | 0.587 0.294 | 0.204 | 0.133 | 0.161 0.359 | 0.296 | 0.370| 0.255
hard 0.644 | 0.610 | 0.573 | 0.585 0.252 | 0.181 | 0.158 | 0.185 0.250 | 0.218 | 0.262 | 0.248

odp 10-way Inspecl 10-way wap 10-way
Method Iy Lo & G1 Iy Lo &1 G1 Iy I & G1
m=1 | 0236 | 0.210 | 0.216 | 0.224 0.326 | 0.324 | 0.330 | 0.298 0.586 | 0.540| 0.513| 0.386
m=2 | 0277 | 0.246 | 0.218 | 0.247 0.365 | 0.303 | 0.297 | 0.303 0570 | 0412 | 0.411| 0.387
m=4 | 0.326 | 0.289 | 0.309 | 0.282 0.469 | 0.297 | 0.300 | 0.295 0.595| 0.385| 0.399| 0.376
m=26 | 0379 | 0.327 | 0.335 | 0.308 0.390 | 0.306 | 0.286 | 0.300 0.456 | 0.415| 0.398 | 0.371
m=38 | 0421 | 0.308 | 0.355 | 0.346 0.400 | 0.302 | 0.320 | 0.297 0.454 | 0.443| 0.412| 0.409
hard 0.293 | 0.283 | 0.233 | 0.256 0.441 | 0.293 | 0.283 | 0.290 0.421| 0414 | 0.408| 0.381

kla 10-way k1b 10-way fbis 10-way
Method | 7 1> & g1 1 1> & G1 1 1o & g1
m=1 | 0.601 | 0.585 | 0.530 | 0.432 0.240 | 0.223 | 0.200 | 0.160 0525 0.527 | 0.510| 0.416
m=2 | 0573 | 0.519 | 0.437 | 0.413 0.347 | 0.205 | 0.181 | 0.112 0.529 | 0429 | 0.424| 0.387
m=4 | 0584 | 0418 | 0.407 | 0.443 0.259 | 0.153 | 0.125 | 0.157 0.375| 0.398 | 0.404 | 0.372
m=26 | 0448 | 0.429 | 0.406 | 0.418 0.238 | 0.174 | 0.148 | 0.113 0.379 | 0.380 | 0.394| 0.378
m=38 | 0487 | 0462 | 0.436 | 0.435 0.249 | 0.226 | 0.194 | 0.189 0.399 | 0.387| 0.430| 0.393
hard 0.460 | 0.434 | 0.410 | 0.419 0.169 | 0.154 | 0.153 | 0.133 0.396 | 0.396 | 0.398 | 0.382

lal 10-way la2 10-way rel 10-way
Method T Is &1 G1 I1 Io &1 G1 A I &1 G1
m=1 | 0.784 | 0.747 | 0.714 | 0.486 0.832 | 0.808 | 0.788 | 0.408 0.462 | 0.500 | 0.489 | 0.422
m=2 | 0.756 | 0.559 | 0.463 | 0.428 0.841| 0401 | 0.393 | 0.377 0.473| 0451 | 0417 | 0417
m=4 | 0.687 | 0.459 | 0.456 | 0.419 0.381 | 0.388 | 0.363 | 0.380 0.424 | 0.386 | 0.394 | 0.415
m=26 | 0459 | 0423 | 0.469 | 0.422 0.408 | 0.358 | 0.380 | 0.369 0.424 | 0.409 | 0.396 | 0.397
m =238 | 0465 | 0.448 | 0.467 | 0.421 0.357 | 0.374 | 0.418 | 0417 0.442 | 0.393 | 0.405| 0.412
hard 0.519 | 0.423 | 0.413 | 0.418 0.457 | 0.400 | 0.338 | 0.367 0414 | 0.397 | 0.396| 0.404

than the other three criterion functions. Similar trends can be ob-
served from Table 3 aswell.

Note that for the fbis and rel datasets, the results of 10- and 20-
way clustering solutions are the same for the Z; and various SZ;
criterion functions. That is because we employed a strategy to stop
bisecting a cluster as described in Section 6.2.1. The actual number
of clusters obtained by the Z; and various SZ; criterion functions
is smaller than ten for both fbis and rel.

8. DISCUSSION

The experimental results presented in the previous section suggest
that for most datasets soft criterion functions can improve the qual-
ity of the clustering solutions. In this section, we look at the clus-
tering solutions obtained by soft criterion functions more carefully
and identify some of the different characteristics observed in clus-
tering solutions obtained by hard and soft criterion functions.

8.1 Theeffect of fuzzy factor

Wefirst look at how the fuzzy factor effects the moves made by the
various soft criterion functions. Recall that thefuzzy factor controls
the“softness’ of the membership function and hence the “ softness’
of the clustering solutions. As m increases, the soft membership

function becomes the hard membership function (i.e, u; = 1,
if d; ismost closeto Sj; ps; = 0, otherwise), and consequently
soft criterion functions become hard criterion functions. Hence, for
every move made by soft criterion functions, if we also computethe
gain of the corresponding hard criterion function, we would expect
that the agreement between soft and hard criterion functions will
increase as m increases.

Figure 1(a) shows the average percentages of moves that were made
by the various soft criterion functions and agreed by the corre-
sponding hard criterion function. The percentage values were aver-
aged over all the datasets. As shown in Figure 1(a), as m increases,
we do see atrend of increasing agreement between the soft and the
corresponding hard criterion functionsfor SZ,, SZ», and S&;.

One of the interesting observations is that even though the degree
to which the hard and soft criterion functions agree increases with
increasing m, it does not reach very high values (i.e., it does not ap-
proach 100%). Thisistrue even for large values of m (not shown
inthe graph). Thereason for that isthat the hard clustering solution
induced by the soft clustering algorithm will assign each document
to the cluster for which it has the highest membership function.
However, this cluster may not necessarily be the one that optimizes



Table 3: The Entropies of the clustering solutions obtained by hard and soft criterion functionswith various fuzzy factors.

hitech 20-way sports 20-way reutersl 20-way

Method | 7 1o &1 G1 1 1o & G 1 Iy &1 G1
m=1 | 0746 | 0.591 | 0.639 | 0.513 0.187 | 0.206 | 0.165 | 0.150 0218 | 0.211| 0.251| 0.233
m=2 | 0598 | 0.586 | 0.554 | 0.550 0.175 | 0194 | 0.181 | 0.131 0.202 | 0.189 | 0.215| 0.183
m=4 | 0587 | 0.551 | 0.566 | 0.544 0.170 | 0.148 | 0.108 | 0.112 0.180 | 0.202 | 0.211| 0.185
m=26 | 0578 | 0.523 | 0.545 | 0.550 0.164 | 0.128 | 0.099 | 0.133 0.233 | 0.200 | 0.263| 0.182
m =38 | 0583 | 0.532 | 0529 | 0.550 0.221 | 0.144 | 0.125 | 0.109 0.283| 0.259 | 0.313| 0.218
hard 0.592 | 0.553 | 0.524 | 0.541 0.177| 0.138 | 0.122 | 0.141 0.198 | 0.159 | 0.206 | 0.186

odp 20-way I nspecl 20-way wap 20-way
Method Iy Lo & G1 Iy Lo &1 G1 Iy I & G1
m=1 | 0227 | 0.153 | 0.176 | 0.208 0.326 | 0.324 | 0.330 | 0.282 0578 | 0.523 | 0.494 | 0.324
m=2 | 0234 | 0.151 | 0.150 | 0.220 0.363 | 0.301 | 0.290 | 0.290 0559 | 0.321| 0.309| 0.307
m=4 | 0295 | 0.202 | 0.245 | 0.219 0.469 | 0.286 | 0.276 | 0.281 0.585| 0.308 | 0.308 | 0.283
m=26 | 0277 | 0.255 | 0.257 | 0.253 0.374 | 0.291 | 0.273 | 0.281 0.377| 0.311| 0.321| 0.277
m=38 | 0.363 | 0.267 | 0.268 | 0.297 0.376 | 0.290 | 0.309 | 0.284 0.384 | 0.335| 0.325| 0.317
hard 0.281 | 0.228 | 0.201 | 0.217 0.427 | 0.283 | 0.270 | 0.275 0.326 | 0.329 | 0.319| 0.307

kla 20-way k1b 20-way fbis 20-way
Method | 7 1> & g1 1 1> & G1 1 1o & g1
m=1 | 059 | 0579 | 0525 | 0.363 0.226 | 0.200 | 0.187 | 0.125 0525 | 0.504 | 0.469 | 0.343
m=2 | 0570 | 0.495 | 0.350 | 0.343 0.344 | 0.181 | 0.123 | 0.096 0529 | 0.374| 0.362| 0.311
m=4 | 0574 | 0.329 | 0.321 | 0.340 0.256 | 0.104 | 0.107 | 0.120 0.375| 0.321| 0.330| 0.290
m=26 | 0340 | 0.339 | 0.333 | 0.344 0.139 | 0.110 | 0.125 | 0.099 0.379 | 0.309 | 0.326 | 0.304
m=38 | 0414 | 0.364 | 0.345 | 0.361 0.152 | 0.157 | 0.154 | 0.144 0.399 | 0.319| 0.357| 0.319
hard 0.376 | 0.347 | 0.349 | 0.334 0.155 | 0.076 | 0.105 | 0.091 0.396 | 0.322| 0.329| 0.316

lal 20-way la2 20-way rel 20-way
Method 11 Io &1 G1 A Is &1 G1 T I &1 g1
m=1 | 0.783 | 0.746 | 0.702 | 0.426 0.832 | 0.808 | 0.788 | 0.364 0.462 | 0434 | 0.414| 0.321
m =2 | 0.747 | 0.543 | 0.416 | 0.380 0.841 | 0.359 | 0.348 | 0.326 0.473| 0.379| 0.309| 0.310
m=4 | 0671 | 0414 | 0.390 | 0.379 0.339 | 0.341 | 0.326 | 0.334 0.424 | 0.280 | 0.307 | 0.277
m=26 | 0410 | 0.382 | 0.402 | 0.391 0.353 | 0.313 | 0.329 | 0.319 0.424 | 0.299 | 0.307 | 0.284
m =238 | 0401 | 0.416 | 0.404 | 0.383 0.335 | 0.333 | 0.374 | 0.355 0.442 | 0.317 | 0.326| 0.317
hard 0.447 | 0.385 | 0.379 | 0.386 0.390 | 0.333 | 0.307 | 0.334 0.414 | 0.299 | 0.287| 0.300

the respective hard criterion function. Despite this fact, the trend,
that the agreement between soft and the corresponding hard crite-
rion functions increases as m increases, is still valid as shown in
Figure 1(a).

For SG1, the agreement between SG; and G seems less sensitive
to the increasing of fuzzy factor values, which is consistent with
the observation for SG; from Tables2 and 3.

8.2 Soft criterionfunctionstend tomakemoves

mor e consistent with cluster separations.
We also looked at the degree to which the movement of documents
between clusters, as being performed during the hard and soft cri-
terion function optimizations, affects the inter-cluster separation.
Specifically, every time adocument is moved between two clusters
(because such a move improves the overall value of the criterion
function), we computed the cosine similarity between the cluster
centroids before and after the move. Figure 1(b) shows the average
percentages of the moves that also further separate the cluster cen-
ters for various criterion functions (i.e., the cosine value between
the two centroids decreased after the move). Again the percent-
ages were averaged over al the datasets. The last data point for
each criterion function represents the average percentage for the

hard criterion function. As shown in Figure 1(b), the move made
by hard criterion functions will not always increase the separation
between cluster centers, whereas the soft criterion functionstend to
make moves that are more consistent with cluster separations. For
871, SI, and S&1, more than 99.4% of the moves will separate
cluster centers further when m = 1, and the percentage decreases
as m increases (i.e., the “softness’ of clustering decreases). This
property was also observed for fuzzy C-means [14] as well.

8.3 Soft criterion functionstend tolead to less

balanced clustering solutions.
Another notable difference of clustering solutions obtained by hard
and soft criterion functions is that soft criterion functions tend to
lead to less balanced clustering solutions, and the smaller the fuzzy
factor valueis, the less balanced the clustering solution will be ob-
tained. Table 4 gives an example of 10-way clustering solutions
obtained by S7, and Z, for reutersl.

The reason that soft criterion functions tend to lead to | ess balanced
solutions is that since now one document can contribute to both
clusters, the difference of soft sizes between two clusters will be
smaller than that of hard sizes. Hence, soft criterion functions will
tolerate clusters with higher difference in cluster sizes. Previous
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Figure 1: (a) Average percentages of the moves that made by both hard and soft criterion functions. (b) Average percentages of the

moves that increase cluster separations.

Table 4: Comparison of 10-way clustering solutions obtained by Z, and SZ- for reutersl.

SZ, withm = 2 (Entropy=0.194)

7 Criterion (Entropy=0.218)

cid Size Sm trad acq ean cid Size Sm trad acqg ean
0 58 +0220 O 0 58 0 83 +0.185 24 48 11
1 119 +0220 O 0 119 1 67 +0187 O 1 6
2 34 +0219 32 0 2 2 136 +0.186 O 2 134
3 82 +0.188 22 48 12 3 76 +0.153 74 2 0
4 62 +0.171 59 3 0 4 67 +0.118 66 O 1
5 45 +0.090 O 5 40 5 88 +0.096 86 2 0
6 139 +0.078 137 2 0 6 79 +0.076 O 75 4
7 51 +0.074 0 46 5 7 85 +0.067 0 83 2
8 152 +0.054 0 146 6 8 98 +0.049 O 71 27
9 166 +0.035 1 160 5 9 129 +0.038 1 126 2

studies [46, 13] showed that highly unbalanced clusters will harm
the quality of clustering solutions, hence the proper fuzzy factor
should not be too small. Note that from the discussion in Sec-
tion 8.2, we know that as the value of the fuzzy factor increases,
alarge fraction of the moves will not lead to better cluster separa-
tions. Hence, the fuzzy factor value that lead to the best clustering
solution has to achieve the balance between these two factors.

9. CONCLUSIONANDFUTURE RESEARCH

In this paper we extended four criterion functions that were studied
in our previous work [46] to tackle the soft document clustering
problem. We developed an approach similar to the induced fuzzy
partition [1] to optimize various soft criterion functions. We pre-
sented a comprehensive experimental evaluation involving twelve
different datasets and some discussions about the various trends
observed from experimental results. Our experimental results and
analysis show that the soft criterion functions tend to consistently
improve the separation between the clusters, and lead to better clus-
tering results for most datasets.

We plan to extend the work in this paper along three directions.
First, develop and evaluate soft clustering extensions for the re-
maining three criterion fuctnions studied in [46], which includes
some of the schemes that optimize internal and external charac-
teristics of clustering solutions. Second, expand our evaluation to
determine the effectiveness of these soft criterion functions to pro-
duce overlapping clustering solutions. Third, further understand

SG, and thereason why it isless sensitive to the value of the fuzzy
factor as discussed in Section 8.
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