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Abstract

The identification of small potent compounds that selec-
tively bind to the target under consideration with high affini-
ties is a critical step towards successful drug discovery. How-
ever, there still lacks efficient and accurate computational
methods to predict compound selectivity properties. In this
paper, we propose a set of machine learning methods to do
compound selectivity prediction. In particular, we propose
a novel cascaded learning method and a multi-task learn-
ing method. The cascaded method decomposes the selec-
tivity prediction into two steps, one model for each step,
so as to effectively filter out non-selective compounds. The
multi-task method incorporates both activity and selectiv-
ity models into one multi-task model so as to better differ-
entiate compound selectivity properties. We conducted a
comprehensive set of experiments and compared the results
with other conventional selectivity prediction methods, and
our results demonstrated that the cascaded and multi-task
methods significantly improve the selectivity prediction per-
formance.

1. INTRODUCTION
Small molecular drug discovery is a time consuming and
costly process, in which the identification of potential drug
candidates serves as an initial and critical step. A success-
ful drug needs to exhibit at least two important properties.
The first is that the compound has to bind with high affin-
ity to the protein1 that it is designed to affect so as to act
efficaciously. The second is that the compound has to bind
with high affinity to only that protein so as to minimize the
likelihood of undesirable side effects. The later property is
related to compound selectivity, which measures how differ-
entially a compound binds to the protein of interest.

Experimental determination of compound selectivity usu-

1This protein is referred to as the target.

ally takes place during the later stages of the drug discovery
process. Selectivity test can include binding assays or clin-
ical trials [9]. The problem with such an approach is that
it defers selectivity assessment to the later stages, which if
fails, then significant investments in time and resources get
wasted. For this reason, it is highly desirable to have in-
expensive and accurate computational methods to predict
compound selectivity at earlier stages in the drug discovery
process.

The use of computational methods to predict properties
of chemical compounds has a long history in Chemical In-
formatics. The work pioneered by Hansch et al [6] led to
the development of computational methods for predicting
Structure-Activity-Relationships (SAR). In recent years,
researchers have started to develop similar approaches for
building models to predict the selectivity properties of com-
pounds. Such models are referred to as Structure-Selectivity-
Relationships (SSR) models [14]. Existing computational
methods for building SSR models fall into two general classes.
The first contains methods that determine selectivity by us-
ing SAR models, and the second contains methods that build
a selectivity model by considering only the target of interest.
The disadvantage of the first class of methods is that they
do not have a good mechanism to effectively differentiate
selective active compounds from non-selective active com-
pounds. The disadvantage of the second class of methods
is that they largely ignore a rich source of information from
multiple other proteins, which if properly explored, could
lead to more realistic and accurate selectivity models.

In this paper we develop two classes of machine learning
methods for building SSR models. The first class of meth-
ods, referred to as cascaded SSR, builds on previously de-
veloped techniques and incorporates a pair of models on two
levels. The level one is a standard SAR model which identi-
fies the compounds that bind to the target regardless of their
selectivity. The level two is a model that further screens
the compounds identified by the level-one model in order
to identify only the subset that binds selectively to the tar-
get and not to the other proteins. Such methods exhibit a
cascaded architecture and by decoupling the requirements
of accuracy and selectivity, the respective learning tasks are
more focused and easier to learn so as to increase the like-
lihood of developing accurate models. The second class of
methods, referred to as multi-task SSR, incorporates infor-
mation from multiple targets and multiple prediction tasks,
and builds a multi-task SSR model. The key insight is that



compound activity/selectivity properties for other proteins
can be utilized when building a SSR model for the target of
interest. These methods treat activity and selectivity predic-
tion as two different yet related tasks. For the target of in-
terest and multiple other proteins, their SAR and SSR tasks
are tied together into one single multi-task model. During
model training, the SAR and SSR tasks are learned simulta-
neously with useful information implicitly transferred across
one another, and the compound selectivity against multiple
proteins is better captured within the model.

We conducted a comprehensive set of experiments to as-
sess the performance of these methods and compare them
with other previously proposed state-of-the-art methods. A
unique feature of our evaluation is that unlike previous stud-
ies that utilized a very small number of test sets, we con-
structed datasets derived from publicly available resources
(ChEMBL2) that collectively contained 135 individual SSR
prediction tasks. Our experimental evaluations show that
the proposed methods outperform those developed previ-
ously and that the approach based on multi-task learning
performs substantially better than all the other approaches.

The rest of the paper is organized as follows. In Section 2,
a brief literature review on the work related to both SSR
prediction and multi-task learning is provided. In Section 3
definitions and notations are given. In Section 4, different
learning methods for SSR prediction are presented. In Sec-
tion 5, materials used by the study are presented. In Sec-
tion 6, the results for the selectivity study are presented.
Finally in Section 7 is the conclusion and directions for fu-
ture research.

2. RELATED WORK
Developing computational methods to aid in the identifica-
tion of selective compounds has recently been recognized as
an important step in lead optimization and several studies
have shown the promise of utilizing machine-learning ap-
proaches towards this goal. Vogt et al.[21] investigated ap-
proaches for identifying selective compounds based on how
similar they are to known selective compounds (similarity
search-based approach). They tested five widely used 2D
fingerprints for compound representation and their results
demonstrated that 2D fingerprints are capable of identify-
ing compounds which have different selectivity properties
against closely related target proteins. Stumpfe et al.[17] de-
veloped two approaches that they referred to as single-step
and dual-step approaches. The single-step approach builds
the SSR model by utilizing only the selective compounds
(one class classification). The two-step approach uses a pair
of classifiers that are applied in sequence. The first is a
binary classifier trained on selective compounds (positive
class) and non-selective active compounds (negative class),
whereas the second classifier is the one-class classifier as used
in the single-step approach. A compound is considered to
be selective if both classifiers predicted it as such. For both
approaches, they used both k-nearest-neighbor (similarity
search) and Bayesian methods in building the models and
represented the compounds using MACCS and Molprint2D
descriptors. Their experimental results demonstrated that
both of these approaches are able to identify selective com-

2http://www.ebi.ac.uk/chembl/

pounds.Wassermann et al.[23, 24] built on this work and in-
vestigated the use of Support Vector Machines (SVM) [20]
as the underlying machine learning framework for learning
SSR models. Specifically, they investigated four types of
SSR models. The first is a binary classifier that uses se-
lective compounds as positive instances and inactive com-
pounds as negative instances. The second is a set of three
one-vs-rest binary classifiers whose positive classes corre-
spond to the selective, non-selective active, and inactive
compounds, respectively, and whose negative class corre-
spond to the compounds that did not belong to the positive
class. The third is a two-step approach in which the model
of the first step uses active compounds as positive instances
and inactive compounds as negative instances (i.e., a stan-
dard SAR model) and the model of the second step uses
selective compounds as positive instances and non-selective
active compounds as negative instances. Finally, the fourth
is a preference ranking model that incorporates pairwise
constraints that rank the selective compounds higher than
the inactive compounds and the inactive compounds higher
than the non-selectives (i.e., selectives > inactives > non-
selectives). Their results showed that SVM-based methods
outperformed conventional similarity search methods and
that the ranking and one-versus-rest methods performed
similarly to each other and outperformed the other SVM-
based methods.

Multi-task learning [19, 2] is a transfer learning mechanism
designed to improve the generalization performance of a
given model by leveraging the domain-specific information
contained in the training signals of related tasks. In multi-
task learning, multiple related tasks are represented by a
common representation, and then they are learned in paral-
lel, such that information from one task can be transferred
to another task through their common representations or
shared learning steps so as to boost that task’s learning per-
formance. A very intuitive multi-task model utilizes back-
propagation Neural Networks (NN) [3]. Input to the back-
propagation net is the common representations of all related
tasks. For each task to be learned through the net, there is
one output from the net. A hidden layer is shared across all
the tasks such that by back-propagation all the tasks can
learn task-related/target-specific signals from other tasks
through the shared hidden layer. Within such a net, all
the tasks can be learned simultaneously, and by leveraging
knowledge from other related tasks, each task can be better
learned than only from its own training instances. In re-
cent years, many sophisticated multi-task learning methods
have emerged, which include kernel methods [5], Gaussian
processes [25], task clustering [19], Bayesian models [12],
matrix regularization [1], etc. Various studies have reported
promising results with the use of multi-task learning in di-
verse areas such as Cheminformatics [7, 13], face recogni-
tion [8], and text mining [10].

3. DEFINITIONS AND NOTATIONS
In this paper, the protein targets and the compounds will be
denoted by lower-case t and c characters, respectively, and
subscripts will be used to denote specific targets and com-
pounds. Similarly, a set of protein targets or compounds will
be denoted by upper-case T and C characters, respectively.

The activity of a compound will be determined by its IC50



value (i.e., the concentration of the compound that is re-
quired for 50% inhibition of the target under consideration,
and lower IC50 values indicate higher activity3). A com-
pound will be considered to be active for a given target if
its IC50 value for that target is less than 1000nM . For each
target ti, its set of experimentally determined active and
inactive compounds will be denoted by C+

i and C−
i , respec-

tively, whereas the union of the two sets will be denoted by
Ci.

A compound c will be selective for ti against a set of targets
Ti if the following two conditions are satisfied:

(i) c is active for ti, and

(ii) min
∀tj∈Ti

IC50(c, tj)

IC50(c, ti)
≥ 50.

(1)

This definition follows the common practice of using the
ratio of binding affinities in determining the selectivity of
compounds [16]. Note that c can be either active or inactive
for some or all of the targets in Ti while being selective for
ti.

An important aspect of the selectivity definition is that it
is done by taking into account both the target under con-
sideration (ti) and also another set of targets (Ti) against
which a compound’s selectivity for ti is defined. We will
refer to Ti as the challenge set. Depending on the problem
at hand, each target may have multiple challenge sets and
they will be denoted using subscripts like Ti,1, Ti,2, · · · , Ti,n.
In such cases, a compound’s selectivity properties for a tar-
get can be different against different challenge sets. Given
a target ti and a challenge set Ti, ti’s selective compounds
against Ti will be denoted by S+

i (Ti), whereas the remaining
nonselective active compounds will be denoted by S−i (Ti).
This notation will be simplified to S+

i and S−i when a single
challenge set is considered.

Given a target ti and a challenge set Ti, the goal of the
Structure-Selectivity-Relationship model (SSR) is to predict
if a compound is selective for ti against all the targets in Ti.
We will refer to target ti as the target of interest.

4. METHODS
The methods that we developed for building SSR models are
based on machine learning techniques. Within the context
of these methods, there are two approaches that can be used
to build SSR models. The first approach is for target ti and
each target tj ∈ Ti to build a regression model for predict-
ing the binding affinity of a compound (e.g., IC50) for that
target. Then a compound c will be predicted as selective if
the two conditions of Equation 1 are satisfied by the pre-
dicted binding affinities. The second approach is to build
a classification model that is designed to directly predict if
a compound is selective for ti without first predicting the
compound’s binding affinities.

Even though the available training data (i.e., compounds
with known binding affinities and their labels according to
Equation 1) can support both of these approaches, the meth-
ods developed and presented in this work are based on the
second approach. Specifically, we developed methods that

3http://www.ncgc.nih.gov/guidance/section3.html

employ neural networks as the underlying machine learning
mechanism and determine the selectivity of a compound by
building different types of binary or multi-class classification
models.

The use of classification- over regression-based approaches
was motivated by earlier research for the problem of building
SAR models, which showed that predicting a compound’s
binding affinity is considerably harder than that of predict-
ing if a compound is active or not[11].

4.1 Baseline SSR Models
Given a target ti and a challenge set Ti, the compounds for
which the activity information with respect to ti is known
belong to one of three sets: S+

i , S−i , and C−
i . From these

sets, three different SSR classification models can potentially
be learned using: (i) S+

i vs C−
i , (ii) S+

i vs S−i , and (iii) S+
i

vs S−i ∪ C−
i . These models share the same positive class

(first set of compounds, i.e., S+
i ) but differ on the com-

pounds that they use to define the negative class (second
set of compounds).

The first model, by ignoring the non-selective active com-
pounds (S−i ) can potentially learn a model that differenti-
ates between actives and inactives, irrespective of whether
the active compounds are selective or not. The second model,
by ignoring the inactive compounds (C−

i ) can potentially
learn a model that predicts as selective compounds that may
not even be active against the target under consideration.
For these reasons, we did not investigate these models any
further but instead used the third model to define a baseline
SSR model that will be denoted by SSRbase.

SSRbase method constructs the SSR model by treating both
the inactive and non-selective active compounds as negative
training instances, thus allowing it to focus on the selective
active compounds while taking into account the other two
groups of compounds. A potential limitation of this model
is that depending on the relative size of the S−i and C−

i

sets, the model learned may be more influenced by one set
of compounds. In particular, since in most cases |C−

i | >
|S−i |, the resulting model may have similar characteristics
to the model learned using only C−

i as the negative class.
To overcome this problem, while constructing the negative
class, an equal number of compounds from S−i and C−

i were
selected. The total number of compounds that are selected
to form the negative class was set to be equal to the number
of compounds in the positive class (|S+

i |).

4.2 Cascaded SSR Models
The SSRbase described in Section 4.1 tries to build a model
that can achieve two things at the same time: learn which
compounds are both active and selective. This is signifi-
cantly harder than trying to learn a single thing at a time,
and as such it may lead to poor classification performance.
In order to address this shortcoming, we developed a cas-
caded SSR model that takes into account all the compounds
(selectives, non-selectives, and inactives) and builds models
such that each model is designed to learn one single task.

For a target ti and a challenge set Ti, the cascaded SSR
model consists of two levels. The model on level one is a
normal SAR model that tries to differentiate between ac-



tive and inactive compounds, and the model on level two
is a model that tries to differentiate between selective and
non-selective compounds. The level-one model serves as a
filter for the level-two model so as to filter out those com-
pounds that are not likely to be even active. During predic-
tion, compounds are first classified by the level-one model,
and only those compounds whose prediction value is above
a certain threshold, referred to as the minactivity thresh-
old, go through the level-two SSR model. Only compounds
classified as positive by the level-two SSR model will be con-
sidered as selective. This two-level cascaded SSR model is
refereed to as SSRc.

The level-one model is trained using C+
i and C−

i as pos-
itive and negative training instances, respectively, and is
identical to ti’s SAR model. The level-two model can be
trained using S+

i and S−i as positive and negative training
instances, respectively, as it will be used to classify com-
pounds that were predicted as active by the level-one model.
However, the overall performance of the SSRc model can
potentially be improved if the SSRbase model described in
Section 4.1 is used as the level-two model. This is because
the SSRbase model also takes into account the inactive com-
pounds while learning to identify selective compounds and
as such it can be used as an additional filter to eliminate
inactive compounds that were predicted incorrectly by the
level-one model.

Note that even though the cascaded SSRc model is similar
in spirit to the two-step approach proposed by Wassermann
et al [23], it differs in two important ways. First, instead of
sending a constant number of the highest ranked compounds
(as predicted by the level-one model) to the level-two model,
SSRc uses the minactivity threshold to determine the com-
pounds that will be routed to the level-two model. Second,
instead of using only the S−i compounds as the negative
class of the level-two model, SSRc uses the compounds in
S−i ∪C−

i as the corresponding negative class. As the exper-
iments presented in Section 6.3 show, this change leads to
better performance.

4.3 Multi-Task SSR Models
Both the baseline and the cascaded SSR models take into
account the labels of the training compounds (i.e., selective,
non-selective, active, and inactive) as they were determined
for the target under consideration (ti). However, important
information can also be derived by taking into account their
labels as they were determined for the targets in the chal-
lenge set (Ti). For example, if a compound is active for ti

and it is inactive for all the targets in Ti, then there is a
higher probability that the compound is also selective for
ti. Similarly, if a compound is selective for one target in Ti,
then by definition, this compound is non-selective for ti.

Motivated by this observation, we developed another model
that in addition to the activity and selectivity information
for ti, it also incorporates the activity and selectivity in-
formation for the targets in the challenge set Ti. This ad-
ditional information is typically not available for the com-
pounds whose selectivity needs to be determined but also
needs to be predicted in the course of predicting the com-
pounds’ selectivity. Since this model relies on models built
to predict related tasks, it falls under the general class of
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Figure 1: A multi-task neural network for target ti

and challenge set Ti.

multi-task learning models, and we will refer to this model
as SSRmt.

The SSRmt model extends the model used by the baseline
SSR model (Section 4.1) by learning compound activity and
compound selectivity together. It incorporates these two
different learning tasks into a single model so as to facilitate
transfer of information during the training of the different
models. The learning with information transfer is done by
using the neural network model shown in Figure 1 which
has two pairs of outputs. The first pair corresponds to the
activity and selectivity for ti, whereas the second pair corre-
sponds to the activity and selectivity for Ti (the compound
selectivity for each target tj ∈ Ti was determined using {ti}
as the challenge set). The inputs to this neural network
are the various features that describe the chemical struc-
ture of the compounds. Each training compound has four
labels (one for each output) and during training, the various
model parameters are estimated so that to minimize a mean-
square-error (MSE) loss function (described in Section 5.3)
between the predicted and actual four labels at the output
layer. The prediction of a compound whose selectivity for
ti needs to be determined is given by the output associated
with ti’s selectivity. This model utilizes the same hidden
layer to simultaneously learn how to predict the four differ-
ent tasks (i.e., activity and selectivity for ti and Ti) and as
such it can facilitate better information transfer across the
different tasks during the model’s training stage.

Note that the four labels for each training instance are not
independent. For example, if selectivity for ti is positive
(i.e., selective for ti), then selectivity for any other tj has
to be negative (i.e., a compound cannot be selective for two
targets under consideration). Also if activity for ti is neg-
ative, than selectivity for ti has to be negative (selective
compounds have to be active first). We do not explicitly
model such dependencies through loss function but rely on
the NN system and the learning process to implicitly incor-
porate such constraints from training instances.

4.4 Three-Way SSR Models
The performance of the SSR models described in the previ-
ous sections was also compared against the performance of
another type of model that has been proposed in the past.



This model is the 3-way classification approach developed by
Wassermann et al. [23] that operates as follows. For target
ti and its challenge set Ti, it builds three one-vs-rest binary
classification models for each one of the selective (S+

i ), non-
selective (S−i ), and inactive (C−

i ) sets of compounds, respec-
tively. During prediction, a compound c is predicted by each
one of the three models, leading to three predicted values
f

S+
i

(c), f
S−i

(c), and f
C−i

(c). A compound is considered to

be selective if f
S+

i
(c) = max(f

S+
i

(c), f
S−i

(c), f
C−i

(c)). Also,

if a degree of selectivity is required (i.e., in order to rank a
set of predicted compounds), then c’s degree of selectivity
is given by f

S+
i

(c) − max(f
S−i

(c), f
C−i

(c)). The underlying

idea of this 3-way classification method is to model different
classes separately and to decide the class of a new instance
based on how differently it is classified by different models.
We will denote this SSR model as SSR3way.

5. MATERIALS
5.1 Datasets
We evaluated the performance of the various SSR models
on a set of protein targets and their ligands that are ex-
tracted from ChEMBL, which is a database of molecular
targets and their published assays with bioactive drug-like
small molecules. We first selected an initial set of molecu-
lar targets and their corresponding ligands from ChEMBL
based on the following criteria:

◦ The target is a single protein.
◦ The assay for the target is a binding assay.
◦ For each target ti, there are at least 20 active com-

pounds.

These criteria ensure that the binding affinities measure how
well a compound binds to a single target and also there are
sufficient compounds to learn a model. From this initial set
of targets, we eliminated those targets if they satisfy any of
the following criteria:

◦ The target does not share any of its active compounds
with other targets in the initial set of targets.

◦ The target has less than 10 selective compounds against
any single target in the initial set.

The first condition eliminates targets for which we cannot
access if their active compounds are selective or not, whereas
the second condition is designed to keep the targets that con-
tain a sufficient number of selective compounds in order to
learn a SSR model. These filtering steps resulted in a dataset
with 98 protein targets. For each target ti of these targets,
we used all of its known active compounds and constructed
an equal-size set of inactive compounds. The inactive com-
pounds were selected from ti’s known inactive compounds
if sufficient, otherwise, they were randomly selected from
ChEMBL that always show extremely low binding affinities
against arbitrary targets. Such compounds are very likely
to be truly inactive against ti even no experimental results
are available, because they exhibit some strong drug-unlike
properties evidenced by other targets. Note that during the
random compound selection for ti, we guaranteed that the
randomly-selected inactive compounds are not in C+

j or C−
j

of any other targets (i.e., i 6= j). This is done in order to
avoid the situation in which a randomly selected compound
is determined to be selective for some targets.

Using these 98 targets, we constructed two datasets for ex-
perimental testing. The first dataset, referred to as DS1,
contains 116 individual SSR prediction tasks involving a sin-
gle target ti as the target of interest and another single target
tj as its challenge set (i.e., Ti = {tj}). These 116 SSR pre-
diction tasks were identified by considering all possible (i.e.,
98×97) SSR prediction tasks of this type and then selecting
only those for which (i) targets ti and tj have some common
active compounds (i.e., those compounds are active for both
ti and tj) and (ii) when tj is used as the sole member of ti’s
challenge set, the resulting SSR prediction task results in
at least 10 selective compounds for ti. Both of these filter-
ing steps are essential to ensure that there are a sufficiently
large number of training compounds to accurately learn and
assess the selectivity of the target of interest. In these 116
SSR prediction tasks, the average number of active and se-
lective compounds for the target of interest is 172 and 26,
respectively. Note that each target ti can potentially be the
target of interest in multiple SSR prediction tasks and that
a compound c may have different selectivity properties for
ti when different Tis are considered.

The second dataset, referred to as DS2, contains 19 individ-
ual SSR prediction tasks involving a single target ti as the
target of interest and multiple targets in its challenge set
Ti. The 19 prediction tasks were identified according to the
criteria that (i) target ti and each tj ∈ Ti share common
active compounds, (ii) |Ti| ≥ 2 and (iii) there are at least
10 selective compounds for ti against Ti determined based
on Equation 1. These criteria result in on average 3.9 tar-
gets in each challenge set, and the average number of active
and selective compounds for the target of interest is 198 and
27, respectively.

The first dataset is constructed so as to maximize the num-
ber of selective compounds for each ti to train a reliable
model. This is also a common practice in other selectivity
learning and dataset construction exercise [23, 18] and in real
experimental settings. Meanwhile, it maximizes the number
of interested targets to test for any statistically significant
conclusions. The second dataset is constructed to test the
generalizability of SSR models. Additional details on the
targets, compounds, and the two datasets are available at 4.

5.2 Compound Representations
We generated 2048-bit binary Chemaxon compound descrip-
tors5 for all the compounds extracted as in 5.1. Then we ap-
plied a PCA-based dimension reduction method such that
the 2048 dimensions are reduced to 1000 dimensions. Each
compound is then represented by such a 1000-dimension fea-
ture vector and thus a NN with 1000 input nodes can be
trained on such compound representations. We used the
Chemaxon software generatemd to generate initial descrip-
tors, and a Matlab dimension reduction toolbox6 with PCA
option to reduce descriptor dimensions.

Note that chemical compounds can be represented by dif-
ferent fingerprints [22]. However, since our study does not

4http://www-users.cs.umn.edu/∼xning/selectivity/
5http://www.chemaxon.com/
6http://homepage.tudelft.nl/19j49/Matlab Toolbox for -
Dimensionality Reduction.html



aim to evaluate the performance of different fingerprints for
compound selectivity, we only applied Chemaxon compound
descriptors because it is one of the most popular choices. Di-
mensionality reduced is performed since the NN may suffer
from the curse of dimensionality [4] if high-dimension inputs
are encountered.

5.3 Neural Networks
We used the publicly available neural network software FANN7

for our neural network implementation. FANN implements
fast multi-layer artificial neural networks with support for
both fully connected and sparsely connected networks. We
used sigmoid function as the squash function on hidden and
output neurons, which is defined as follows

σ(yj) =
1

1 + e−syj
, (2)

where yj is the output at a certain hidden/output neuron j
and s is a steepness parameter that determines how aggres-
sive the non-linear transform is. The output of each neuron
is calculated as

yj =

nX
i=1

wijxij + θk, (3)

where xij is the input from neuron i to neuron j (on different
layers), wij is the weight from neuron i to neuron j, and θk

is the bias on the layer as of neuron i.

At the output layer, we used Sum of Mean Square Errors
(MSE) as the loss function so as to serve as the object to
minimize as the NN is trained. MSE is defined as

L(~w) = MSE =
1

2|D|
X
d∈D

X
k∈outputs

(tdk − odk)2, (4)

where D is the set of training data, tdk is the target label of
training instance d at output neuron k, odk is the output at
output neuron k from the NN for instance d, and ~w is the
weights on the net.

5.3.1 NN Training & Parameters
We used Back-Propagation (BP) algorithm for NN train-
ing [15]. BP requires a set of learning parameters, and in
the following experiments, we specified such learning param-
eters as follows: learning rate 0.005, maximum number of
iterations 100000, steepness 1.0 on hidden layers and output
layer, and momentum 0.001.

In the following experiments, we denoted minMSE as the de-
sired MSE such that once the training error reaches minMSE ,
the NN training process is terminated. Thus, minMSE is
one of the NN training termination conditions, in addition
to maximum number of training iterations.

We did a preliminary study on the range of optimal num-
ber of hidden layers and optimal number of hidden neurons
by performing a grid search on such numbers using SSRbase

models with 1 and 2 hidden layers, and 64, 128, 256 and
512 hidden neurons on each layer, respectively. The results
demonstrated that only one hidden layer suffices to learn a
good model. All the experiments that are reported below

7http://leenissen.dk/fann/

utilized a neural network with a single hidden layer. Ex-
periments with additional hidden layers did not lead to any
improvements so they are not reported.

5.4 Evaluation Methodology & Metrics
The performance of the different methods are evaluated via
a five-fold cross validation, in which the corresponding ac-
tive compounds and inactive compounds of each target are
randomly split into 5 folds, four folds for model learning
and the rest fold for testing, and each of these folds is en-
forced to have about the same number of selectively active
compounds.

The quality of the SSR models is measured using F1, which
is the harmonic mean of precision and recall, and defined as
follows in Equation 5:

F1 =
2 · precision · recall
precision + recall

(5)

in which precision is the fraction of correctly classified selec-
tive compounds (i.e., true positive) over all compounds that
are classified as selective (i.e, true positive and false positive)
by SSR models. Precision is defined as in Equation 6.

precision =
true positive

true positive + false positive
(6)

Recall in Equation 5 is the fraction of correctly classified se-
lective compounds (i.e., true positive) over all selective com-
pounds in testing data (i.e., true positive and false negative)
by SSR models. Recall is defined as in Equation 7.

recall =
true positive

true positive + false negative
(7)

Intuitively, if precision and recall are both high, or one of
the two is very high, F1 measure will be high, and thus F1

is a measure which leverages both precision and recall, and
higher F1 values indicate better performance.

Conventionally, in NN settings, if prediction scores are above
0.5 (in case of 0/1 binary labels), it is considered as posi-
tive prediction, and thus 0.5 by default serves as a threshold
(referred to as α) to determine if a prediction is positive or
not, and precision and recall values are calculated based on
the threshold. However, in some cases a different threshold α
may be preferred so as to favor or disfavor predictions above
or below a certain value. In our study, we evaluated thresh-
old values and calculated precision and recall, and F1 mea-
sure corresponding to each of the thresholds α, and search
for the best parameter α which gives best F1 measure. We
refer to this best F1 values as Fb

1 . During the experimental
evaluation, we report the average Fb

1 values across 5 folds.

6. RESULTS
6.1 Effects of Dimension Reduction
Figure 2 shows how the PCA-based dimensionality reduction
impacts the performance of the SSRbase model. The met-
rics plotted correspond to the average Fb

1 values and model
learning time over the 116 SSR tasks of DS1. This plot was
obtained by reducing the dimensions of the original binary
fingerprints from 2048 to 50, 100, 200, 500, 1000 and 1500,
and then trained SSRbase models on respective reduced fea-
tures. For each number of dimensions the reported results
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Figure 2: Effects of dimension reduction for DS1.

Table 1: SSRbase Average Fb
1 Scores.

minMSE
DS1 DS2

32 64 128 32 64 128

0.01 0.700 0.701 0.699 0.649 0.638 0.646
0.03 0.700 0.704 0.705 0.652 0.641 0.651
0.05 0.707 0.710 0.707 0.658 0.654 0.654
0.07 0.704 0.708 0.702 0.655 0.657 0.639
0.10 0.704 0.706 0.681 0.648 0.643 0.584

minMSE is the minimum MSE within stop criteria for model
training. Columns under DS1 and DS2 correspond to the results
for dataset one and dataset two, respectively. Each column under
32, 64, etc, corresponds to the results using 32, 64, etc, hidden
neurons in NNs. The bold numbers indicate the best average per-
formance over all minMSE values and numbers of hidden neurons
for all the targets. There is only 1 hidden layer in all the NNs.

correspond to the best prediction performance over all learn-
ing parameters (i.e., learning rate, steepness, etc, and num-
ber of hidden neurons, as specified in Section 5.3.1).

These results indicate that as the number of dimensions in-
creases, the accuracy of the SSRbase model improves. How-
ever, the best prediction performance is achieved at 1000
dimensions. Moreover, when 1000 dimensions are used, the
amount of time required to learn the NN models is about
2/5 of that required when no dimensionality reduction is
performed. For these reasons, in all of our subsequent ex-
periments, we used the reduced 1000-dimension features to
represent compounds.

6.2 Results for Baseline Models
Table 1 shows the performance achieved by the SSRbase

model on the DS1 and DS2 datasets for different number
of hidden neurons and different minMSE values for stop-
ping NN training. The best performance is achieved with
64 hidden neurons and minMSE values of 0.05 for DS1 and
0.07 for DS2. These results also show that when minMSE
decreases, the models tend to overfit the training data and
when minMSE increases, the models tend to underfit the
training data. Similar trends can be observed when the
number of hidden neurons increases or decreases.

A promising observation is that the overall best performance
of 0.710 for DS1 and 0.657 for DS2 is substantially better

Table 2: SAR Average Fb
1 Scores.

minMSE
DS1 DS2

64 128 256 128 256 512

0.001 0.906 0.906 0.904 0.912 0.913 0.901
0.003 0.904 0.906 0.906 0.914 0.917 0.907
0.005 0.904 0.905 0.904 0.913 0.918 0.910
0.007 0.902 0.903 0.903 0.916 0.910 0.906
0.010 0.901 0.901 0.899 0.910 0.911 0.899

minMSE is the minimum MSE within stop criteria for model
training. Columns under DS1 and DS2 correspond to the results
for dataset one and dataset two, respectively. Each column under
64, 128, etc, corresponds to the results using 64, 128, etc, hidden
neurons in NNs. The bold numbers indicate the best average per-
formance over all minMSE values and numbers of hidden neurons
for all the targets. There is only 1 hidden layer in all the NNs.

than that of a random prediction, indicating that machine
learning methods can be utilized to build SSR models. Also
the performance on DS2 is lower than that achieved on DS1,
indicating that learning SSR models when the challenge set
contains multiple targets is considerably harder.

6.3 Results for Cascaded Models
Recall from Section 4.2 that SSRc uses a SAR model (level-
one model) to identify the compounds that have a predicted
activity value greater than or equal to the minactivity thresh-
old and then uses a SSRbase model (level-two model) to pre-
dict which of those compounds are selective for the target
of interest. For this reason, our experimental evaluation
initially focuses on assessing the performance of the SAR
models themselves in order to determine their optimal set
of model parameters, and then on the evaluation of model
sensitivity to the minactivity threshold parameter.

Table 2 shows the performance of the SAR models for the
two datasets. The best average performance for DS1 (0.906)
is achieved for 128 hidden neurons and a minMSE value of
0.003, whereas the best average performance for DS2 (0.918)
is achieved for 256 hidden neurons and a minMSE value of
0.005. These high F1 scores, which result from high val-
ues of the underlying precision and recalls measures, are
encouraging for two reasons. First, the compounds that will
be filtered out will be predominately inactives (high preci-
sion), which makes the prediction task of the level-two model
easier as it does not need to consider a large number of inac-
tive compounds. Second, most of the selective compounds
will be passed through to the level-two model (high recall),
which ensures that most of the selective compounds will be
considered (i.e., asked to be predicted) by that model. This
is important as the selectivity determination is done only by
the level-two model for only those compounds that pass the
minactivity-threshold filter of the level-one model.

The first two rows of Table 3 show the performance achieved
by the SSRc models for different values of the minactivity
threshold parameter. In these experiments, the level-one
models correspond to the SAR model with the optimal pa-
rameter combination that achieved the best results in Ta-
ble 2 (i.e., DS1: 128 hidden neurons and minMSE 0.003;
DS2: 256 hidden neurons and minMSE 0.005) and the level-
two models correspond to the SSRbase model with the op-



Table 3: Cascaded Model Average Fb
1 Scores.

scheme dataset
minactivity

0.3 0.4 0.5 0.6 0.7

SSRc
DS1 0.727 0.729 0.728 0.727 0.725
DS2 0.671 0.676 0.674 0.673 0.671

Wass
DS1 0.721 0.723 0.723 0.723 0.722
DS2 0.631 0.631 0.631 0.630 0.628

The rows corresponding to SSRc show the results when the level-
two model is trained using S+

i as positive training instances and

S−i
S

C−i as negative training instances (i.e., SSRbase). The rows
corresponding to Wass show the results when the level-two model
is trained using S+

i as positive training instances and S−i as neg-
ative training instances [23]. Rows for DS1 and DS2 show the re-
sults for dataset one and dataset two, respectively. Each column
corresponds to the results with corresponding minactivity thresh-
old used. The bold numbers indicate the best average performance
over all minactivity thresholds. For dataset one, level-one SAR
models have 128 hidden nodes and minMSE 0.003, and level-two
SSRbase models have 64 hidden nodes and minMSE 0.05 for both
SSRc and Wass models. For dataset two, level-one SAR models
have 256 hidden nodes and minMSE 0.005, and level-two SSRbase
models have 64 hidden nodes and minMSE 0.07 for both SSRc and
Wass methods.

timal parameter combination that achieved the best results
in Table 1 (i.e., DS1: 64 hidden neurons and minMSE 0.05;
DS2: 64 hidden neurons and minMSE 0.07). The overall
best average performance achieved by SSRc is 0.729 and
0.679 for the DS1 and DS2 datasets, respectively and occurs
when the minactivity threshold value is 0.4. Also, these re-
sults show that as minactivity changes, the performance of
the resulting SSRc models changes as well. However, these
results show that for a relatively large number of reason-
able minactivity threshold values, the overall performance
remains relatively similar. Of course, if minactivity is too
small or too large, then the resulting model either becomes
identical to SSRbase or may fail to identify selective com-
pounds due to low recall.

The second two rows of Table 3 show the performance of
a cascaded SSR model in which the level-two model uses
only the nonselective compounds as the negative class. This
is similar to the model used by the two-step approach de-
veloped by Wassermann et al [23]. Note that these results
were obtained using the same level-one model as that used
by SSRc and the same NN model/learning parameters used
by SSRc. The best average performance achieved by this
alternate approach is 0.723 and 0.631 for DS1 and DS2, re-
spectively; both of which are worse than those achieved by
SSRc. These results indicate that taking into account the
inactive compounds in the level-two model leads to better
SSR prediction results.

6.4 Results for Multi-Task Models
Table 4 shows the performance achieved by the SSRmt model
for different number of hidden neurons and minMSE values.
The best average performance for DS1 (0.759) happens for
256 hidden neurons and a minMSE value of 0.05; whereas
the best performance for DS2 (0.681) happens for 128 hid-
den neurons and a minMSE value of 0.07. The performance
characteristics of the SSRmt model as a function of the num-
ber of hidden neurons and the minMSE value are similar to
those observed earlier for the SSRbase model. As the num-

Table 4: SSRmt Average Fb
1 Scores.

minMSE
DS1 DS2

128 256 512 64 128 256

0.01 0.484 0.426 0.414 0.590 0.611 0.615
0.03 0.753 0.757 0.756 0.649 0.662 0.657
0.05 0.756 0.759 0.754 0.667 0.664 0.671
0.07 0.747 0.747 0.746 0.672 0.681 0.660
0.10 0.738 0.735 0.737 0.662 0.671 0.656

minMSE is the minimum MSE within stop criteria for model
training. Columns under DS1 and DS2 correspond to the results
for dataset one and dataset two, respectively. Each column under
64, 128, etc, corresponds to the results using 64, 128, etc, hidden
neurons in NNs. The bold numbers indicate the best average per-
formance over all minMSE values and numbers of hidden neurons
for all the targets. There is only 1 hidden layer in all the NNs.

Table 5: SSR3way Average Fb
1 Scores.

minMSE
DS1 DS2

32 64 128 32 64 128

0.01 0.707 0.711 0.712 0.640 0.649 0.637
0.03 0.707 0.712 0.707 0.653 0.664 0.643
0.05 0.718 0.722 0.713 0.636 0.650 0.616
0.07 0.721 0.717 0.697 0.626 0.641 0.563
0.10 0.711 0.698 0.641 0.610 0.582 0.508

minMSE is the minimum MSE within stop criteria for model
training. Columns under DS1 and DS2 correspond to the results
for dataset one and dataset two, respectively. Each column under
32, 64, etc, corresponds to the results using 32, 64, etc, hidden
neurons in NNs. The bold numbers indicate the best average per-
formance over all minMSE values and numbers of hidden neurons
for all the targets. There is only 1 hidden layer in all the NNs.

ber of hidden neurons decreases/increases (or the minMSE
values increases/decreases) the performance of the resulting
model degrades due to under- and over-fitting.

6.5 Results for Three-Way Models
Table 5 shows the performance achieved by the SSR3way

models for different number of hidden neurons and minMSE
values. These results were obtained by using the same set
of model and learning parameters (i.e., number of hidden
neurons and minMSE value) for each one of the three binary
models involved (i.e, S+

i vs the rest, S−i vs the rest, and C−
i

vs the rest). The best average performance for DS1 (0.722)
happens for 64 hidden neurons and a minMSE value of 0.05;
whereas the best performance for DS2 (0.664) happens for
64 hidden neurons and a minMSE value of 0.03.

6.6 Overall Comparison
Table 6 summarizes the best average F b

1 results achieved
from SSRbase, SSR3way, SSRc and SSRmt models on the DS1
and DS2 datasets. These results correspond to the bold-
faced entries of Tables 1, 5, 3, and 4, respectively. In addi-
tion, for each scheme other than SSRbase, the rows labeled
“#imprv” show the number of prediction tasks for which
the corresponding scheme outperforms the SSRbase models.
Similarly, the rows labeled “imprv” show the average perfor-
mance improvement achieved by that scheme of the SSRbase

models. The performance improvement is calculated as the
geometric mean of pairwise performance improvement over



Table 6: SSR Model Performance Comparison.

dataset pfm/imprv
scheme

SSRbase SSR3way SSRc SSRmt

DS1
best 0.710 0.722 0.729 0.759

#imprv - 72 72 79
imprv - 1.6% 2.6% 7.5%

DS2
best 0.657 0.664 0.676 0.681

#imprv - 11 15 11
imprv - 0.8% 3.2% 3.5%

The rows labeled best correspond to the best performance from
the corresponding SSR model given minMSE and number of
hidden neurons fixed for all prediction tasks. The rows labeled
#imprv present the number of prediction tasks for each the cor-
responding SSR method performs better than baseline SSRbase.
The rows labeled imprv present the geometric mean of pairwise
performance improvement over baseline SSRbase model.

SSRbase.

For both the datasets, the SSR3way, SSRc and SSRmt mod-
els outperform the SSRbase model. This indicates that by
incorporating additional information (i.e., compound activ-
ity properties for the target of interest, compound activity
and selectivity properties against challenge sets, etc) rather
than focusing on selectivity property alone improves selec-
tivity prediction performance. Among the different schemes,
the SSRmt models achieve the best SSR prediction results.
Their average improvement over SSRbase for DS1 and DS2 is
7.5% and 3.5%, respectively. The SSRc models achieve the
next best performance, which corresponds to an average im-
provement of 2.6% and 3.2% for DS1 and DS2, respectively.
Finally, even though SSR3way improves upon the SSRbase

model, the gains achieved are rather modest (1.6% for DS1
and 0.8% for DS2).

A finner-grain picture of the performance of the different
methods on the different SSR prediction tasks involved in
DS1 and DS2 is shown in the plots of Figure 3. These plots
show the log-ratios of the F b

1 scores achieved by each model
over that achieved by the baseline model for the 116 SSR
tasks of DS1 (Figure 3(a)) and the 19 SSR tasks of DS2
(Figure 3(b)). For each SSR model, the results in Figure 3
are presented in a non-increasing order according to these
log-ratios. Figure 3 shows that SSRmt leads to higher im-
provements for more individual SSR prediction tasks than
SSR3way and SSRc, and that SSRc performs slightly better
than SSR3way. The actual number of SSR prediction tasks
for which each method outperforms the baseline are shown
in the row labeled “#imprv” of Table 6.

Finally, comparing the performance across the two datasets
we see that the proposed methods are able to achieve consid-
erably better improvements for DS1 than DS2. We believe
that this is due to the fact that the underlying learning prob-
lem associated with the prediction tasks in DS2 are harder,
since the challenge sets contain more than one target.

7. CONCLUSIONS
In this paper, we developed two machine learning meth-
ods SSRc and SSRmt for building SSR models, and exper-
imentally evaluated them against two previously developed

methods SSRbase and SSR3way. Our results showed that
the SSRmt approaches achieve the best results, substantially
outperforming other methods on a large number of differ-
ent SSR prediction tasks. This multi-task model combines
activity and selectivity models for multiple proteins into a
single model such that during training, the two models are
learned simultaneously, and compound preference over tar-
gets is learned and transferred across. This suggests that col-
lectively considering information from multiple targets and
also compound activity and selectivity properties for each
target benefits selectivity prediction.

Our experiments showed that even though the multi-task
learning-based SSR models can achieve good performance
for the SSR prediction tasks in which the challenge set con-
tains a single other target, their performance for multi-target
challenge sets is considerably lower. This indicates that fu-
ture research is required for developing methods which bet-
ter predict SSR with multi-target challenge sets. A poten-
tial approach is that SSRmt models can be constructed to
have outputs for each of the targets in challenge set such
that more information is expected to be learned through
the multi-task learning.
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