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1. INTRODUCTION

Small molecular drug discovery is a time-consuming and
costly process in which the identification of potential drug
candidates serves as an initial and critical step. A successful drug
needs to exhibit at least two important properties. The first is that
the compound has to bind with high affinity to the protein (this
protein is referred to as the target) that it is designed to affect so as
to act efficaciously. The second is that the compound has to bind
with high affinity to only that protein so as to minimize the
likelihood of undesirable side effects. The latter property is
related to compound selectivity, which measures how differen-
tially a compound binds to the protein of interest.

Experimental determination of compound selectivity usually
takes place during the later stages of the drug discovery process.
A selectivity test can include binding assays or clinical trials.1 The
problemwith such an approach is that it defers selectivity assessment
to the later stages, so if it fails, then significant investments in time
and resources get wasted. For this reason, it is highly desirable to
have inexpensive and accurate computational methods to predict
compound selectivity at earlier stages in the drug discovery process.

The use of computational methods to predict properties of
chemical compounds has a long history in chemical informatics.
The work pioneered byHansch et al.2,3 led to the development of
computational methods for predicting structure�activity rela-
tionships (SARs). In recent years, researchers have started to
develop similar approaches for building models to predict the
selectivity properties of compounds. Such models are referred to
as structure�selectivity relationship (SSR) models.4 Existing
computational methods for building SSR models fall into two

general classes. The first contains methods that determine
selectivity by using SSR models, and the second contains
methods that build a selectivity model by considering only the
target of interest. The disadvantage of the first class of methods is
that they rely on models learned by not utilizing information
about which of the active compounds are selective and which
ones are nonselective. As such, they ignore key information that
can potentially lead to an overall better selectivity prediction
method. The disadvantage of the second class of methods is that
they largely ignore a rich source of information from multiple
other proteins, which if properly explored could lead to more
realistic and accurate selectivity models.

In this paper, we develop two classes of machine learning
methods for building SSR models. The first class of methods,
referred to as cascaded SSRs, builds on previously developed
techniques and incorporates a pair of models on two levels. Level
1 is a standard SSR model which identifies the compounds that
bind to the target regardless of their selectivity. Level 2 is a model
that further screens the compounds identified by the level 1
model to identify only the subset that binds selectively to the
target and not to the other proteins. Such methods exhibit a
cascaded architecture, and by decoupling the requirements of
accuracy and selectivity, the respective learning tasks are more
focused and easier to learn so as to increase the likelihood of
developing accurate models. The second class of methods,
referred to as multitask SSRs, incorporates information from
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multiple targets and multiple prediction tasks and builds a
multitask SSR model. The key insight is that compound activity/
selectivity properties for other proteins can be utilized when
building an SSR model for the target of interest. These methods
treat activity and selectivity prediction as two different yet related
tasks. For the target of interest and multiple other proteins, their
SAR and SSR tasks are tied together into one single multitask
model. Duringmodel training, the SAR and SSR tasks are learned
simultaneously with useful information implicitly transferred
across one another, and the compound selectivity against multi-
ple proteins is better captured within the model.

We conducted a comprehensive set of experiments to assess
the performance of these methods and compare them with other
previously proposed state-of-the-art methods. A unique feature
of our evaluation is that, unlike previous studies that utilized a
very small number of test sets, we constructed data sets derived
from publicly available resources (ChEMBL, http://www.ebi.ac.
uk/chembl/) that collectively contained 135 individual SSR
prediction tasks. Our experimental evaluations show that the
proposed methods outperform those developed previously and
that the approach based on multitask learning performs substan-
tially better than all the other approaches.

The rest of the paper is organized as follows. In section 2, a
brief literature review on the work related to both SSR prediction
and multitask learning is provided. In section 3 definitions and
notations are given. In section 4, different learning methods for
SSR prediction are presented. In section 5, materials used by the
study are presented. In section 6, the results for the selectivity
study are presented. Finally, in section 7, the conclusions
are given.

2. RELATED WORK

2.1. Structure-Selectivity Relationship.Developing compu-
tational methods to aid in the identification of selective com-
pounds has recently been recognized as an important step in lead
optimization, and several studies have shown the promise of
utilizing machine learning approaches toward this goal. Vogt
et al.5 investigated approaches for identifying selective com-
pounds on the basis of how similar they are to known selective
compounds (similarity-search-based approach). They tested five
widely used 2D fingerprints for compound representation, and
their results demonstrated that 2D fingerprints are capable of
identifying compounds which have different selectivity proper-
ties against closely related target proteins. Stumpfe et al.6 developed
two approaches that they referred to as single-step and dual-step
approaches. The single-step approach builds the SSR model
by utilizing only the selective compounds (one class
classification). The two-step approach uses a pair of classifiers
that are applied in sequence. The first is a binary classifier trained
on selective compounds (positive class) and nonselective active
compounds (negative class), whereas the second classifier is the
one-class classifier as used in the single-step approach. A com-
pound is considered to be selective if both classifiers predicted it
as such. For both approaches, they used both k-nearest-neighbor
(similarity search) and Bayesian methods in building the models
and represented the compounds using MACCS andMolprint2D
descriptors. Their experimental results demonstrated that both
of these approaches are able to identify selective compounds.
Wassermann et al.7,8 built on this work and investigated the use
of support vector machines (SVMs)9 as the underlying machine
learning framework for learning SSR models. Specifically, they

investigated four types of SSR models. The first is a binary
classifier that uses selective compounds as positive instances and
inactive compounds as negative instances. The second is a set of
three one-vs-rest binary classifiers whose positive classes corre-
spond to the selective, nonselective active, and inactive com-
pounds and whose negative class corresponds to the compounds
that did not belong to the positive classes. The third is a two-step
approach in which the model of the first step uses active
compounds as positive instances and inactive compounds as
negative instances (i.e., a standard SAR model) and the model of
the second step uses selective compounds as positive instances
and nonselective active compounds as negative instances. Finally,
the fourth is a preference ranking model that incorporates
pairwise constraints that rank the selective compounds higher
than the inactive compounds and the inactive compounds higher
than the nonselective compounds (i.e., selectives > inactives >
nonselectives). Their results showed that SVM-based methods
outperformed conventional similarity search methods and that
the ranking and one-versus-rest methods performed similarly to
each other and outperformed the other SVM-based methods.
2.2. Multitask Learning (MTL). Multitask learning10,11 is a

transfer learning mechanism designed to improve the general-
ization performance of a given model by leveraging the domain-
specific information contained in the training signals of related
tasks. In multitask learning, multiple related tasks are represented
by a common representation, and then they are learned in
parallel, such that information from one task can be transferred
to another task through their common representations or shared
learning steps so as to boost that task’s learning performance.
A very intuitive multitask model utilizes back-propagation neural
networks (NNs).12 Input to the back-propagation net is the
common representations of all related tasks. For each task to be
learned through the net, there is one output from the net.
A hidden layer is shared across all the tasks such that by back-
propagation all the tasks can learn task-related/target-specific
signals from other tasks through the shared hidden layer. Within
such a net, all the tasks can be learned simultaneously, and by
leveraging knowledge from other related tasks, each task can be
better learned than only from its own training instances. In recent
years, many sophisticated multitask learning methods have
emerged, which include kernel methods,13 Gaussian processes,14

task clustering,10 Bayesian models,15 matrix regularization,16 etc.
Various studies have reported promising results with the use of
multitask learning in diverse areas such as cheminformatics,17,18 face
recognition,19 and text mining.20

3. DEFINITIONS AND NOTATIONS

In this paper, the protein targets and the compounds will be
denoted by lower-case t and c characters, respectively, and
subscripts will be used to denote specific targets and compounds.
Similarly, sets of protein targets or compounds will be denoted by
upper-case T and C characters, respectively.

The activity of a compound will be determined by its IC50 value
(i.e., the concentration of the compound that is required for 50%
inhibition of the target under consideration, and lower IC50 values
indicate higher activity, http://www.ncgc.nih.gov/guidance/sec-
tion3.html). A compoundwill be considered to be active for a given
target if its IC50 value for that target is less than 1 μM. For each
target ti, its sets of experimentally determined active and inactive
compounds will be denoted by Ci

+ and Ci
�, respectively, whereas

the union of the two sets will be denoted by Ci.
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A compound c will be selective for ti against a set of targets Ti if
the following two conditions are satisfied:

ðiÞ c is active for ti

ðiiÞ min
"tj ∈ Ti

IC50ðc, tjÞ
IC50ðc, tiÞ g 50

ð1Þ

This definition follows the common practice of using the ratio of
binding affinities in determining the selectivity of compounds.21

Note that c can be either active or inactive for some or all of the
targets in Ti while being selective for ti.

An important aspect of the selectivity definition is that it is
done by taking into account both the target under consideration
(ti) and also another set of targets (Ti) against which a com-
pound’s selectivity for ti is defined. We will refer to Ti as the
challenge set. Depending on the problem at hand, each target may
have multiple challenge sets, and they will be denoted using
subscripts, i.e., Ti,1, Ti,2, ..., Ti,n. In such cases, a compound’s
selectivity properties for a target can be different against different
challenge sets. Given a target ti and a challenge set Ti, ti’s selective
compounds against Ti will be denoted by Si

+(Ti), whereas the
remaining nonselective active compounds will be denoted by
Si
�(Ti). This notation will be simplified to Si

+ and Si
� when a

single challenge set is considered.
Given a target ti and a challenge set Ti, the goal of the SSR

model is to predict whether a compound is selective for ti against
all the targets inTi. We will refer to target ti as the target of interest.

4. METHODS

The methods that we developed for building SSR models are
based on machine learning techniques. Within the context of
these methods, there are two approaches that can be used to
build SSR models. The first approach is for target ti and each
target tj ∈ Ti to build a regression model for predicting the
binding affinity of a compound (e.g., IC50) for that target. Then a
compound c will be predicted as selective if the two conditions of
eq 1 selectivity are satisfied by the predicted binding affinities.
The second approach is to build a classification model that is
designed to directly predict whether a compound is selective for ti
without first predicting the compound’s binding affinities.

Even though the available training data (i.e., compounds with
known binding affinities and their labels according to eq 1) can
support both of these approaches, the methods developed and
presented in this work are based on the second approach.
Specifically, we developed methods that employ neural networks
as the underlying machine learning mechanism and determine
the selectivity of a compound by building different types of binary
or multiclass classification models.
4.1. Baseline SSRModels.Given a target ti and a challenge set

Ti, the compounds for which the activity information with
respect to ti is known belong to one of three sets: Si

+, Si
�, and

Ci
�. From these sets, three different SSR classificationmodels can

potentially be learned using (i) Si
+ vsCi

�, (ii) Si
+ vs Si

�, and (iii) Si
+

vs Si
� ∪ Ci

�. These models share the same positive class (first set
of compounds, i.e., Si

+) but differ in the compounds that they use
to define the negative class (second set of compounds).
The first model (i.e., built using Si

+ as positive training
instances and Ci

� as negative training instances), due to ignoring
the nonselective active compounds (Si

�) during training, can
potentially learn a model that differentiates between actives and
inactives (i.e., Ci

+ vs Ci
�) since Ci

�may dominate during training,

irrespective of whether the active compounds are selective. The
second model (i.e., built using Si

+ as positive training instances
and Si

� as negative training instances), due to ignoring the
inactive compounds (Ci

�) during training, can potentially learn
a model that predicts as selective compounds that may not even
be active against the target under consideration. For these
reasons, we did not investigate these models any further but
instead used the third model to define a baseline SSR model that
will be denoted by SSRbase.
The SSRbase method constructs the SSR model by treating

both the inactive and nonselective active compounds as negative
training instances, thus allowing it to focus on the selective active
compounds while taking into account the other two groups of
compounds. A potential limitation of this model is that, depend-
ing on the relative size of the Si

� and Ci
� sets, the model learned

may be more influenced by one set of compounds. In particular,
since in most cases |Ci

�| > |Si
�|, the resulting model may have

characteristics similar to those of the model learned using only
Ci
� as the negative class. To overcome this problem, we applied

an undersampling technique; that is, while constructing the
negative class, an equal number of compounds from Si

� and
Ci
� were randomly selected. The total number of compounds

that are selected to form the negative class was set to be equal to
the number of compounds in the positive class (|Si

+|).
4.2. Cascaded SSR Models. SSRbase described in section 4.1

tries to build a model that can achieve two things at the same
time: learn which compounds are both active and selective. This
is significantly harder than trying to learn a single thing at a time,
and as such, it may lead to poor classification performance. To
address this shortcoming, we developed a cascaded SSR model
that takes into account all the compounds (selectives, nonselec-
tives, and inactives) and builds models such that each model is
designed to learn one single task.
For a target ti and a challenge set Ti, the cascaded SSR model

consists of two levels. The model on level 1 is a normal SAR
model that tries to differentiate between active and inactive
compounds, and the model on level 2 is a model that tries to
differentiate between selective and nonselective compounds.
The level 1 model serves as a filter for the level 2 model so as
to filter out those compounds that are not likely to be even active.
During prediction, compounds are first classified by the level
1 model, and only those compounds whose prediction values are
above a certain threshold, referred to as the “minactivity” thresh-
old, go through the level 2 SSR model. Only compounds
classified as positive by the level 2 SSR model will be considered
as selective. This two-level cascaded SSR model is refereed to as
SSRc.
The level 1 model is trained using Ci

+ and Ci
� as positive and

negative training instances, respectively, and is identical to ti’s
SAR model. The level 2 model can be trained using Si

+ and Si
� as

positive and negative training instances, respectively, as it will be
used to classify compounds that were predicted as active by the
level 1 model. However, the overall performance of the SSRc

model can potentially be improved if the SSRbase model de-
scribed in section 4.1 is used as the level 2 model. This is because
the SSRbase model also takes into account the inactive com-
pounds while learning to identify selective compounds, and as
such, it can be used as an additional filter to eliminate inactive
compounds that were predicted incorrectly by the level 1 model.
Note that even though the cascaded SSRc model is similar in

spirit to the two-step approach proposed by Wassermann et al.,7

it differs in two important ways. First, instead of sending a



41 dx.doi.org/10.1021/ci200346b |J. Chem. Inf. Model. 2012, 52, 38–50

Journal of Chemical Information and Modeling ARTICLE

constant number of the highest ranked compounds (as predicted
by the level 1 model) to the level 2 model, SSRc uses the
minactivity threshold to determine the compounds that will be
routed to the level 2 model. Second, instead of using only the Si

�

compounds as the negative class of the level 2 model, SSRc uses
the compounds in Si

� ∪ Ci
� as the corresponding negative class.

As the experiments presented in section 6.4 show, this change
leads to better performance.
4.3. Multitask SSR Models. Both the baseline and the

cascaded SSR models take into account the labels of the training
compounds (i.e., selective, nonselective, active, and inactive) as
they were determined for the target under consideration (ti).
However, important information can also be derived by taking
into account their labels as they were determined for the targets
in the challenge set (Ti). For example, if a compound c is active
for ti (i.e., IC50(c,ti) < 1 μM) and it is inactive for all the targets in
Ti (i.e., " tj ∈ Ti, IC50(c,tj) < 1 μM), then there is a higher
probability that the compound is also selective for ti since " tj ∈
Ti, IC50(c,tj)/IC50(c,ti) is already greater than 1 (though not
necessarily greater than 50 so as to be determined as selective; see
the definition of selectivity in eq 1). Similarly, if a compound is
selective for one target in Ti, then by definition this compound is
nonselective for ti. This indicates that the selectivity of a certain
compound can be more accurately determined by considering its
activity properties against other targets.
Motivated by this observation, we developed another model

that, in addition to the activity and selectivity information for ti, also
incorporates the activity and selectivity information for the targets in
the challenge set Ti. This additional information is typically not
available for the compounds whose selectivity needs to be deter-
mined but also needs to be predicted in the course of predicting the
compounds’ selectivity. Since this model relies on models built to
predict related tasks, it falls under the general class of multitask
learning models, and we will refer to this model as SSRmt.
The SSRmt model extends the model used by the baseline SSR

model (section 4.1) by learning compound activity and com-
pound selectivity together. It incorporates these two different
learning tasks into a single model so as to facilitate transfer of
information during the training of the different models. The
learning with information transfer is done by using the neural
network model shown in Figure 1, which has two pairs of
outputs. The first pair corresponds to the activity and selectivity
for ti, whereas the second pair corresponds to the activity and
selectivity for Ti (the compound selectivity for each target tj ∈ Ti

was determined using {ti} as the challenge set). The inputs to this
neural network are the various features that describe the chemical
structures of the compounds. Each training compound has four
labels (one for each output), and during training, the various

model parameters are estimated to minimize a mean-square-error
(MSE) loss function (described in section 5.3) between the
predicted and actual four labels at the output layer. The prediction
of a compound whose selectivity for ti needs to be determined is
given by the output associated with ti’s selectivity. This model
utilizes the same hidden layer to simultaneously learn how to predict
the four different tasks (i.e., activity and selectivity for ti and Ti),
and as such, it can facilitate better information transfer across the
different tasks during the model’s training stage.
Note that the four labels for each training instance are not

independent. For example, if selectivity for ti is positive (i.e.,
selective for ti), then selectivity for any other tj has to be negative
(i.e., a compound cannot be selective for two targets under
consideration). Also if activity for ti is negative, then selectivity
for ti has to be negative (selective compounds have to be active
first).We do not explicitly model such dependencies through loss
function but rely on the NN system and the learning process to
implicitly incorporate such constraints from training instances.
4.4. Three-Way SSR Models. The performance of the SSR

models described in the previous sections was also compared
against the performance of another type of model that has been
proposed in the past. This model is the three-way classification
approach developed by Wassermann et al.7 that operates as
follows. For target ti and its challenge set Ti, it builds three one-
vs-rest binary classification models for each one of the selective
(Si

+), nonselective (Si
�), and inactive (Ci

�) sets of compounds.
Duringmodel training, since |Si

+| < |Ci
�| + |Si

�| and |Si
�| < |Ci

�| +
|Si
+|, the binary models for Si

+ and Si
� may be dominated by the

majority class (i.e., Ci
�). To deal with this class imbalance and ito

not lose any of the available information, we randomly over-
sampled the minority class so as to make their training instances
the same counts as the majority class. During prediction, a
compound c is predicted by each one of the three models,
leading to three predicted values, fSi +(c), fSi �(c), and fCi

�(c).
A compound is considered to be selective if fSi +(c) = max(fSi +(c),
fSi �(c), fCi

�(c)). Also, if a degree of selectivity is required (i.e., to
rank a set of predicted compounds), then c’s degree of selectivity
is given by fSi +(c)�max(fSi �(c, fCi

�(c))). The underlying idea of
this three-way classification method is to model different classes
separately and to decide the class of a new instance on the basis of
how differently it is classified by different models. We will denote
this SSR model as SSR3way.
4.5. Cross-SAR SSRModels.Another model wasmotivated by

approaches used within the pharmaceutical industry in which the
selectivity of a compound ci against target ti is determined by
comparing the output on ci from ti’s SAR model against that of
the SAR model for each one of the targets in Ti. Specifically, if
fti (ci) is the prediction of ti’s SAR model on ci and {fti (ci)|tj ∈ Ti}
are the predictions of the SAR models for the targets in Ti on ci,
then the extent to which ci is selective for ti against Ti is given by
fti (ci)�maxtj (fti (ci)).We will denote this SSRmodel as SSRxSAR.
4.6. Three-Class SSR Models. Compound selectivity predic-

tion can also be viewed as a multiclass classification problem, in
which each compound ci has three binary class labels, that is,
selectivity, nonselectivity, and inactivity against a target ti. For
each target ti, a three-class classifier is built from its own
compounds. Then a compound is predicted by such a multiclass
model as one of the three classes. Figure 2 shows a three-class
neural network. The difference between the three-class neural
network classifier and themultitask neural network classifier as in
Figure 2 is that the compound activity label against the challenge
set Ti is not included.

Figure 1. Multitask neural network for target ti and challenge set Ti.
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5. MATERIALS

5.1. Data Sets.We evaluated the performance of the various SSR
models on a set of protein targets and their ligands that are extracted
from ChEMBL, which is a database of molecular targets and their
published assays with bioactive druglike small molecules. We first
selected an initial set of molecular targets and their corresponding
ligands from ChEMBL on the basis of the following criteria:
o The target is a single protein.
o The assay for the target is a binding assay.
o For each target ti, there are at least 20 active compounds.
These criteria ensure that the binding affinities measure how

well a compound binds to a single target and also there are
sufficient compounds to learn a model. From this initial set of
targets, we eliminated those targets that satisfied any of the
following criteria:
o The target does not share any of its active compounds with
other targets in the initial set of targets.

o The target has less than 10 selective compounds against any
single target in the initial set.

The first condition eliminates targets for which we cannot
assess whether their active compounds are selective, whereas the
second condition is designed to keep the targets that contain a
sufficient number of selective compounds to learn an SSRmodel.
These filtering steps resulted in a data set with 98 protein targets.
For each of these 98 targets ti, we used all of ti’s known active
compounds and generated an equal-size set of inactive com-
pounds as follows. If ti had more inactive compounds than active
compounds, the desired number of compounds were randomly
selected among them. If ti had fewer inactive compounds than
active compounds, then all of its inactive compounds were
selected and the rest of the compounds were selected randomly
from the compounds in ChEMBL that show extremely low
binding affinities for any of the targets in our data set. Note that,
in the second case, the selection procedure may introduce some
false negatives. However, since the selection is fully random, the
false-negative rate is expected to be low.

Figure 3 shows the distribution of the active compounds with
respect to the number of targets that they are active for.Most of the
compounds are active for a small number of targets, and only less
than 5% of the compounds are active for more than 10 targets.
Using these 98 targets, we constructed two data sets for

experimental testing. The first data set, referred to as DS1,
contains 116 individual SSR prediction tasks involving a single
target ti as the target of interest and another single target tj as its
challenge set (i.e.,Ti= {tj}). These 116 SSR prediction tasks were
identified by considering all possible (i.e., 98 � 97) SSR
prediction tasks of this type and then selecting only those for
which (i) targets ti and tj have some common active compounds
(i.e., those compounds that are active for both ti and tj) and (ii)
when tj is used as the sole member of ti’s challenge set, the
resulting SSR prediction task results in at least 10 selective
compounds for ti. Both of these filtering steps are essential to
ensure that there are a sufficiently large number of training
compounds to accurately learn and assess the selectivity of the
target of interest. In these 116 SSR prediction tasks, the average
numbers of active and selective compounds for the target of
interest are 172 and 26, respectively. Note that each target ti can
potentially be the target of interest inmultiple SSRprediction tasks
and that a compound cmay have different selectivity properties for
ti when different ti targets are considered. The second data set,
referred to as DS2, contains 19 individual SSR prediction tasks
involving a single target ti as the target of interest and multiple
targets in its challenge set Ti. The 19 prediction tasks were
identified according to the criteria that (i) target ti and each tj ∈
Ti share common active compounds, (ii) |Ti| g 2, and (iii) there
are at least 10 selective compounds for ti against Ti determined on
the bais of eq 1. These criteria result in on average 3.9 targets in
each challenge set, and the average numbers of active and selective
compounds for the target of interest are 198 and 27, respectively.
The first data set is constructed so as to maximize the number of

selective compounds for each ti to train a reliable model. This is also a
common practice in other selectivity learning and data set construc-
tion exercises7,22 and in real experimental settings. Meanwhile, it
maximizes the number of interested targets to test for any statistically
significant conclusions. The second data set is constructed to test the
generalizability of SSR models. Additional details on the targets,
compounds, and the two data sets are available at http://www-users.
cs.umn.edu/∼xning/selectivity/. Figure 4 shows DS1 as well as DS2.
5.2. Compound Representations. We generated 2048 bit

binary Chemaxon compound descriptors (http://www.chemaxon.
com/) for all the compounds extracted as described in section 5.1.
Then we applied a principal component analysis (PCA) based
dimension reduction method such that the 2048 dimensions were
reduced to 1000 dimensions. Each compound is then represented by
such a 1000-dimension feature vector, and thus, an NN with 1000
input nodes can be trained on such compound representations.Figure 2. Three-class neural network for target ti.

Figure 3. Compound distribution with respect to the number of targets they are active against.
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Weused theChemaxon software to generate initial descriptors and a
Matlab dimension reduction toolbox (http://homepage.tudelft.nl/
19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html)
with a PCA option to reduce descriptor dimensions.
Note that chemical compounds can be represented by differ-

ent fingerprints.23 However, since our study does not aim to
evaluate the performance of different fingerprints for compound
selectivity, we only applied Chemaxon compound descriptors
because it is one of the most popular choices. Dimensionality
reduction is performed since the NNmay suffer from the curse of
dimensionality24 if high-dimension inputs are encountered.
5.3. Neural Networks. We used the publicly available neural

network software FANN (http://leenissen.dk/fann/) for our neural
network implementation. FANN implements fast multilayer artificial
neural networks with support for both fully connected and sparsely
connected networks. We used the sigmoid function as the squash
function on hidden and output neurons, which is defined as follows:

σðyjÞ ¼ 1
1 þ e�syj

ð2Þ

where yj is the output at a certain hidden/output neuron j and s is a
steepness parameter that determines how aggressive the nonlinear
transform is. The output of each neuron is calculated as

yj ¼ ∑
n

i¼ 1
wijxij þ θk ð3Þ

where xij is the input from neuron i to neuron j (on different layers),
wij is the weight from neuron i to neuron j, and θk is the bias on the
layer of neuron i.

At the output layer, we used the sum of MSEs as the loss
function so as to serve as the object to minimize as the NN is
trained. MSE is defined as

Lð wBÞ ¼ MSE ¼ 1
2jDj ∑d ∈ D

∑
k ∈ outputs

ðtdk � odkÞ2 ð4Þ

whereD is the set of training data, tdk is the target label of training
instance d at output neuron k, odk is the output at output neuron k
from the NN for instance d, and wB is the weights on the net.
5.3.1. NN Training Parameters.We used the back-propagation

(BP) algorithm for NN training.25 BP requires a set of learning
parameters, and in the following experiments, we specified such
learning parameters as follows: learning rate 0.005, maximum
number of iterations 100 000, steepness 1.0 on hidden layers and
the output layer, and momentum 0.001.
In the following experiments, we denoted “minMSE” as the

desired MSE such that once the training error reaches minMSE,
the NN training process is terminated. Thus, minMSE is one of the
NN training termination conditions, in addition to the maximum
number of training iterations.
We did a preliminary study on the range of the optimal

number of hidden layers and optimal number of hidden neurons
by performing a grid search on such numbers using SSRbase

models with 1 and 2 hidden layers and 64, 128, 256, and 512
hidden neurons on each layer. The results demonstrated that
only one hidden layer suffices to learn a good model. All the
experiments that are reported below utilized a neural network
with a single hidden layer. Experiments with additional hidden
layers did not lead to any improvements, so they are not reported.

Figure 4. Data set: The nodes in the graph represent the targets in DS1. The directed edge from target A to target B with a label x/y represents that
target A has y active compounds, out of which x compounds are selective for target A against target B. The dark nodes represent the targets that are
selected as targets of interest into DS2.
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In addition, we tested oversampling techniques with NN
training and found that oversampling improves NN performance
and allows a reasonable model learned from even a small set of
training instances. In the experiments that are reported below,
oversampling techniques are all applied.
5.4. Evaluation Methodology Metrics. The performances of

the different methods are evaluated via a five-fold cross-validation
in which the corresponding active compounds and inactive com-
pounds of each target are randomly split into five folds, four folds
formodel learning and the other fold for testing, and each of these
folds is enforced to have about the same number of selectively
active compounds.
The quality of the SSR models is measured using F1, which is

the harmonic mean of precision and recall and is defined as

F1 ¼ 2ðprecisionÞðrecallÞ
precision þ recall

ð5Þ

in which precision is the fraction of correctly classified selective
compounds (i.e., true positive) over all compounds that are
classified as selective (i.e, true positive and false positive) by SSR
models. Precision is defined as

precision ¼ true positive
true positive þ false positive

ð6Þ

Recall in eq 5is the fraction of correctly classified selective
compounds (i.e., true positive) over all selective compounds in
the testing data (i.e., true positive and false negative) by SSR
models. Recall is defined as

recall ¼ true positive
true positive þ false negative

ð7Þ

Intuitively, if precision and recall are both high, or one of the two
is very high, F1 will be high. Thus, F1 is a measure which leverages
both precision and recall, and higher F1 values indicate better
performance.
Conventionally, in NN settings, if prediction scores are above

0.5 (in the case of 0/1 binary labels), it is considered a positive
prediction. Thus, 0.5 by default serves as a threshold (referred to
as α) to determine whether a prediction is positive, and precision
and recall values are calculated on the basis of the threshold.
However, in some cases a different threshold αmay be preferred
so as to favor or disfavor predictions above or below a certain
value. In our study, we evaluated threshold values and calculated
precision and recall, and F1 corresponding to each of the
thresholds α, and searched for the best parameter α which gives
the best F1. We refer to this best F1 value as F1

b . During the
experimental evaluation, we report the average F1

b values across
five folds.

6. RESULTS

In this section, we present the results for the selectivity studies.
We present the detailed results for the first data set, in which each
challenge set has only one target and each target may have
multiple challenge sets. In the first data set, we simply refer to tj as
the challenge target of the interested target ti sinceTi= {tj}. In the
end, we present an overall performance summary for the second
data set, in which each challenge set has multiple targets and each
target has only one challenge set, since the results for the second
data set show a trend similar to that of the results of the first
data set.

6.1. Compound Similarities. First, we conducted a test on
compound similarity in the first data set so as to learn the nature
of the problem and assess the quality of our data set. Particularly,
we tested the compound similarities among selectives against
selectives, actives against actives, actives against selectives, and
actives against nonselectives using the Tanimoto coefficient,26

which is defined as follows:

simcðcx, cyÞ ¼
∑
k
cx, kcy, k

∑
k
cx, k2 þ ∑

k
cy, k2 � ∑

k
cx, kcy, k

ð8Þ

where cx and cy are the fixed-length feature vectors for two
compounds, k goes over all the dimensions of the feature vector
space, and cx,k is the value on the kth dimension. Note that, after
dimension reduction, compound feature vectors may have negative
values, and thus, the Tanimoto coefficient can be negative in this
case. However, their relative comparison still reflects the differentia-
tion across compound groups.
The detailed results are available in Supporting Information.

Some statistics are available in Table 1. We also tried different
compound feature vectors/fingerprints to calculate compound
similarities, and the trend remains the same; that is, selective
compounds are more similar to other selective compounds,
nonselective compounds are more similar to other nonselective
compounds, and on average active compounds are more similar
to selective compounds than to nonselective compounds. This
trend of compound similarities indicates that, in general, the
compound selectivity problem is not trivial since we try to
identify a small subset of active compounds, which are similar
to other active compounds to a large extent. Also the compounds
are diverse enough since they have low similarities, and therefore,
it is a hard set of compounds and they are suitable for testing the
proposed methods.
6.2. Effects of Dimension Reduction. Figure 5 shows how

the PCA-based dimensionality reduction impacts the perfor-
mance of the SSRbase model. The metrics plotted correspond to
the average F1

b values and model learning time over the 116 SSR
tasks of DS1. This plot was obtained by reducing the dimensions
of the original binary fingerprints from 2048 to 50, 100, 200, 500,
1000, and 1500, and then training SSRbase models on the
respective reduced features. For each number of dimensions
the reported results correspond to the best prediction perfor-
mance over all learning parameters (i.e., learning rate, steepness,
etc., and number of hidden neurons, as specified in section 5.3.1).
These results indicate that, as the number of dimensions

increases, the accuracy of the SSRbase model improves. However,

Table 1. Compound Similaritya

sim_s2s sim_ns2 ns sim_s2sns sim_a2a sim_a2s sim_a2 ns sim_rnd

0.570 0.385 0.343 0.371 0.372 0.357 0.287
a In this table, for each target ti of interest in the first data set, “sim_s2s” is
the average similarity between selective compounds, “sim_ns2 ns” is the
average similarity between nonselective compounds, “sim_-s2ns” is the
average similarity between selective compounds and nonselective com-
pounds, “sim_a2a” is the average compound similarity between active
compounds, “sim_a2s” is the average compound similarity between
active compounds and selective compounds, “sim_a2ns” is the average
similarity between active compounds and nonselective compounds, and
“sim_rnd” is the average compound similarity between random
compounds.
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the best prediction performance is achieved at 1000 dimensions.
Moreover, when 1000 dimensions are used, the amount of time
required to learn the NN models is about two-fifths of that
required when no dimensionality reduction is performed. For
these reasons, in all of our subsequent experiments, we used the
reduced 1000-dimension features to represent compounds.
6.3. Results for SSRbase Models. Table 2 shows the perfor-

mance achieved by the SSRbase model on DS1 and DS2 for
different numberd of hidden neurons and different minMSE
values for stopping NN training. The best performance is
achieved with 64 hidden neurons and minMSE values of 0.05
for DS1 and 0.07 for DS2. These results also show that when
minMSE decreases, the models tend to overfit the training data
and when minMSE increases, the models tend to underfit the
training data. Similar trends can be observed when the number of
hidden neurons increases or decreases.
A promising observation is that the overall best performance of

0.710 for DS1 and 0.657 for DS2 is substantially better than that of a
random prediction, indicating that machine learning methods can be
utilized to build SSR models. Also the performance on DS2 is lower
than that achieved onDS1, indicating that learning SSRmodels when
the challenge set contains multiple targets is considerably harder.
6.4. Results for SSRc Models. Recall from section 4.2 that

SSRc uses an SSR model (level 1 model) to identify the com-
pounds that have a predicted activity value greater than or

equal to the minactivity threshold and then uses an SSRbase

model (level 2 model) to predict which of those compounds are
selective for the target of interest. For this reason, our experi-
mental evaluation initially focuses on assessing the performance
of the SAR models themselves to determine their optimal set of
model parameters and then on the evaluation of model sensitivity
to the minactivity threshold parameter.
Table 3 shows the performance of the SARmodels for the two

data sets. The best average performance for DS1 (0.906) is
achieved for 128 hidden neurons and a minMSE value of 0.003,
whereas the best average performance for DS2 (0.918) is
achieved for 256 hidden neurons and a minMSE value of
0.005. These high F1 scores, which result from high values of
the underlying precision and recall measures, are encouraging for
two reasons. First, the compounds that will be filtered out will be
predominately inactives (high precision), which makes the
prediction task of the level 2 model easier as it does not need
to consider a large number of inactive compounds. Second, most
of the selective compounds will be passed through to the level 2
model (high recall), which ensures that most of the selective
compounds will be considered (i.e., asked to be predicted) by
that model. This is important as the selectivity determination is
done only by the level 2 model for only those compounds that
pass the minactivity threshold filter of the level 1 model.

Figure 5. Effects of dimension reduction for DS1.

Table 2. SSRbase Average F1
b Scoresa

DS1 DS2

minMSE 32 64 128 32 64 128

0.01 0.700 0.701 0.699 0.649 0.638 0.646

0.03 0.700 0.704 0.705 0.652 0.641 0.651

0.05 0.707 0.710 0.707 0.658 0.654 0.654

0.07 0.704 0.708 0.702 0.655 0.657 0.639

0.10 0.704 0.706 0.681 0.648 0.643 0.584
aminMSE is the minimum MSE within stop criteria for model training.
Columns under DS1 andDS2 correspond to the results for data set 1 and
data set 2, respectively. Each column labeled “32”, “64”, etc. corresponds
to the results using 32, 64, etc. hidden neurons in NNs. The bold
numbers indicate the best average performance over all minMSE values
and numbers of hidden neurons for all the targets. There is only one
hidden layer in all the NNs.

Table 3. SAR Average F1
b Scoresa

DS1 DS2

minMSE 64 128 256 128 256 512

0.001 0.906 0.906 0.904 0.912 0.913 0.901

0.003 0.904 0.906 0.906 0.914 0.917 0.907

0.005 0.904 0.905 0.904 0.913 0.918 0.910

0.007 0.902 0.903 0.903 0.916 0.910 0.906

0.010 0.901 0.901 0.899 0.910 0.911 0.899
aminMSE is the minimum MSE within stop criteria for model training.
Columns underDS1 andDS2 correspond to the results for data set 1 and
data set 2, respectively. Each column labeled “64”, “128”, etc. corre-
sponds to the results using 64, 128, etc. hidden neurons in NNs. The
bold numbers indicate the best average performance over all minMSE
values and numbers of hidden neurons for all the targets. There is only
one hidden layer in all the NNs.
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The first two rows of Table 4 show the performance achieved
by the SSRc models for different values of the minactivity
threshold parameter. In these experiments, the level 1 models
correspond to the SAR model with the optimal parameter
combination that achieved the best results in Table 2 (i.e., for
DS1, 128 hidden neurons and minMSE = 0.003 and, for DS2,
256 hidden neurons and minMSE = 0.005) and the level 2
models correspond to the SSRbase model with the optimal
parameter combination that achieved the best results in Table 3
(i.e., for DS1, 64 hidden neurons and minMSE = 0.05 and, for
DS2, 64 hidden neurons and minMSE = 0.07). The overall best
average performances achieved by SSRc are 0.729 and 0.679 for
the DS1 and DS2 data sets, respectively, and occur when the
minactivity threshold value is 0.4. Also, these results show that, as
minactivity changes, the performance of the resulting SSRc

models changes as well. However, these results show that, for a
relatively large number of reasonable minactivity threshold
values, the overall performance remains relatively similar. Of
course, if minactivity is too small or too large, then the resulting
model either becomes identical to SSRbase or may fail to identify
selective compounds due to low recall.
The second two rows of Table 4 show the performance of a

cascaded SSR model in which the level 2 model uses only the
nonselective compounds as the negative class. This is similar to
the model used by the two-step approach developed by Wasser-
mann et al.7 Note that these results were obtained using the same
level 1 model as that used by SSRc and the same NN model/
learning parameters used by SSRc . The best average performances

achieved by this alternate approach are 0.723 and 0.631 for DS1
and DS2, respectively, both of which are worse than those
achieved by SSRc . These results indicate that taking into account
the inactive compounds in the level 2 model leads to better SSR
prediction results.
6.5. Results for SSRmt Models. Table 5 shows the perfor-

mance achieved by the SSRmt model for different numbers of
hidden neurons and minMSE values. The best average perfor-
mance for DS1 (0.759) happens for 256 hidden neurons and a
minMSE value of 0.05, whereas the best performance for DS2
(0.681) happens for 128 hidden neurons and a minMSE value of
0.07. The performance characteristics of the SSRmt model as a
function of the number of hidden neurons and theminMSE value
are similar to those observed earlier for the SSRbase model. As the
number of hidden neurons decreases/increases (or the minMSE
values increase/decrease), the performance of the resulting
model degrades due to under- and overfitting.
6.6. Results for Three-Way Models. Table 6 shows the

performance achieved by the SSR3way models for different
numbers of hidden neurons and minMSE values. These results
were obtained by using the same set of model and learning
parameters (i.e., number of hidden neurons and minMSE value)
for each one of the three binary models involved (i.e., Si

+ vs the
rest, Si

� vs the rest, and Ci
� vs the rest). The best average

performance for DS1 (0.722) happens for 64 hidden neurons
and a minMSE value of 0.05, whereas the best performance for
DS2 (0.664) happens for 64 hidden neurons and a minMSE
value of 0.03.

Table 4. Cascaded Model Average F1
b Scoresa

scheme data set minactivity = 0.3 minactivity = 0.4 minactivity = 0.5 minactivity = 0.6 minactivity = 0.7

SSRc DS1 0.727 0.729 0.728 0.727 0.725

DS2 0.671 0.676 0.674 0.673 0.671

Wass DS1 0.721 0.723 0.723 0.723 0.722

DS2 0.631 0.631 0.631 0.630 0.628
aThe rows corresponding to SSRc show the results when the level 2 model is trained using Si

+ as positive training instances and Si
� ∪ Ci

� as negative
training instances (i.e., SSRbase). The rows corresponding to Wass show the results when the level 2 model is trained using Si

+ as positive training
instances and Si

� as negative training instances.7 Rows for DS1 and DS2 show the results for data set 1 and data set 2, respectively. Each column
corresponds to the results with the corresponding minactivity threshold used. The bold numbers indicate the best average performance over all
minactivity thresholds. For data set 1, level 1 SARmodels have 128 hidden nodes andminMSE = 0.003 and level 2 SSRbase models have 64 hidden nodes
and minMSE = 0.05 for both SSRc andWass models. For data set 2, level 1 SARmodels have 256 hidden nodes and minMSE = 0.005 and level 2 SSRbase

models have 64 hidden nodes and minMSE = 0.07 for both SSRc and Wass methods.

Table 5. SSRmt Average F1
b Scoresa

DS1 DS2

minMSE 128 256 512 64 128 256

0.01 0.484 0.426 0.414 0.590 0.611 0.615

0.03 0.753 0.757 0.756 0.649 0.662 0.657

0.05 0.756 0.759 0.754 0.667 0.664 0.671

0.07 0.747 0.747 0.746 0.672 0.681 0.660

0.10 0.738 0.735 0.737 0.662 0.671 0.656
aminMSE is the minimum MSE within stop criteria for model training.
Columns under DS1 andDS2 correspond to the results for data set 1 and
data set 2, respectively. Each column labeled “64”, “128”, etc. corre-
sponds to the results using “64”, “128”, etc. hidden neurons in NNs. The
bold numbers indicate the best average performance over all minMSE
values and numbers of hidden neurons for all the targets. There is only
one hidden layer in all the NNs.

Table 6. SSR3way Average F1
b Scoresa

DS1 DS2

minMSE 32 64 128 32 64 128

0.01 0.707 0.711 0.712 0.640 0.649 0.637

0.03 0.707 0.712 0.707 0.653 0.664 0.643

0.05 0.718 0.722 0.713 0.636 0.650 0.616

0.07 0.721 0.717 0.697 0.626 0.641 0.563

0.10 0.711 0.698 0.641 0.582 0.582 0.508
aminMSE is the minimum MSE within stop criteria for model training.
Columns underDS1 andDS2 correspond to the results for data set 1 and
data set 2, respectively. Each column labeled “32”, “64”, etc. corresponds
to the results using 32, 64, etc. hidden neurons in NNs. The bold
numbers indicate the best average performance over all minMSE values
and numbers of hidden neurons for all the targets. There is only one
hidden layer in all the NNs.
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6.7. Results for SSRxSAR Models. Table 7 shows the perfor-
mance of SSRxSAR models. In the SSRxSAR models for ti, ti’s only
SAR model is its best baseline SAR model as identified from
Table 2. The performances shown in Table 7 are achieved by
using each ti’s best baseline SAR model and different numbers of
hidden neurons from ti’s SAR models and minMSE values. The
best average performance for DS1 (0.715) happens for 32 hidden
neurons in ti’s NNs and aminMSE value of 0.03, whereas the best
performance for DS2 (0.664) happens for 64 hidden neurons in
ti’s NNs and a minMSE value of 0.07.
6.8. Results for Multiclass SSR3class Models. Table 8 shows

the performance of SSR3class models achieved by different
numbers of hidden neurons and minMSE values. The best
average performance for DS1 (0.741) is achieved by 128 hidden
neurons and a minMSE value of 0.07, whereas the best perfor-
mance for DS2 (0.670) is achieved by 64 hidden neurons and a
minMSE value of 0.03.
6.9. Overall Comparison. Table 9 summarizes the best

average F1
b results achieved from SSRbase, SSRxSAR, SSR3way,

SSRc, SSR3class, and SSRmt models on the DS1 and DS2 data
sets. These results correspond to the bold-faced entries of
Tables 2, 7, 6, 4, 8 and 5, respectively. (Many of the results
reported in Tables 2�8 have small variations, indicating that the
performance of the various methods is stable over a wide range of

parameter values. In selecting the specific parameter-value com-
binations to report in Table 9, we used the combinations that
achieved the best results in those tables. However, the relative
performance of the various schemes will remain the same for
other combinations of the various parameter values.) In addition,
for each scheme other than SSRbase, the rows labeled “#imprv”
show the number of prediction tasks for which the corresponding
scheme outperforms the SSRbase models. Similarly, the rows
labeled “imprv” show the average performance improvement
achieved by that scheme of the SSRbase models. The performance
improvement is calculated as the geometric mean of pairwise
performance improvement over SSRbase.
Many of the results reported in Tables 2�8 have small

variations. We believe this is a nice property of the methods, as
their performance is stable over a wide range of parameter values.
The purpose of those tables was to illustrate the various perfor-
mance trends as a function of these parameters and not necessarily
to argue that one specific parameter value choice is much better
than the rest. In Table 9, the performance of the methods was also
assessed using statistical significance testing. In selecting the
specific parameter-value combinations to report in that table, we
selected those combinations that achieved the best results.
For both the data sets, the SSRxSAR, SSR3way, SSRc, SSR3class,

and SSRmt models outperform the SSRbase model. This indicates
that by incorporating additional information (i.e., compound
activity properties for the target of interest, compound activity
and selectivity properties against challenge sets, etc.) rather than
focusing on the selectivity property alone improves selectivity
prediction performance. Among the different schemes, the
SSRmt models achieve the best SSR prediction results. Their
average improvements over SSRbase for DS1 and DS2 are 7.5%
and 3.5%, respectively. The SSR3class models achieve the second
best performance for DS1, which corresponds to an average
improvement of 4.0%, and the third best performance for DS2,
which corresponds to an average improvement of 2.9%. The
SSRc models achieve the third best performance for DS1, which
corresponds to an average improvement of 2.6%, and the second
best performance for DS2, which corresponds to an average
improvement of 3.2%. Finally, even though SSR3way and SSRxSAR

improve upon the SSRbase model, the gains achieved are rather
modest (1.6% for DS1 and 0.8% for DS2 for SSR3way, 0.6% for
DS1 for SSRxSAR).
A finer grained picture of the performance of the different

methods on the different SSR prediction tasks involved in DS1

Table 7. SSRxSAR Average F1
b Scoresa

DS1 DS2

minMSE 32 64 128 32 64 128

0.01 0.710 0.705 0.700 0.663 0.661 0.662

0.03 0.715 0.704 0.700 0.663 0.662 0.661

0.05 0.707 0.690 0.677 0.662 0.661 0.662

0.07 0.696 0.673 0.649 0.664 0.664 0.663

0.10 0.656 0.638 0.636 0.662 0.664 0.663
aminMSE is the minimum MSE within stop criteria for model training.
Columns under DS1 andDS2 correspond to the results for data set 1 and
data set 2, respectively. Each column labeled “32”, “64”, etc. corresponds
to the results using 32, 64, etc. hidden neurons in NNs of Ti. The bold
numbers indicate the best average performance over all minMSE values
and numbers of hidden neurons for all the targets. There is only one
hidden layer in all the NNs. The SSRbase models are the best ones as in
Table 2.

Table 8. SSR3class Average F1
b Scoresa

DS1 DS2

minMSE 64 128 512 32 64 128

0.01 0.708 0.707 0.710 0.639 0.617 0.612

0.03 0.734 0.733 0.737 0.664 0.670 0.657

0.05 0.740 0.739 0.66 0.661 0.667 0.650

0.07 0.739 0.741 0.741 0.659 0.660 0.654

0.10 0.737 0.737 0.737 0.644 0.647 0.650
aminMSE is the minimum MSE within stop criteria for model training.
Columns under DS1 andDS2 correspond to the results for data set 1 and
data set 2, respectively. Each column labeled “32”, “64”, etc. corresponds
to the results using 32, 64, etc. hidden neurons in NNs. The bold
numbers indicate the best average performance over all minMSE values
and numbers of hidden neurons for all the targets. There is only one
hidden layer in all the NNs.

Table 9. SSR Model Performance Comparisona

data set pfm/imprv SSRbase SSRxSAR SSR3way SSRc SSR3class SSRmt

DS1 best 0.710 0.715 0.722 0.729 0.741 0.759

#imprv 61 72 72 71 79

imprv 0.6% 1.6% 2.6% 4.0% 7.5%

DS2 best 0.657 0.664 0.664 0.676 0.670 0.681

#imprv 11 11 15 11 11

imprv 2.9% 0.8% 3.2% 2.9% 3.5%
aThe rows labeled “best” correspond to the best performance from the
corresponding SSR model given minMSE and number of hidden
neurons fixed for all prediction tasks. The rows labeled “#imprv” present
the number of prediction tasks for each of the corresponding SSR
methods that perform better than SSRbase. The rows labeled “imprv”
present the geometric mean of pairwise performance improvement over
the baseline SSRbase model.
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and DS2 is shown in the plots of Figure 6. These plots show the
log ratios of the F1

b scores achieved by each model over that
achieved by the baseline model for the 116 SSR tasks of DS1
(6.9) and the 19 SSR tasks of DS2 (6.9). For each SSRmodel, the
results in Figure 6 are presented in a nonincreasing order
according to these log ratios. Figure 6 shows that SSRmt leads
to higher improvements for more individual SSR prediction tasks
than SSR3way and SSRc and that SSRc performs slightly better
than SSR3way. SSRxSAR and SSR3class have more dynamic perfor-
mance than the other models. The actual numbers of SSR
prediction tasks for which each method outperforms the baseline
are shown in the row labeled “#imprv” of Table 9.
Table 10 presents the paired t test across different SSR

methods. It shows that, for DS1, SSRc, SSR3class, and SSRmt all
outperform SSRbase significantly. In addition, SSR3class outper-
forms other SSR methods significantly except SSRc, and SSRmt

outperforms all the other SSR methods significantly. However,

for DS2, the statistical test did not show significant differences
among all the SSRmethods, even though SSRmt outperforms the
others in terms of F1

b.
Comparing the performance across the two data sets, we see

that the proposed methods are able to achieve considerably
better improvements for DS1 than DS2. We believe that this is
due to the fact that the underlying learning problems associated
with the prediction tasks in DS2 are harder, since the challenge
sets contain more than one target.

7. CONCLUSIONS

In this paper, we developed two machine learning methods,
SSRc and SSRmt, for building SSR models and experimentally
evaluated them against the previously developedmethods SSRbase,
SSRxSAR, SSR3way, and SSR3class. Our results (i.e., Tables 9
and 10) showed that the SSRmt approaches achieve the best
results, substantially outperforming other methods on a large

Figure 6. Pairwise improvement.

Table 10. Paired t Testa

data set scheme SSRbase SSRxSAR SSRxSAR SSRc SSR3class SSRmt

DS1 (116 tasks) SSRbase �/� 7.102E�01/0 6.380E�02/0 01.697E�04/1 7.019E�06/1 1.642E�10/1

SSRxSAR �/� 5.766E�01/0 2.169E�01/0 03.402E�02/1 1.719E�04/1

SSR3way �/� 4.157E�01/0 06.612E�03/1 2.179E�07/1

SSRc �/� 7.168E�02/0 1.226E�05/1

SSR3class �/� 6.237E�06/1

SSRmt �/�
DS2 (19 tasks) SSRbase �/� 8.697E�01/0 6.896E�01/0 01.356E�03/1 5.840E�01/0 1.171E�01/0

SSRxSAR �/� 9.973E�01/0 7.720E�01/0 8.715E�01/0 6.414E�01/0

SSR3way �/� 4.705E�01/0 7.926E�01/0 4.188E�01/0

SSRc �/� 7.759E�01/0 7.667E�01/0

SSR3class �/� 4.702E�01/0

SSRmt �/�
aThe x/y values correspond to the p value (i.e., x) and whether the null hypothesis (i.e., the SSRmethod of the column performs statistically the same as
the SSR method of the row) is rejected (i.e., y = 1) or not (i.e., y = 0) at the 5% significance level.
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number of different SSR prediction tasks. This multitask model
combines activity and selectivity models for multiple proteins into a
single model such that, during training, the two models are learned
simultaneously and compound preference over targets is learned
and transferred across. This suggests that collectively considering
information from multiple targets and also compound activity and
selectivity properties for each target benefits selectivity prediction.

Our experiments showed that even though the multitask
learning-based SSR models can achieve good performance for
the SSR prediction tasks in which the challenge set contains a
single other target, their performance for multitarget challenge
sets is considerably lower. This indicates that future research is
required for developing methods which better predict SSR with
multitarget challenge sets. A potential approach is that SSRmt

models can be constructed to have outputs for each of the targets
in the challenge set such that more information is expected to be
learned through the multitask learning.

We use neural networks as the learning algorithms due to their
flexible and adaptive nature for multitask learning, despite the
fact that there exist some other (stronger in general) learning
algorithms. Another widely used algorithm for compound classi-
fication is SVMs.9 In our primary studies, we conducted experi-
ments using SVMswith different kernel functions on the reduced
1000 bit compound features and original 2048 bit compound
features for the SSRbase and SSRm methods on DS1. Our results
demonstrated that, in both SSRbase and SSRmt, SVMs did not
perform better than NNs on our data set, so we did not apply
SVMs for SSR models.
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